Chapter #3: Welfare Economics

Contents: General Analysis Overview Welfare under Monopsony
Welfare under Monopoly Welfare under Middlemen

General Analysis Overview

Welfare analysis is a systematic method of evaluating the economic implications of alternative allocations. Welfare analysis answers the following questions:

1. Is a given resource allocation efficient?
2. Who gains and who loses under various resource allocations? By how much?

Partial analysis: Evaluates outcomes in a subset of markets assuming efficiency in others.

\[D = \text{demand curve} \]
Area under demand curve \(ABC0 \) = gross benefits from consumption.
\(ABP \) = consumer surplus area between demand and price.

\[S = \text{supply curve} \]
Area under supply curve \(0ELM \) = cost of production.
\(PLM \) – area between price and supply = producer surplus.
When there are no externalities, an efficient outcome occurs where the sum of consumers’ and producers’ surplus is maximized.

- Area under demand = gross benefits
- Area under supply = gross cost
- Social surplus = gross benefit – cost.
- A competitive equilibrium is efficient. It maximizes sum of consumer and producers surplus.
Welfare under Monopoly

A monopoly is the only seller in a market. The basic condition for a monopoly is below:

Maximizes $P(Q)Q - C(Q)$

$P(Q)$ = Inverse demand: price as a function of quantity

$C(Q)$ = quantity.

Optimality occurs where:

$$P + Q \frac{\partial P}{\partial Q} - \frac{\partial C}{\partial Q} = 0$$

$MR(Q) - ML(Q) = 0$

MR = marginal revenue

MC = marginal cost.

A monopoly produces too little and charges too much. Welfare loss under monopoly is ΔABC.

Q_c = quantity under competition

P_c = price under competition

P_M = price under monopoly

Q_M = quantity under monopoly.
Linear Example of Monopoly

inverse demand = \(P(Q) = a - bQ \)
revenue = \((a - bQ)Q = aQ - bQ^2 \)
supply = \(c + dQ \)
competitive outcome = \(a - bQ = c + dQ \)

\[
Q_c = \frac{a - c}{b + d}
\]

\[
P_c = a - \frac{ba - bc}{b + d}
\]

\[
P_c = \frac{ad + bc}{b + d}.
\]

Under monopoly,

\[
a - 2bQ = c + dQ
\]

\[
Q_M = \frac{a - c}{2b + d}
\]
\[P_M = a - \frac{b(a - c)}{2b + d} = \frac{a(b + d) + bc}{2b + d} \]

demand = 10 - Q
supply = 1 + Q

\[Q_c = \frac{10 - 1}{2} = 4.5 \quad P_c = \frac{10 + 1}{2} = 5.5 \]

\[Q_M = \frac{9}{3} = 3 \quad P_M = 7 \]

Welfare under Monopsony
A monopsony is the only buyer in a market.
Maximize $B(Q) - QMC(Q)$

\[B(Q) = \frac{Q}{0} \int P(z) \, dz = \text{area under demand}. \text{ The optimality condition is:} \]

\[\frac{\partial B}{\partial Q} = Q \frac{\partial MC}{\partial Q} + MC(Q) \]

$P_{mn} = \text{price paid by monopsonist}$

$Q_{mn} = \text{quantity produced by monopsonist}$

$MC(Q) = \text{marginal cost of producers}.$

Price paid by monopsony

\[MO = \text{marginal outlay} = MC(Q) + \frac{\partial MC}{\partial Q} \cdot Q. \]

=> **Monopsonist:** Underbuys and underpays.

Monopolist: Underbuys and oversells.
Welfare under Middlemen

A middleman is the only buyer and seller of product.

\[Q_{MM} = \text{middlemen output} \]

\[P_{MM}^S = \text{price paid by middlemen to suppliers} \]

\[P_{MM}^B = \text{price paid to middlemen by buyers} \]

\[P_{MM}^B \cdot CE \cdot P_{MM}^S = \text{middlemen profit} \]