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Two-Period Nonrenewable Resource Model with Extraction Costs

Utility Maximization
Assume that we are concerned with a nonrenewable resource under

unsatiated demand in two periods, t=0 and t=1. B(Xt )  is the gross benefit
associated with using Xt  amount of the resource in period t.  Now, let c
denote marginal extraction cost of the resource.  Hence, the Net Benefit for
period t becomes:        B(Xt ) − cXt

We can maximize social welfare by solving:

max
X 0 , X1

NPV SW(X0 ,X1 )[ ] = B(X0) − c ⋅ X0 +
1

1 + r
B(X1) − c ⋅ X1[ ]

subject to the constraint of the total available resource, S:  S0 = X0 + X1.

The Lagrangian equation for this problem is:

L = B(X0) − c ⋅ X0 +
1

1 + r
B(X1 ) − c ⋅ X1[ ] + (S0 − X0 − X1)

The F.O.C.'s are:

(1) LX0
= BX(X0) − c − = 0.

(2) LX1
=

BX(X1) − c

1+ r
− = 0.

(3) L = S0 − X0 − X1 = 0.
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where BX(Xt ) = MB of using Xt  amount of the resource in period t, and c =
MC.

Understanding the Relationships

Equation (1) states that the price of the mineral resource, P0  [which
equals BX(X0 )] equals marginal mining cost, c, plus the shadow cost of the
resource constraint,  or: P0 = c + . The shadow cost of the resource
constraint is also called the user cost in dynamic problems. It is the
opportunity cost of not being able to use the marginal unit of the resource
in the future if you use it today.  Stated in another way, the shadow price is
the benefit one could gain from increasing the constraint of initial resource
by one unit.

Notice from Equation (2) that higher interest rates reduce the user
cost, as before.  A reduction in user cost implies that one should use more
of the resource today and less in the future.  If one uses more of the
resource today and less in the future, then the resource will be more
plentiful today and more scarce in the future, so the price of the resource
will be lower today and higher in the future.  Hence, an increase in the
interest rate shifts a larger share of consumption from the future to the
present, lowering the price today, but raising the price in the future.

Impacts of Extraction Costs
It is clear from both equation (1) and Equation (2) that higher

extraction cost reduces the net marginal benefit associated with using the
resource in either time period, which in turn:

•  reduces resource use and raises prices in both periods.
• reduces the user cost, increasing the incentive to shift some

consumption from the future to today.  

With very high extraction cost, the entire resource stock may not be
used by the end of the last time period, in which case the shadow cost of the
resource constraint,  will equal zero.  We can draw this conclusion
because the cost of extraction will be greater than the benefits of resource
use.

Without extraction costs, the price of an optimally-managed
nonrenewable resource, P, will grow at the rate of interest, r:
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P P
P

r
1 0

0

−
=

By combining Equations (1) and (2) we find that, with extraction costs, the
price of an optimally-managed nonrenewable resource minus extraction
costs, or royalty, will grow at the rate of interest:

R R
R

r
1 0

0

−
= , where Ri = (Pi - c)

This implies that, with extraction costs, the price of an optimally-managed
natural resource may grow at a rate less than the rate of interest.

Sample Problem

Let’s clarify this point with an example.  Assume a competitive
resource market with linear demand for a nonrenewable resource.  Recall
that Bx(X) represents marginal benefit and that marginal benefit is the
demand curve.  In this problem, marginal benefit will have a linear form:

Bx(X) = a - bX

Substituting Bx(X) into the FOC's (1) and (2) from the previous
section, we can solve the system of equations for the optimal values of
resource to use in terms of all other variables.  Equating equations (1) and
(2), we have:

[ ]a bX c
r

a bX c− − = =
+





 − −0 1

1

1

Using the relationship S0-X0=X1 given by equation (3), we have:

[ ]a bX c
r

a b S X c− − =
+





 − − −0 0 0

1

1
( ) ,

which can be used to solve for X0*, as:

X
a c r a b S X c

b r

X
X

r

a c r a bS c

b r

0
0 0

0
0 0

1

1

1

1

1

=
− + − + − +

+

+
+

=
− + − + +

+

( )( ) ( )

( )

( )( )

( )

X
a c r bS

b r
0

0

2
*

( )

( )
=

− +
+

(4)

From equation (3), we know that:
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X S X

bS r a c r bS
b r

1 0 0

0 02
2

* *

( ) ( )
( )

= −

=
+ − − −

+
      

X
bS r a c r

b r
1

0 1

2
*

( ) ( )

( )
=

+ + −
+

(5)

And, we can also solve for λ* using either equation (1) or (2).  Using

equation (1):

* *

( )( ) ( )

( )

= − −
− + − − +

+

a bX c

a c r a c r bS

r

0

02

2
    =

 

*
( )

( )
=

− +
+

2

2

0a c bS

r
(6)

Recall that, for a competitive market, Price = Marginal Benefit at the
market clearing quantity level.  Hence, substituting the values for X0* and
X1* into the marginal benefit functions, we can calculate the (nominal)
price in each time period:

P a b X

a r a c r bS

r

0 0

02

2

* ( *)

( ) ( )

= −

=
+ − − −

+

P
a rc bS

r
0

02

2
* =

+ −
+

(7)

P a b X

a r a c r bS r

r

1 1

02 1

2

* ( *)

( ) ( ) ( )

= −

=
+ + − − +

+

P
r a bS rc

r
1

1 2 0

2
*

( )[ ]
=

+ − −
+

(8)

Using (7) and (8), we can show that the initial price, P0, is smaller
when the initial resource stock is larger or when the discount rate is larger.
Note that this is implied by the decreasing value of price in period zero with
an increase in initial stock or a decrease in the interest rate:

dP

dS

b

r

0

0 2
0

*
=

−
+

<  , and
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dP

dr

c

r

a rc bS

r

a c bS

r

0 0

2

0

2

2

2

2

2

2
0

* [ ]

( )

[ ( ) ]
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=
+

−
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+
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− − −
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Figure 12.1:  Effects of Extraction Costs
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Other Considerations
The extraction cost model can be modified to accommodate other

specific applications.  For example, in the case of a non-replenishable
ground water aquifer, where you have additional costs associated with
treatment and shipment, the price of water would reflect the sum of the
various other marginal costs:

water price = user cost
+ marginal extraction (pumping) cost,
+ marginal shipment (conveyance) cost,
+ marginal treatment cost,

Hence, our model would predict that the existence of these costs
would cause the price of water to grow at less than the rate of interest, since
royalties will increase at the rate of interest, where Royalty = Price -
Pumping - Conveyance - Treatment, (per unit).
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Two-Period Nonrenewable Resource Model with Open Access

We have found the socially optimal allocation of extraction of a
nonrenewable resource stock over two periods, both with and without
extraction costs, but will a competitive market necessarily achieve this
socially optimal allocation?  

If the resource industry is competitive and there is open access to the
resource, the answer is no.  In a competitive industry under open access,
firms race to extract the resource.  Such a case leads firms to operate as if
the user cost of mining the resource is zero.  They realize that the tradeoff
that they are making is not between how much to extract in the initial
period and how much to extract in later periods, but rather how much they
extract in the initial period and how much other firms extract in the initial
period.  

Open access resources yield a “tragedy of the commons mentality”, in
which firms think that if they do not extract a profitable unit today,
someone else will beat them to it.  Thus, under open access, a firm will not
compare marginal benefit today to MB tomorrow, because there is no
assurance that anything will be resource left over for tomorrow.  Instead,
they will extract a marginal unit until MB0 = MC, as if they were operating
in a static model with only a single period.

To mathematically represent the competitive, open access situation,
firms enter the industry until price falls to minimum average mining cost.
That is, until static profit is driven to zero, where:

= − = ⇔ = =PX C X P
C X

X
AC X( )

( )
( )0    

In our example where we have constant marginal mining costs,
average mining cost equals marginal mining cost (c = AC), so that
minimum average mining cost is just equal to c.  Thus, the total amount
extracted by the industry in the initial period, X0, will be determined by:

(10) P0 = Bx(X0) = c.
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Let’s assume for our analysis the following linear market demand,
Bx(X) = a - bX. The industry would like to extract the following open-
access amount:

a bX c X
a c

b
OA− = ⇒ =

−
    (11)

• If demand is satiated in the initial period (X0* <= S0), then X0*

is in fact extracted in the initial period, and price falls to c (P0 = c).

The remaining stock (S1 = S0 - X0*) is simply ignored.

 If demand is nonsatiated in the initial period (X0* > S0), then

we must set X0* = S0, because it is impossible to extract more than
the total initial stock.  Price falls to P = a-bS0
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Figure 12.2:  Open Access Leads to Inefficient Over-extraction

Sample Problem

Assume B(Xt) = a X , then Bx(X) = P X( ) = a
2 X

.  Given S0 = S:

           •If  
a

2 S
> c ,  then X0 = S  ,  and   P0 = a

2 S
.

           •If  
a

2 S
< c,  then X0 = a2

4c2 X S
a

4c
, and P

a

2 X1 0

2

2 i
= − =

i

.
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In either case, if there are n firms in the industry, each firm would

extract X0*/n and earn zero economic profits. A comparison of the optimal
and open access level of extraction shows that when there is competitive,
open access to a nonrenewable resource, there will be inefficient over-
extraction of the resource in the initial period.

Policies to Correct Open Access Market Failures

Figure 12.2 can also be used to identify the decreased net benefits in the
two periods if open access exists as opposed to established ownership. By
measuring total areas under MB1 and MB, under both circumstances, we see
that open access leads to lower benefits.

We can suggest three relatively effective measures for the government
to correct open access market failures.  These policies include (1) an output
tax on the resource, (2) limitations on total mining by issuing permits, and
(3) establishment of property rights to the resource for producers.  While
the last option appears to be the most efficient, issues of distribution of
rights make the policy rather controversial.

Output Tax
An optimal output tax, t*, would be set to equal the calculated user cost,

λ.  In order to reduce mining of the resource, this additional cost to

producers will make it less profitable to produce beyond the social
optimum.

• The optimal tax can be calculated for the two-period case, where
P(X) = a - bX,  and C(X) = cX:

t
a c bS

r
*

( )

( )
=

− +
+

2

2

0

So that the outcome of the competitive, static maximization problem
in period 0 is

Max P X cX
a c bS X

rX
.

[ ( ) ]

( )0

0 0 0
0 02

2
= − −

− −
+









with FOC:

X a bX c
a c bS

r
0 0

02

2
0= − − −

− −
+

=( )
[ ( ) ]

( )

where the substitution can be made into the FOC for P = a - bX0.
The FOC can be solved for X0*:
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X
a c r a c bS

b r

a c r bS

b r

0
0

0

2 2

2

2

*
( )( ) ( )

( )

( )

( )

=
− + + − +

+

=
− +

+
      

as we calculated before for the social optimum. Remember that you
can plug in the value for optimal initial resource use and repeat the
calculations to solve for optimal tax under open access.

Issuing Permits
The government can begin determining the amount to be mined each

period by asking competitive producers to bid for mining rights.  As we
would suspect, per unit price for the right to mine will be λ∗.  Yet another

way to reach the correct level of mining would be to calculate optimal
levels to be harvested each period, and issue free tradable permits to
producers.

Property Rights
Establishment of property rights for competitive producers.  As

mentioned earlier, there are more complicated distribution issues to deal
with in this type of policy.  However, the greatest advantage to establishing
ownership is that enforcement of the policy in future periods is less tedious
task.  Additionally, unless extraction costs depend on stock levels, an extra
tax may be necessary.

Two-Period Nonrenewable Resource Model with Monopoly (Optional)

The monopoly resource owner has a different objective function than
society, since the monopolist seeks to take advantage of demand conditions
in order to make greater levels of profit.  The objective function for the
monopoly owner is:

[ ] [ ]
max NPV( ) X0 X0

X X1
1 r

.
X , X10

1

subject to: S X X0 0 1

= ⋅ − +
⋅ −

+

= +

P X C
P X C

0 0

1 1

( ) ( )
( ) ( )

Recall that Bx(Xt) = Pt.  Making this substitution:
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[ ] [ ]
max NPV( ) X0 X0

X X1
1 r

.
X , X10

1

subject to: S X X0 0 1

= ⋅ − +
⋅ −

+

= +

B X C
B X C

x
x( ) ( )
( ) ( )

0
1

Introducing a Lagrangian multiplier, λ, the monopoly's problem becomes:

[ ] [ ] ( )max X0

X

1 rX
0

1

, ,
( ) ( )

( ) ( )

X
B X C X

B X C X
S X Xx

x

1
0 0

11

0 0 1= ⋅ − +
⋅ −

+
+ − −

F.O.C's: (1) dL/dX0 = Bx(X0) + Bxx(X0)X0 - MC(X0) - λ= 0

(2) dL/dX1 = [Bx(X1) + Bxx(X1)X1 - MC(X1)] / [1 + r] -λ=0

(3) dL/dλ = S0 - X0 - X1 = 0.

Note that marginal revenue MR(Xt ) = Bx(X t) + X tBxx(X t)  .

Hence, we find that MR(Xt ) = MC(X t )+ λ(1 + r)t

where all other terms besides the MR function are the same.  The only
change to the monopoly case is to equate MR = MC + λ(1+r)t.  We simply

replace MB with MR to get the expressions that determine monopoly
behavior.

Let’s consider an example.  To focus on the effects of monopoly, we
assume simple linear demand, Bx(X) = a -bX, and zero extraction costs.  A
monopoly seeks to maximize the NPV of profits:

max
X 0 ,X1

NPV( ) = a − b⋅ X0( ) ⋅ X0[ ] + 1
1+ r

a − b ⋅ X1( ) ⋅ X1[ ].

subject to : S0 = X0 + X1

Introducing a Lagrangian multiplier, λ, the monopoly's problem becomes:
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max
X 0 , X1,

L = a − b⋅ X 0( ) ⋅ X0[ ] + 1
1+ r

a − b ⋅ X1( ) ⋅X1[ ] + S0 − X0 − X1( )

F.O.C's: (1) a - 2bX0 - λ = 0

(2) (a - 2bX1)/(1 + r) - λ = 0

(3) S0 - X0 - X1 = 0.

Solving the system of F.O.C.'s, we find that:

X
0
M 2bS +ra

2b(2 r)

0
=

+                 
X

2bS (1+r) +ra
2b(2 r)

.
1

M 0
=

+

Recall the social welfare maximizing outcome:

X
a c r bS

b r
0

0

2
*

( )

( )
=

− +
+

, X
bS r a c r

b r
1

0 1

2
*

( ) ( )

( )
=

+ + −
+

Comparing the monopoly outcome with the social welfare
maximizing outcome in which c = 0, we find that monopoly leads to
underextraction (and thus higher prices) in the initial period and
overextraction (and thus lower prices) in the later period.

Discussion of Variables
In a static model, we usually set the FOC equal to zero, while in a

dynamic model, we now set the static FOC = λ= user cost.

Under perfect competition, zero interest rate gives MB - MC = 0
While MBi -MCi = λ(1+r)i holds in a dynamic model. Now (MB-MC)

increases at the rate of interest over time. For a monopoly situation, a static
system leads to  MR - MC = 0.  Including interest rate over time changes
the solution to MRi - MCi = λ(1+r)i in a dynamic model. This way, (MR-

MC) increases at the rate of interest over time.

So, now let us say we also have externalities, i.e., the case of the
polluting mine
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•  When we also have pollution, the social optimal rate of extraction
would be found where MBi - MCi - MEC i = λ(1+r)i ;  that is (MB-

MSC) increases at rate = r.

When MC(Xt) = 0, we find that marginal revenues increase at a rate
equal to the interest rate.  Thus, a monopoly extracts less in earlier time
periods and more in later time periods.  As a result, prices are initially
higher under monopoly but grow at a slower rate over time.  In the second
period, the monopoly provides a greater amount of the resource in order to
deplete all of the final stock and meet the constraint.  Hence, the second
period price is actually lower under a monopoly industry structure than
under a competitive structure.

Two-Period Nonrenewable Resource Model with Changing Demand

Assume B(Xt) = [(1 + n)t][a*(Xt)0.5], Bx(Xt) = [(1 +

n)t][0.5*a*(Xt)-0.5] where n is the "growth rate of demand", perhaps
representing increased population. Assume extraction costs are zero.

Now the socially optimal allocation of resource extraction over two
periods is found by solving:

max
X0 ,X1

SW X0,X1( ) = a X0( )0.5 + 1
1 + r

⋅ 1 + n( ) ⋅ a X1( )0.5 
  

 
  

subject to:  X1 = S0 - X0.

From the F.O.C.'s, we find that:
X0
X1

= 1 + r
1 + n

 
  

 
  
2

X0 = S0
1 + r( )2

1 + n( )2 + 1 + r( )2

X1 = S0
1+ n( )2

1 + n( )2 + 1+ r( )2
and
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⇒ P0 =
a

2(1 + r)

1 + r( )2 + 1 + n( )2

S
and P1 = a

2

1 + r( )2 + 1 + n( )2

S
.

Thus, compared with the constant-demand case {in which
B(X) = aX1/2}, an increase in n will reduce X0 and increase X1.  In
addition, an increase in n will cause both P0 and P1 to "jump" up, but
(assuming zero extraction costs) the rate of price increase over time will
remain:

P1 − P0
P0

= r .
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Figure 12.3: Effects of Changing Demand
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Two-Period Nonrenewable Resource Model with a Backstop Technology

Assume a new technology will make an alternative resource available
in the future period (t = 1).  Let Z represent the output level of the
alternative resource, which is a perfect substitute for X.  Assume the
marginal cost of the alternative resource is a constant, m.

 An example of a backstop technology might be one in which the
nonrenewable resource is fossil fuel and the backstop technology is solar
power.  In this case, the marginal cost of solar power as a fuel source may
be relatively high, yet a switch to solar energy, or some other alternative
power source, must inevitably occur since the supply of fossil fuel is finite.

In the history of energy many backstop technologies have been
introduced.  The basic modification of our earlier results is that we will find
when resource owners know a new technology will soon be introduced, the
extraction rate will accelerate, so that more of the resource is consumed in
earlier periods.  This is because having a backstop technology is like having
a larger stock of the resource.  As S0 increases, prices decrease in both
periods.

The social optimization problem with a backstop technology is:

max
X0 ,X1

SW(X0 ,X1)=[B(X0 ) − C(X0 )] + 1

1+ r
B(X1 + Z1) − C(X1) − m ⋅ Z1[ ]

subject to:  S0 = X1 + X0.  (assume there is no constraint on the
availability of Z)

The Lagrangian problem becomes:

max
X1,X 0,Z,

L = B(X0) −C(X 0) + 1
1 + r

B(X1 + Z1) −C(X1) − m ⋅ Z1[ ] + S0 − X0 − X1[ ] .

The F.O.C.'s are:

(1)     
L

X0
= BX(X 0 ) − CX(X0 ) − = 0.
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         (2)     [ ]L
X1

1
1 r

BX(X1 Z ) CX(X1) 0.1=
+

+ − − =

                        (3)     [ ]L

Z

1

1 r
(X Z ) m 0Bz 11

=
+

+ − = .

                        (4)     
L = S0 − X0 − X1 = 0

F.O.C. (1) states that, at the optimum:
                        (5)     P0 = BX(X0) = CX(X0) + λ

Output price
= Marginal benefit
= Marg. Extraction Cost + User Cost of Consumption in Period 0.

F.O.C. (2) states that, at the optimum:
      (6)     P1 = Bx(X1 + Z) = Cx(X1) + (1 + r)λ

Output price
= Marginal benefit
= Marg. Extraction Cost + User Cost of Consumption in Period 1.

F.O.C. (3) reduces to:
                       (7)     P1 = m

Thus, the price of X in period 1 equals the price of Z in period 1.  From
equations (5) and (6), we find:

P1 - Cx(X1) = (1 + r) (P0 - Cx(X0)).

                       (8)      P0 = Cx (X0 ) + 1
1+ r

m − Cx (X1)[ ] and

                       (9)      User Cost  λ= P0 - Cx(X0).

From these relationships we can confirm the following points.

For Cx = 0 :
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• If X1 > 0, P0 = m

1+ r
.  (i.e., the price in the first period is smaller

than the cost of the backstop technology).

• As m becomes smaller, X0 increases, X1 declines, and Z increases.

• If m is sufficiently low (below the extraction cost of X) the
resource, X, will be used only at the first period, with P0 > m.  In
this case some of the exhaustible resource may be left unused.

Numerical Example

B(X) = a − b
2

X2 C(X) = cX

BX(X) = a − bX CX = c

From (6),   P1 = m.

From (7),   P0 = c + 1
1+ r

m − c[ ] = a − bX0 ⇒ X0 = 1
b

a − m
1+ r

− rc
1+ r

 
  

 
  < S

X1 = S − X0; Z = a − bx1 − m

b
,

Given  a = 20, b = .5, c = 0, S = 50, r = .2:

If m = 6,  X0 = 2 20 − 6
1.2

 
  

 
  = 30 P0 = 5 X1 + Z = 28 X1 = 20 Z = 8 .

If m = 7.2, X0 = 2 20 − 7.2
1.2

 
  

 
  = 28 P0 = 6 X1 + Z = 25.6 X1 = 22 Z = 3.6 .

Higher m reduces X0 and Z increases prices and X1.  For example, if m = 6
and c = 3,
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X0 = 2 20 − 6
1.2

− .2
1.2

3
 
  

 
  = 29 P0 = 5.5 λ = 2.5 X1 + Z = 28 X1 = 21 Z = 7.

The Effect of Uncertainty of Backstop Technology
It is important to consider the reliability of the backstop technology

anticipated within the model we are working with.  The more certain that a
backstop technology will be made available, the more resource owners mine
in the present with current technology.  The less certain the backstop
technology, the less it constrains the behavior of the resource owner so that
less is extracted in the current period and the solution approaches that with
no backstop technology on the horizon.

Sketch of An "n-Period" Model of Nonrenewable Resources (Optional)

Initial Assumptions
(1) Assume zero costs.
(2) Assume T time periods.
(3) Assume competitive market for nonrenewable resource.

Objective function

max
X0 ,X1,...XT

NPV(X0 ,X1, . . .XT ) = B(X0) + B(X1)
1+ r

+ B(X2)

(1 + r)2 + ... + B(XT)

(1 + r)T .

Equation of motion constraints: St+1 − St = Xt, t = 0, T −1 .

We can combine equation of motion contraints into a single constraint:

 X1 + X2 + ... + XT = S0.

Lagrangian problem becomes:

max
X 0 ,X1,X t ,

L = B X 0( ) +
1

1 + r
B X1( ) + 1

1

1 + r
 
 

 
 

2

B X2( ) + . . .+
1

1 + r
 
 

 
 

T

B X T( )

+ S0 − X0 − X1 − . . .− XT-1( )

or,

=
+





 + − ∑













∑











∈ ==
Max

r
B X S X

X

t

t t
t

T

t

T

t

. ( )
Ω

1

1
0

00



-21-

We can find the FOC's for the preceding Lagrangian problem in the
customary manner.

•After finding the FOC's, we can rearrange them to derive the
following optimal decision rules:

Bx(x0) = λ
Bx(x1) = (1 + r) λ

Bx(x2) = (1 + r)2λ
.
.
.

Bx(xt) = (1 + r)tλ
where X0 + X1 + X2 + ... + XT = S0  by the FOC of the constraint.

Figure 12.4:
Price Rises at the Rate of Interest and Extraction Decreases Over Time

The optimal decision rules are expressed in terms of marginal
benefits Bx(Xt).  Recall that marginal benefit is equal to price for a
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competitive industry.  Hence, substituting price for Bx(Xt) in the optimal
decision rules derived on the previous page, we find that:

Pt = P0(1 + r)t ,

or,
P P

P
r t

t t

t

−
= ∀

−

−

1

1
,  , i.e., the price rises at the rate of interest

Note that as price, Pt, rises over time, the amount of the resource that
is extracted in each period, Xt , will decline over time accordingly.

Figure 12.5:
Higher interest rates lead to faster price increases

 but lower initial prices.

 

When r is larger, more is extracted in earlier time periods and less is
extracted in later time periods.  As a result, prices rise faster over time, but
the initial price is lower because the initial level of extraction is larger.  A
larger extraction in the initial period drives down the market price for the
resource in the initial period.

Figure 12.6:
Higher interest rates lead to "faster exploitation" of resource stock.
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Summary of Nonrenewable Resource Model Results

Present price of exhaustible resource (P0):
• Declines with r.
• Declines with extraction cost.
• Increases as demand increases.
• Decreases as new stocks are discovered.
• Declines as new extraction technologies are developed.
• Declines as backstop technologies are developed.
• Increases as industry gets more monopolistic.
• Declines as alternative products get cheaper.

Example:  The Case of Oil
Oil is an exhaustible resource, and its price dynamics are consistent

with theory.  During 1940-1960, prices went down as new fields were
discovered.  In 1973, price went up due to the formation of the OPEC oil
cartel, which has many characteristics in common with monopoly
ownership.  Reduction in demand, new oil discoveries, and quantity
dumping by several OPEC members led to further price declines in the
1980s.

Figure 12.7: The Price of Oil Over Time
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