
Two-Period Renewable Resources Model
With Non-Zero Interest Rate

• suppose we want to maximize net present value (NPV)
• suppose that there is not open access to the resource
• do not assume, prior to solving the model, that we are in steady-

state.
-- it may or may not be the solution

In general, we would solve the problem over the "planning horizon" of
our firm or agency.

A planning horizon is the number of time periods into the future for
which the firm or agency makes plans.

To keep the mathematics manageable, we will focus on a two time
period planning horizon.

If demand is very low or harvesting costs are very high, then stock may
remain at the end of the planning horizon.

A salvage value function gives the value of any remaining stock at
the end of the planning horizon.

Note: salvage value is a function of stock, not harvest.  In the case of a
fishery, what would be sold at the end of the planning horizon is not
caught fish (i.e., not "X"), but rather the right to catch the remaining fish
in the sea, (i.e.,  the resource asset  "S").



Two-period Model (cont.)

initial stock stock at beginning final stock
(stock at beginning of period 1 (stock at end
of period 0) of period 1)
------+---------------------------------+------------------------+----
> time
        So                                         S1                             S2
         |                                             |                                 |

  X0                                    X1
Definitions:
• t: time period t = 0,1,2
• St: resource stock at time t
• g(St): the growth function of the resource stock
• Xt: harvest at time t
• B(Xt): total benefits from harvest at time t
• C(Xt, St): total costs of harvest at time t
• F(S2): salvage value function
• r: interest rate

The objective is to maximize the net present value of harvest in period
0, harvest in period 1 and salvage value in period 2.  The choice
variables are X0, X1, S0 and S1.

max
X0 ,X1,S1 ,S2

NPV = B(X0 ) − C(X 0 ,S0 ) + B(X1) − C(X 1,S1 )

1 + r
+ F(S2 )

(1 + r)2

net benefit discounted net benefit discounted "salvage

period 0 period 1                       value" of final stock

subject to:

(1) g(S0 ) = S1 − S0 + X0, equation of motion between periods 0 and 1

(2) g(S1) = S2 − S1 + X1, equation of motion between periods 1 and 2

Also, So is the given, initial stock.



Two-period Model (cont.)

The Lagrangian expression for this problem is:

max
X 0 ,X1
S1,S2
λ0 ,λ1

L = B(X0) − C X0 ,S0( ) +
B X1( ) − C X1,S1( )

1 + r
+

F(S2 )

(1+ r)
2

+λ0 g(S0 ) − S1 + S0 − X0( ) + λ1

1 + r
g(S1) − S2 +S1 − X1( )

where λ0 and λ1 are Lagrange multipliers.

FOC's

(1)
dL

dX0
= BX0

(X0 ) − CX0
X0 ,S0( ) − λ0 = 0

-- MB(0) - MC(0) - user cost(0) = 0

(2)
dL

dX1
=

BX1
(X1)

1+ r
−

CX1
X1,S1( )

1 + r
−

λ1

1 + r
= 0

-- NPV(MB(1)) - NPV(MC(1)) - NPV(user cost(1)) =  0

(3)

dL

dS1
=

−CS1
X1,S1( )

1 + r
− λ0 + λ1

1 + r

dg

dS1
+1

 

 
 

 

 
 = 0

rearranging : λ0 =
−CS1

X1,S1( )
1 + r

+ λ1

1+ r
+ λ1

1+ r

dg

dS1

 

 
 

 

 
 

-- user cost  = NPV(increase in + NPV(user cost + NPV (user cost
  in period 0    harvesting cost) associated with of having less

having one less   growth in
unit of stock   period 1



Two-period Model (cont.)

FOCs:

 (4)
dL

dS2
=

FS2
(S2 )

(1+ r)2 −
λ1

1+ r
= 0

-- NPV (marginal salvage value) - NPV (user cost(1)) = 0

(5)
dL

dλ0
= g S0( ) − S1 + S0 − X0 = 0

-- equation of motion between periods 0 and 1 must be satisfied.

(6)
dL

dλ1
= g S1( ) − S2 + S1 − X1 = 0

-- equation of motion between periods 1 and 2 must be satisfied.

• keeping a unit of stock unharvested has three effects:

(1) Loss of interest from not harvesting the stock today.

(2) Savings in extraction cost, because Cs(Xt,St) < 0.

(3) Additional growth of the resource stock.  The present value of

the additional growth in stock is λ1

1 + r

dg

dS1

 

 
 

 

 
 .

--Note: dg/dS can be positive or negative depending on
   whether S is < or > maximum sustainable stock



Two-period Model (cont.)

In steady state, the shadow value of the resource remains constant:

λt+1 − λt = 0

and MC of delayed harvest (lost interest) = MB of delayed harvest
(growth + cost savings):

 rλt  =  Xtcs(St)  +  gs(St) λt

The marginal benefit of delaying the harvest is the sum of reduced
harvesting cost (Xt cs(St)) plus the value of the added growth of the
stock, gs (St) λt.  

Thus, at steady state,

r − gs(St )[ ]λt = Xt cs(St). (7)

Let Pt be optimal price,  i.e.,  Pt = BX(Xt):

At an optimal resource allocation, from FOC (2):

B (X ) P c(S )
X t t t t

tuser cost extraction cos

= = +λ
(8)

Since at steady state,
St+1 − St =  0   and   λt+1 − λt = 0,  then Pt+1 − Pt = 0.

Furthermore, with optimal prices, the steady state equation for
λt+1 − λt = 0 can be expressed as a function of S and X by re-

arranging equations (7) and (8).

[r −gs(S)] [B(X) −c(S)] + Xcs (S) = 0.



Phase Plane Analysis

Phase plane analysis is a graphical method of analyzing the dynamic
behavior of a bioeconomic system.  It is useful for determining whether
a bioeconomic system will be in steady-state, will drive the resource to
extinction, or will cycle.

The curve below gives all the points at which "the biology is in steady
state," i.e., where the stock will not rise or fall. This curve is simply the
growth function g(S) that we have seen before.  On the phase plane it is
labeled "dS/dt = 0", i.e., the change in stock over time is zero.

The arrows in the figure show that, if harvest is above the dS/dt = 0 line,
i.e., if harvest is above steady-state harvest, then stock will fall, and if
harvest is below the dS/dt = 0 line, stock will rise.  The line, dS/dt = 0,
is commonly referred to as an iso-cline.



Phase Plane Analysis (cont.)

The second curve gives all the points at which "the economics is in
steady state," i.e., where the economic agent has no incentive to either
increase or decrease harvest X.  The second curve is derived from the
first order conditions when assuming the system is in economic steady
state.

On the phase plane the second curve is either "dX/dt = 0," i.e., the
change in harvest over time is zero, or "dλ/dt = 0," the change in
(undiscounted) user cost over time is zero.

The arrows in the figure show that, if stock is to the right of the dX/dt =
0 line, i.e., if stock is high, fish are easy to find in the ocean and
harvesting costs are therefore low, then harvest will rise, and if stock is
to the left of the dX/dt = 0 line, harvest will fall in order to equate MB =
MC of fishing.



Phase Plane Analysis (cont.)

Putting the two steady-state curves together, we get:



Phase Plane (cont.)

The curve, X = g(s), denotes all X, S combinations that lead to steady
state of stock.  The curves—XX1, XX2, and XX3—denote
 all X, S combinations leading to steady state of stock prices.

•  For each of these curves, r − gs(S)[ ] BX − C(S)[ ] + XCs(S) = 0 .

Each curve is drawn to represent a different interest rate:

• Curve XX3 corresponds to the highest r,

•  Curve XX1 corresponds to the lowest r.



The Optimal Path

Phase planes are often drawn with respect to shadow prices.

To derive North-South Arrows:
• Say the shadow price of fish jumps up in a given period to a point

above the iso-cline dλ/dt = 0
-the harvest will increase because fish are worth more

• Say the shadow price of fish deviates downward in a given period to
a point below the iso-cline dλ/dt = 0

-the harvest will decrease, because fish are undervalued

In this case, the optimal path is nearly a straight line (not a spiral).  The
optimal path gives the harvest level associated with any level of stock
that will cause the system to converge to a steady-state optimal solution,
at the equilibrium level C.


