
Key Terms and Components of Dynamic Systems:   

Dynamic Systems: Systems that contain time as a parameter; such
systems "evolve" over time.

State Variable: A state variable describes the status, or "state of
being," of one of the variables in the system.

Initial Conditions:  Values that the state variables take on at the
beginning of the time period of interest.

Control Variable: A control variable is a variable that is under the
control of some individual or group.

Random variables (noise variables):  Uncontrolled variables  which
can assume several values with certain probabilities.

Constraints:  Equations (or inequalities) which limit the values that
state variables or control variables can take on.

Equation of Motion: The equation of motion describes how a variable
changes over time.

Solution of a System: The solution of a dynamic system is a set of
equations, where the equations are in terms of the system parameters,
including time, such that all of the original equations in the system are
satisfied.  Thus, a dynamic system may have many solutions, depending
on the specific initial conditions of the resource.

Objective Function: An objective function is an equation that
measures how well the system is attaining some goal or objective,
usually expressed in terms of the state variables, control variables,
and parameters of the system.



Example: Set-up for Natural Resource Dynamic System

State variables:
(St):  Denotes the level of a stock at time t; (e.g., the quantity of water
stored in the reservoir behind the dam at time t).
(Ut): Uncontrolled inputs, (e.g., rain, snow).
(Yt): Outputs; outcome of systems at time t; (e.g., crops produced)

Control variables:
(Xt): Inputs whose magnitudes we can choose in our attempt to reach
our objectives. (e.g., the amt. of water used for irrigation).

Parameters:
 (P): Items that can be taken as constant with respect to the problem at
hand. (e.g., the production elasticity of irrigated water)

Equation of motion:
Next period water stock  =  This period water stock + rainfall -
irrigation water:

St+1 = St + Ut - Xt

Objective Function:

max
[ ( )] ( )

( )X

t t t t
t

t

T

t

NPV
B Y P C X

r
=

−
+

∑
= 10

Dynamic Models of Nonrenewable Resources



Nonrenewable resources are resources that have a finite stock and
that do not grow naturally.

Key Issues:
• Determining optimal resource allocation and pricing.
• Sources of market failure and policies to correct market failure.

                                 
t = time (the initial period: t=0;  the future period: t=1)
r = interest rate
S0  = initial stock of nonrenewable resource
Xt =control variable, the amt. of the resource consumed in period t
B(Xt) = benefit of consuming Xt  

Economics of scarcity:
• Scarcity:  Imposes an opportunity cost on using resources today.  In

a natural resource system, we refer to dynamic opportunity cost as a
user cost.

• User Cost:  The Present Value of foregone opportunity.  (e.g., if you
use a unit of a natural resource today, you forego the opportunity to
use it tomorrow)



Nonrenewable Resources (cont.)

The User Cost decreases as r increases:
• The higher the interest rate, the less valuable tomorrow’s benefits and

the smaller the opportunity cost of using more of the resource today.
• at r = infinity, resources left for tomorrow are worth nothing and user

cost = 0.
• Similarly, when there is enough of the resource to go around, so that

scarcity is not an issue, the user cost = 0. The dynamic model yields
the same outcome as two separate static models.

Discounting:  The use of discounting is important in determining the
optimal extraction rate of a nonrenewable resource, because the
revenue a resource owner receives in period 1 is not worth as much as
the revenue received in period 0.

• the NPV of benefits in period 1 in terms of the current period 0:
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Dynamic Efficiency:  An allocation of resources is said to be
dynamically efficient when it maximizes the NPV of benefits.

Max. L = B(X) - C(X),

• B(X) is now a stream of benefits through time,
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• C(X) is now a stream of costs through time



Dynamic Efficiency:  The Two Period Case

assume zero costs are associated with consuming the resource.

Objective function:  Max
X 0,X1

NPV =  B X0( ) + 1
1+ r

B X1( ) .

Equation of motion (constraint):  S0= X0 + X1.

Note: by assuming X0 + X1 exactly equals S0 (resource stock is used
up), we are implicitly assuming unsatiated demand.

the optimization problem is:

Max
X 0,X1

NPV =  B X0( ) + 1
1+ r

B X1( )

subject to: S0= X0 + X1..

The Lagrangian expression is:

L = B X0( ) + 1
1 + r

B X1( ) + λ ⋅ S0 − X1 − X0( ) .

To maximize the Lagrangian expression we find the F.O.C.'s:

(1)

dL
dX 0

= Bx X0( ) − λ = 0

(2)

dL
dX1

= Bx X1( ) 1
1 + r
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(3)

dL

dλ
= S0 − X1 − X0 = 0



Two-period Dynamic Efficency (cont.)

The system can be solved for X0, X1 and λ in terms of the parameters
of the system.  An often useful step in this process is to set FOC (1) =
FOC (2) and eliminate λ to obtain:

(4) Bx X0( ) = 1
1 + r

Bx X1( )
• then use (3) and (4) to solve for X0 and X1, and

• substitute X0 into (1) to find λ.

We can find P0 and P1 by recalling that:

(5) Bx(Xt) = MB of X at time t = Price at time t = Pt

Rearranging (4), we get: (1 + r) ⋅Bx(X0 ) = Bx(X1)

Substituting P0 for Bx(X0) and P1 for Bx(X1), we find:  
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Two-period Dynamic Efficency (cont.)

Conclusions:

• when dynamic efficiency is met, the price increases at the rate of
interest.  

• the shadow price of S0, λ , is equal to P0. the shadow value is also
equal to the present value of P1.  In other words, λ = P0 =
P1/(1+r).  Thus, the solution to the nonrenewable resource problem
equates  the NPV of benefits across all time periods in the horizon

• If P0 > P1/(1+r),  the owner should extract more today;  invest the
money at r.

• If P0 < P1/(1+r),  the owner should leave more in the ground to
extract tomorrow

• the rate of return of holding resource stock in the ground is:  IRR > r.

• Therefore, in equilibrium, it must be the case that P0 = P1/(1+r).

-Produce today until MB0 = PV(MB1)

Note:  The intuition for λ is that,   λ = the user cost of the resource!
The solution to the dynamic problem equates the user cost of extracting
the resource across all time periods.



A Numerical example:

Suppose B(X) = a X

then Bx(X) = a

2 x
.

noting that X1 = S0 - X0 from (3),
X0 can be found by using Bx (X) with eqn' s (3) and (4) :

a

2 X0
=

a

2(1+ r) S0 − X0
⇒

S0 − X0
X0

=
1

(1 + r)2
⇒

(6) X0 = S0
(1 + r)2

1 + (1 + r)2

Substitute X0 back into eqn (3) to find X1 :

(7) X1 =
S0

1 + (1 + r)2

Substitute X0 back into Bx (X0 ) to find :

(8)

P0 =
a

2

1 + (1+ r)2

S0(1+ r)2

If S0 increases, then both X0 and X1 increase
if r increases, then X0 increases & X1 decreases and P0 decreases.  

• if r = 0.1, S0 = 100 and a = 10, then:

X0 = 54.75,  X1 = 45.25, P0 = 0.68  and  P1 = 0.74

• If r increases to r = 0.5, then:

X0 = 69.3, X1 = 31.7, P0 = 0.6  and  P1



Two-Period Non-renewable Resource Model with Unsatiated
Demand

• For P's:  superscript = discount rate;   subscripts = time period.
• For I's, M's, subscripts = discount rate.
• r2 > r1;  I1 < I2.
• A lower discount rate implies:

i) P0
1 > P0

2 Higher price in the initial period.

ii) P1
1 < P1

2 Lower price in the second period.
iii) M1 < M2 Less resource is used in the initial period.



Two-Period Non-renewable Resource Model with Satiated
Demand

When S0 is so large that Bx0
and 1

1+ r
Bx1

 do not intersect at positive

P, then:

• X0 is solved for by setting Bx(X0) = 0, and

• X1 is solved for by setting Bx(X1) = 0

This solution is identical to the solution of  two individual static
maximization problems, performed separately, in period 0 and period 1.

Note:  There is no user cost here, because the MB curves fail to
intersect.  That is, there is no scarcity in a nonrenewable resource model
with satiated demand.


