
Lecture 2

Elements of optimization theory

2.1 Kuhn-Tucker Conditions

With reference to �gure 2.1, consider the problem

max
x

f(x)

s.t.

x � 0

when f(�) is concave.

In the case of f1 the optimum occurs at x1, where f
1
x(x1) = 0. In the case of f2

the global maximum is not achievable, so that the constrained optimum occurs at

x = 0 where f2x(0) < 0.

Therefore, in the most general case, the F.O.C. must be characterized by:

fx(x
�) � 0; x�fx(x

�) = 0

Consider now

max
x

f(x) (2.1)

s.t.

g(x) � b

x � 0

Let z = b� g(x), with z � 0, denote a vector of slack variables. The optimization

problem becomes
~L = max

x;z;�
f(x) + �

0 [b� z� g(x)]

5
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Figure 2.1: A constrained maximization problem

f

f 1

2

x0 x1

s.t. x � 0 and z � 0.

The �rst-order conditions are

~Lx � 0 ) fx(x
�)� �

�0gx(x
�) � 0 (2.2)

x � ~Lx = 0 ) x�
�
fx(x

�)� �
�0gx(x

�
�
= 0 (2.3)

~Lz � 0 ) ��� � 0 (2.4)

z� � ~Lz = 0 ) �
�0 � z� = 0 (2.5)

By replacing z� with b� g(x�), and de�ning the lagrangian L as

L = f(x) + �
0[b� g(x)];

the optimality condition of (2.2)-(2.5) become

Lx = fx(x
�)� �

�0gx(x
�) � 0 (2.6)

x� � Lx =
�
x�fx(x

�)� �
�0gx(x

�)
�
= 0 (2.7)

L� = b� g(x�) � 0 (2.8)

�
�0L� = �

�0 [b� g(x�)] = 0 (2.9)

x � 0 (2.10)

� � 0: (2.11)
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This formulation is valid for multidimensional problems. These conditions are

su�cient if f(�) is quasiconcave and g(�) is quasiconvex.

2.2 Linear Programming and constrained optimization

2.2.1 Primal vs. Dual

Consider the following optimization problem:

max
x

c0x (2.12)

s.t.

Ax � b (2.13)

and

x � 0:

where x is a (n�1) vector of choice variables, corresponding to the levels of possible

production activities; c is the (n� 1) vector of net returns of the activities x; A is

the (m � n) matrix of technical coe�cients, where the element faijg indicates the
requirement of resource i needed to activate one unit of the process j; and b is the

(m� 1) vector of resource availability.

In this problem we have n variables and m constraints, with n > m.

It is an optimization problem subject to inequality constraints. An optimal

solution can be characterized by the necessary Kuhn-Tucker conditions.

By substituting the constraint (2.13) in the objective function, write:

L = c0x+ �
0[b�Ax]

where � is an (m� 1) vector of shadow prices.

The optimality conditions are given by:

Lx = c�A0
� � 0;

L� = b�Ax � 0

and the following complementary slackness conditions:

L0
x
x = 0 ) [c0 � �

0A]x = 0

and

�
0L� = 0 ) �

0[b�Ax] = 0
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This problem is called the primal.

Now consider the following:

min
�

�
0b

subject to:

A0x � c:

and:

x � 0:

This is called the dual.

The fundamental result in linear programming is that the primal and the dual

have the same �rst order necessary conditions.

These lead to some of the following results:

1. At the optimal solution, c0x� = �
�0b or, in scalar notation,

nX
i=1

cix
�

i =

mX
j=1

��jbj;

2. if
Pn

i=1 aijxi < bj , then ��j = 0;

3. if
Pm

j=1 aij�j > ci, then x�i = 0:

2.2.2 The bordered Hessian and its applications

Consider the following optimization problems:

maxx f(x) minx f(x)

s.t. s.t.

g(x) = b g(x) = b

where x is an (n� 1) vector of decision variables, b is an (m� 1) vector of resource

availability, f : Rn ! R and g : Rn ! R
m .

Using Lagrange multiplier techniques, these problems become

maxx f(x) + �
0[b� g(x)] minx f(x) + �

0[b� g(x)]

where � is a (m� 1) vector of Lagrange multipliers. The �rst-order conditions for

both problems are:
rxf(x)| {z }
(n�1)

�rxg(x)| {z }
(n�m)

�|{z}
(m�1)

= 0|{z}
(n�1)

b� g(x)| {z }
(m�1)

= 0|{z}
(m�1)
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The bordered Hessian of these problems is:

H =

2
666664

(n�n)z }| {
r2

xxf(x)�rx [rxg(x)�]

(n�m)z }| {
�rxg(x)

�rx
0g(x)| {z }

(m�n)

0|{z}
(m�m)

3
777775
:

The principle minor of order k is a submatrix where the same k rows and columns

are deleted. None of the deleted rows and columns can belong to the border.

More formally, let H be the bordered Hessian; �Hijk;ijk is a submatrix of H

without rows ijk and columns ijk. �Hijk;ijk is a principle minor of rank 3 if i, j,

or k is smaller or equal to n; i.e., they are not in the border. The second-order

conditions of the problems on page 1 are

maximum minimum

sign[det (H)] = (�1)n sign[det(H)] = (�1)m

sign[det(P.M.order 1)] = (�1)n�1 �
: : : : : :

sign[det(P.M.order n�m+ 1)] = (�1)m+1 sign[det(P.M.order n�m+ 1)] = (�1)m

2.2.3 Example of Application

Consider the problem

max
x

f(x)

s.t.

g(x) = b

with x 2 R
3 , b 2 R

2 , f : R3 ! R and g : R3 ! R
2 , that is, a problem with three

variables and two constraints. The Lagrangian for this problem can be formed as

L = max f(x+ �1
�
b1 � g1(x)

�
+ �2

�
b2 � g2(x)

�

with �rst order conditions:

rxf(x)�rxg(x)� = 0

b� g(x) = 0
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or, in scalar notation,

fx1 � g1x1�1 � g2x1�2 = 0

fx2 � g1x2�1 � g2x2�2 = 0

fx3 � g1x3�1 � g2x3�2 = 0

b1 � g1(x) = 0

b2 � g2(x) = 0

and the bordered Hessian would be:

H =

2
66664

(f11 � g1
11
�1 � g2

11
�2) (f12 � g1

12
�1 � g2

12
�2) (f13 � g1

13
�1 � g2

13
�2) (�g1

1
) (�g2

1
)

(f21 � g1
21
�1 � g2

21
�2) (f22 � g1

22
�1 � g2

22
�2) (f23 � g1

23
�1 � g2

23
�2) (�g1

2
) (�g2

2
)

(f31 � g1
31
�1 � g2

31
�2) (f32 � g1

32
�1 � g2

32
�2) (f33 � g1

33
�1 � g2

33
�2) (�g1

3
) (�g2

3
)

(�g1
1
) (�g1

2
) (�g1

3
) 0 0

(�g2
1
) (�g2

2
) (�g2

3
) 0 0

3
77775

Comparative Statics

By totally di�erenciating the �rst order conditions, the following comparative statics

results can be derived:

H

2
66664

dx1
dx2
dx3
d�1
d�2

3
77775 =

2
66664

0 0

0 0

0 0

�1 0

0 �1

3
77775
�
db1
db2

�

2
66664

dx1
dx2
dx3
d�1
d�2

3
77775 = H�1

2
66664

0 0

0 0

0 0

�1 0

0 �1

3
77775
�
db1
db2

�

solving, for example, for dx3=db1, one obtains:

dx3

db1
=
�
H�1

3�

�
2
66664

0

0

0

�1
0

3
77775 = �H�135 = �(�1)5+3det

�H4;3

detH

where �H4;3 is a submatrix of H without row 4 (which corresponds to b1) and column

3 (which corresponds to x3). The determinant of H is positive, from the second

order conditions, but the determinant of �H4;3 is unknown.
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2.3 Decision Making Over Time

A meaningful analysis of the agricultural and resource system cannot be done with-

out understanding their evolution over time. One of the most important decisions

economists are asked to evaluate are investment decisions, and that entails assess-

ment of dynamic 
ows of incomes and expenditures. This section will introduce

the main elements of a dynamic system, and methodologies for decision making

over time including optimal control. We will start, however, discussing the most

important concepts in dynamic economic analysis |discounting and the interest

rate.

There is a basic theoretical explanation for determination of the interest rate

(sometimes we will use the term discount rate). This is an equilibrium price for a

one- period delay in use of one unit of value (a dollar). Figure 2.2 illustrates the

determination of the discount rate.

Figure 2.2: Consumption decision over time
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The curve AB is a production possibility frontier, and it denotes all the possible

tradeo�s between consumption in period t and period t+1. Point B corresponds to

a situation with maximum consumption in period t and no consumption in period

t+1. At A all the consumption is delayed to period t+1, and the points connecting
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A to B correspond to positive consumption in both periods. The �gure is drawn

under the assumption that delay in consumption will lead to expanded resource

availability. At point D, BE resource units are not consumed in period t and lead

to the availability of OG units of resources in period t+ 1. The assumed concavity

of the tradeo� curve is the reason for this outcome. Each of the curves I0, I1,

and I2 is a locus of consumption patterns that result in the same level of utility;

therefore, consumers are indi�erent to movements between points on the same curve.

Higher indi�erence curves correspond to higher utility levels. The optimal resource

allocation is at D where the highest feasible indi�erence curve is tangent to the

production possibility frontier. The slope of the tangency line MN is 1
1+r

, and r is

the discount rate.

Under certain assumptions (competition, full information, no externalities), the

market gives rise to the socially optimal discount rate. These conditions are not

likely to hold in many cases, and market discount rates are likely to be di�erent and,

in most cases, higher than the social interest rate. The importance of monetary

policy considerations in the determination of interest rates is one reason for the

di�erence between market rates and socially optimal rates. Market rates may be

higher for several reasons:

1. Risk considerations.{ Society has a much better capacity than any indi-

vidual to carry risks, especially ones that are not correlated. Because society

has many members that carry and share uncorrelated risks, the risk cost to

each individual approaches zero, and societal choices should be conducted us-

ing an interest rate re
ecting risk neutrality. Many market rates re
ect risk

aversion1.

2. Externality considerations.{ When individuals decide about future invest-

ments, they consider only the bene�ts to themselves and their direct families

in the future. However, their sons or daughters may get married, and other un-

related people may bene�t from the activities generated by this investment.

However, these bene�ts are not taken into account by the private parties.

Therefore, they tend to underinvest from a social perspective and that can be

interpreted as having a private interest rate that is bigger than the social one

(note that higher interest rates mean that bene�ts in the present are weighted

more heavily relative to bene�ts in the future)2.

The interest rates paid by producers and consumers are adjusted to incorporate

a lot of other elements besides society's equilibrium value of time preference. They

1This argument was �rst introduced by the Arrow and Lind paper which is Chapter 11 in

Arrow's book.
2This argument was advanced by Marglin.
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have to incorporate factors that adjust for in
ation, transaction costs associated

with facilitation of loans, etc.

2.3.1 The Decomposition of Interest Rates

I = Interest rates paid by individuals on organizations which can be decom-

posed into several elements:

{ Real market discount rate: R

{ Rate of in
ation: IR

{ Transaction cost: TC

{ Risk factor: SR

I = R+ IR+ TC + SR

Examples:

� Banks pay to Federal Reserve: R+ IR.

� Best customers of banks (with lowest risk) pay prime interest rate: I = R +

IR+ TCm + SRm

(TCm and SRm factors re
ect minimum transaction and risk cost levels).

� Loans backed by assets generally pay lower interest rates than loans that are

not backed by assets.

� Credit ranking and other devices are used by lenders to assess riskiness of loan

and to determine the risk factor.

� Lenders assess investment and new projects before �nancing them. They do

it to assess riskiness.

Examples:

1. If the in
ation rate is 4%:

) Federal reserve loan or borrow to banks at 7%.

) Real interest rate is 3%.

If prime interest rate is 8%:

) Risk and transaction cost of banks is 1%.
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2. If home mortgage loans are 9%:

) Lender receives 7%.

) Risk-transaction cost is 2%.

3. If the nominal interest rate is 12%:

) In
ation rate is 14%.

) Real interest rate is -2%.

When interest rates are higher, individuals are less likely to invest money in projects

and instead will deposit their money in banks and buy government bonds.

Methodology to Assess Investments

Step 1. Projection of economic impact: assess cost and bene�t over time.

Step 2. Use discount rate to compute net present value or compute internal rates of

return.

Investment Criteria

� Net present value:

max

NX
t=0

�
1

1 + r

�t

(Bt �Ct)

or

max

Z T

0

e�rt(Bt � Ct)dt:

where Bt are bene�ts, Ct are costs.

� Internal rate of return |x solves the equation

X�
1

1 + x

�t

(Bt � Ct) = 0

First Example:

Year 0 1 2

Net bene�t -100 66 60.5

Discounted bene�t 10% -100 66
1:1

= 60 60:5
1:21

= 50

NPV 110
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Internal rate of return is solved from:

100 =
66

1 + x
+

60:5

(1 + x)2

) 100x2 + 134x+ 26:5 = 0

) x =
�134�

p
(134)2 + 400 � 26:5

200

) x =
�134 + 169

200
= 0:175

Second Example:

Year 0 1 2

Net bene�t -100 70 70

100 =
70

1 + x
+

70

(1 + x)2

y = (1 + x)

10y2 � 7y � 7 = 0

y =
7�

p
49 + 280

20

y =
7� 18

20
=

�
y1 = 1:25

y2 = �0:55
) y = 1:25; x = 0:25

Paradox of Internal Rate of Return

Consider a 
ow of net bene�ts f�a; b;�cg. The internal rate of return, z, solves

�a+
b

1 + z
�

c

(1 + z)2
= 0

The quadratic equation may have two positive solutions.

Suppose for example that a = 10, b = 30 and c = 20. In such a case:

�10(1 + z)2 + 30(1 + z)� 20 = 0) 1 + z =
30�

p
100

20
=

30 � 10

20

) (1 + z) =

�
1

2

What is the true z?

Conclusion: How to analyze investments?
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1. Use internal rate of return only in cases when there is one switch. Namely,

investment occurs �rst and returns later.

2. Use net present value in most cases.

2.3.2 Dynamic Systems

A dynamic system can be represented by the following

1. Components:

stock variable st,

policy variable xt,

parameters pt,

random noise.

2. Relationships:

equation of motion, gt(st; xt)

objective function ft(xt; st; pt),

constraints,

initial conditions.

3. Formulation of a deterministic control model,

max
st

TX
t=0

�
1

1 + r

�t

ft(xt; st; pt) + V (st)

s.t.

st+1 � st = gt(xt; st; pt) t = 0; : : : ; T

given S0.

4. Examples:

� economic growth models,

� water management problems.
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2.3.3 Optimal Control

Optimal control is used to derive optimal policies for a dynamic system. The ana-

lytic methodology for deriving the optimal solution to deterministic dynamic prob-

lems was developed by Pontrigin and has been applied to a wide range of economic

problems. We will �rst obtain optimality conditions for discrete optimal control

problems and then will analyze the necessary optimality conditions of a continuous

control problem.

The deterministic problem is

max
xt

TX
t=0

�tf(xt; st;�t) + �T+1V (sT+1)

subject to

st+1 � st = g(st;xt); t = 0; : : : ; T

where

xt = vector of control variables;

st = vector of stock variables;

� = (1 + r) is a discounting coe�cient, and

�t = a vector of parameters in time t.

For example, f(xt; st;�t) can be the revenue from a �shing operation. st may

be the stock of �sh, xt the �shing e�ort; f(�) may be pro�t = revenue - cost; and �t
is a vector of prices. The equation of motion may denote the change in the �shing

population and may combine the e�ect of �shing (reduces stock) and growth. The

function, V (sT+1), is the terminal value of the stock of �sh at the end of the planning

horizon.

The Langrangian approach may be useful for solving this problem (we omit the

�'s for convenience).

L = max
xt;st;�t

TX
t=0

�t f(st; xt)| {z }
net bene�t

period t

��t[st+1 � st � g(st; xt)] + �T+1 V (sT+1)| {z }
scrap value

subject to the initial condition s0 = �s0.
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The �rst-order conditions are

Lxt = �tfxt + �tgxt = 0; t = 0; : : : ; T (2.14)

_st =
@H

@�
= g(st; xt)Lst =

�tfstfst + �t[1 + gst ]� �t�1 = 0; t = 1; : : : ; T (2.15)

LsT+1 = �T+1VsT+1 � �T = 0 (2.16)

L�t = st+1 � st � g(st; xt) = 0; t = 0; : : : ; T (2.17)

given S0.

The Lagrange coe�cient, �t, denotes the marginal value of extra units of stock

at the end of period t discounted to period 0. It is the shadow price of the equation

of motion.

Condition (2.14) suggests that the decision variable, xt, is set so that its dis-

counted marginal net bene�t at period t is equal to its marginal costs in terms of

stock growth. We expect gxt < 0.

Conditions (2.15) and (2.16) can be rewritten

�(�t � �t�1) = �tfst + �tgst ; t = 1; : : : ; T (2.18)

�T = �T+1VsT+1 (2.19)

Equations (2.18) and (2.19) provide a set of di�erence equations establishing

the dynamics of the shadow price of the stock. The shadow price of time T is

equal to the discounted marginal contribution of the residual stock at time T + 1.

(All shadow prices are discounted to time 0, so we do not have a time di�erence

problem.)

The net shadow price of stock increases as one approaches zero and the increase

(�t�1 � �t) re
ects the marginal contribution to production (fst) and growth (gst)

of the stock at this extra period. [Note the earlier the stock is introduced, the more

it can contribute because it lasts longer.]

The di�erence equations (2.18) and (2.19) re
ect the dynamics of the dual vari-

ables (shadow price of stock variables), while the di�erence equation (2.17) with the

initial s0 sets the dynamics of the real stock variables. Therefore, we have to solve

for both the dynamics of (shadow) price and quantities in solving optimal control

problems.

To understand the problem better, f(st; xt) may be revenues from production,

p1f1(st; xt)�wtxt, when st is �sh stock and xt is e�ort. The stock equation may be

st + 1� st = g1(st)� f1(xt; st)

where g1(st) denotes stock growth and f1(xt; st) is catch. The shadow price, �t, is

the discounted value of �sh in the water.
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2.3.4 Continuous Optimal Control

It is much more convenient and elegant to use a continuous optimal control model

for analytic purposes. We will derive the optimality conditions rather heuristically

using the approach of Intrilligator. The continuous version of the model presented

earlier is:

max
fxtg

Z T

0

e�rtf(xt; st)dt+ e�rTV (sT ) (2.20)

subject to

_st = g(st; xt) (2.21)

One can write a Langrangian function

L =

Z T

0

�
e�rtf(xt; st)� �t [ _st � g(st; xt)]

	
dt+ e�rTV (sT ) (2.22)

where �t is the dynamic shadow price of the equation of motion. It re
ects the

discounted marginal value of stock added at time t. This Langrangian function can

be rewritten in an alternative way. To see it, note

L = max
xt;st;�t

Z
1

0

e�rtf(xt; st)dt�

Z T

0

�t _stdt+

Z T

0

�tg(st; xt)dt+ e�rTV (sT )

since, Z T

0

�t _stdt = [�T sT ]
T
0 �

Z T

0

_�tstdt

using integration by parts. The alternative formulation of the Lagrangian is

L = max
xt;st;�t

Z T

0

�
e�rtf(xt; st) + �tst + �tg(st; xt)

�
dt

+V (sT )e
�rt � �T sT + �0s0 (2.23)

s.t. s0 = �s0.

The optimality conditions are obtained by di�erentiating L, using (2.22) or
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(2.23) as appropriate.

@L

@xt
= e�rtfxt + �tgxt = 0; t = 0; : : : ; T � 1 (2.24)

@L

@st
= e�rtfst + �t + �tgst = 0; t = 0; : : : ; T � 1 (2.25)

@L

@�t
= st � g(st; xt) = 0; t = 0; : : : ; T � 1 (2.26)

@L

@sT
= �T � e�rTV (sT ) = 0 (2.27)

@L

@�0
= s0: (2.28)

Pontryagin et al. have derived a simple approach to obtain this optimality

condition. They de�ne the Hamiltonian function when

H(xt; st; �t) = e�rtf(xt; st) + �tg(st; xt)

and proved that at each t the optimality conditions are

@H

@xt
= e�rtfxt + �tgxt = 0; (2.29)

� _�t =
@H

@�t
= e�rtfst + �tgst ; (2.30)

_st =
@H

@�t
= g(st; �t) (2.31)

given S0 and �T = e�rtV (st).

These sets of conditions allow one to solve a dynamic optimal control problem as

a succession of static choice problems corrected by the dynamics of stock variables

and their shadow prices. The dynamics of stock is given by (2.30), and s0 = �s0 and

the shadow prices are presented by (2.31) and �T = e�rtV (st).

2.3.5 Optimal Control Techniques and Applications

In the previous section, we presented the optimality conditions using shadow prices

discounted to period 0. Many times we are interested in temporary prices and

values, rather than discounted ones. To obtain such prices, we will derive �rst

temporary optimality conditions. Consider the problem discussed earlier

max
xt;st

Z T

0

e�rtf(xt; st)dt+ e�rTV (sT ): (2.32)
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The (discounted) Hamiltonian of this problem is

HD = e�rtf(xt; st) + �Dt g(st; xt) (2.33)

where �Dt is the shadow price of the equation of motion (or the shadow price of

stock in time t) in values discounted to time 0). The optimality conditions are

@HD

@xt
= e�rtfxt + �Dt gxt = 0; (2.34)

� _�Dt =
@HD

@st
= e�rtfst + �Dt gst ; (2.35)

_st =
@HD

@�Dt
= g(st; xt); and (2.36)

e�rtVsT = �DT (2.37)

given S0.

Let Ht = ertHD denote the temporal Hamiltonian and �t = ert�Dt denote the

temporal shadow price of the stock. The alternative presentation of the optimality

condition is:

@H

@xt
= fxt + �tgxt = 0; (2.38)

_�t + r�t =
@Ht

@st
= fst + �tgst ; (2.39)

_st =
@Ht

@�t
; and (2.40)

�t = Vst(st) (2.41)

given S0.

To see that conditions (2.29){(2.31) and (2.38){(2.41) are consistent, note that

� _�t = �
@

@t

h
�r�t + ert _�Dt

i
=

�
�r�t + ert

@HD

@st

�
=

�
�r�t +

@Ht

@st

�
:

2.3.6 The Simple Model of Economic Growth

The �rst and perhaps the most important early applications of optimal control in

economics pertain to the study of economic growth. These are macro models, but

the analysis can apply to micro problems. The economic growth model presented

here considers the case when one good is both consumed and invested. Suppose the

production function is

yt = f(kt)
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where yt is output and kt is capital stock. Let ct be consumption in time t and

investment is yt � ct = f(kt)� ct.

Utility is derived with consumption u(ct) in utility function uc > 0, ucc � 0.

Thus, the objective is

max
ct

Z
1

0

e�rtu(ct)dt

and the equation of motion is

_kt = f(kt)� ct � 
kt

Capital increases at the investment rate, but may decline because of depreciation

when 
 is the depreciation coe�cient. The initial capital stock is k0. The temporary

Hamiltonian is

H = u(ct) + �t [f(kt)� ct � 
kt]

and the optimality conditions given by

@H

@ct
= uc � �t = 0; (2.42)

_�t + r�t =
@H

@kt
= �tfk � �t
; (2.43)

_kt =
@H

@�t
= f(kt)� ct � 
kt (2.44)

First, optimality condition ( : : : ) equates the shadow price of the stock to

marginal utility of consumption; this is reasonable since a unit of the good is either

traded or invested and marginal bene�t from both activities has to be equal at the

optimal solution. The rate of change in the nominal shadow price is a�ected by

three elements:

1. Discounting (which has the e�ect of increasing nominal prices over time).

2. Depreciation (which has a similar e�ect).

3. Marginal productivity of capital (which operates by reducing nominal prices

over time). The higher fk is, the more capital will be available in the future

and the less valuable it is.

2.3.7 The Dynamics of Consumption

Total di�erentiation of ( : : : ) yields ucc _ct _�t = 0. From ( : : : ), that becomes

ucc _ct + �t [fk � r � 
] = 0:
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Since uc = �t, the expression leads to a condition de�ning the rate of changes

in consumption over time.

_ct

ct
= �

uc

uccct
[fk � r � 
] : (2.45)

Let us de�ne �(ct) = � uc
uccct

. It can be interpreted as the elasticity of demand

for the good. To see this point, suppose we have a utility-maximizing consumer who

derives additive utility from c and expenditure. The optimal consumption choice of

this individual is

max
c

u(c) + I � pc

where I is income and p is the commodity price. Optimality condition is uc�p = 0.

Total di�erentiation of this condition yields

uccdc� dp = 0)
dc

dp
=

1

ucc
< 0:

Therefore,

�
dc

dp

p

ct
= �

uc

uccct
= �(ct):

Using this de�nition, note that

_ct

ct
= �(ct)[fk � r � 
]:

If fk � r � 
 > 0, the productivity of capital is substantial and prices decline

over time. Equation ( : : : ) suggests that consumption increases and the increase

in consumption is inversely related to the demand elasticity.

2.3.8 Steady State

At steady state, both state and co-state (shadow price of stocks) variables do not

change over time. Economists are interested in knowing if steady-state situations

exist, what will be the dynamic path which leads to them, and whether they are

stable. They are stable when the system returns to steady state in spite of some

random shocks that move it away.

Economists are enamored with steady states because they are the dynamic equiv-

alent of long-run equilibria. They represent the outcome for which the system con-

verges.

In the growth theory model, steady state occurs when

_k = f(k)� c� 
k = 0; (2.46)

_c = _� = fk(k)� r � 
 = 0 (2.47)
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Figure 2.3: A phase diagram
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Figure 2.3 presents a phase diagram. The loci of all the k and c combinations

that lead to _k = 0 and _c = 0 are depicted as well as their intersection(s) which are

the steady states of the system.

The locus of all the points with _c = 0 is at k = k�. The curve c = f(k)� 
k is

the locus of all the points with _k = 0. It intersects c = 0 at k = 0 and k = km. The

steady state of the system occurs in our case at Z with k = k� and c = c�.

To study the dynamic properties of the system, note that the diagram indicates

that consumption decreases when k > k� and consumption increases when k < k�.

Similarly, _k declines above the curve with _k = 0 (when f(k) � 
k � c < 0) and

increases below it.

The curve AZB denotes optimal consumption capital path. If initial capital

is k10 , initial consumption should be c10 and movement along BZ will lead to equi-

librium. If initial capital is k20 , initial consumption should be c20 and, for a period

before steady state, consumption will be greater than production.

The analysis here demonstrates the importance of time preference. If r = 0,

optimal solution will be at kx. But with r > 0, even if initial stock is kx, there will

be periods of excess consumption along the line AZ until the steady-state capital

at k = k� is attained.


