- Assume the real rate of interest/productivity is uncertain (Few risk-free investments beyond say 30 years exist)
- Find the certainty equivalent discount rate to evaluate costs and benefits of climate policy

Example:

Current rate of 4% can rise to 7% or decline to 1% over the next 100 years

Source:

Newell, R. and W. Pizer (2001), "Discounting the benefits of climate change mitigation: How much do uncertain rates increase valuation", PEW center, Economics technical series.

In 100 years

- *\$100* is worth *\$20.28* (lower path) or *\$0.20* (higher path)
- Assume they are equally likely: Expected value: \$10.24

In 101 years

- \$100 is worth \$20.28/1.01=\$20.08 (low path) or \$0.20/1.07=0.19 (high path)
- Expected value: **\$10.13=0.5 \$20.08** + **0.5 \$0.19**

Effective certainty equivalent discount rate

- \$10.24 / \$10.13 = 1.01 = 1+r [equivalent to \$10.13 = \$10.24/(1+r)]
- Effective Discount rate r=1% is determined by smaller discount rate
- Reason: large discount rate heavily discounts future benefits such that it adds little to the expected value

• British Green Book prescribes for evaluation of long term cost and benefits declining ('hyperbolic') discount rates:

TABLE 6.1: THE DECLINING LONG TERM DISCOUNT RATE

Period of years	0–30	31–75	76–125	126–200	201–300	301+
Discount rate	3.5%	3.0%	2.5%	2.0%	1.5%	1.0%

stating that "The main rationale for declining long-term discount rates results from uncertainty about the future."

Source: HM Treasury (2003), The Green Book – Appraisal and Evaluation in Central Government, HM Treasury, London.

- However, this reasoning on discounting and uncertainty does not take into consideration learning
 - -> More complicated! (current research)