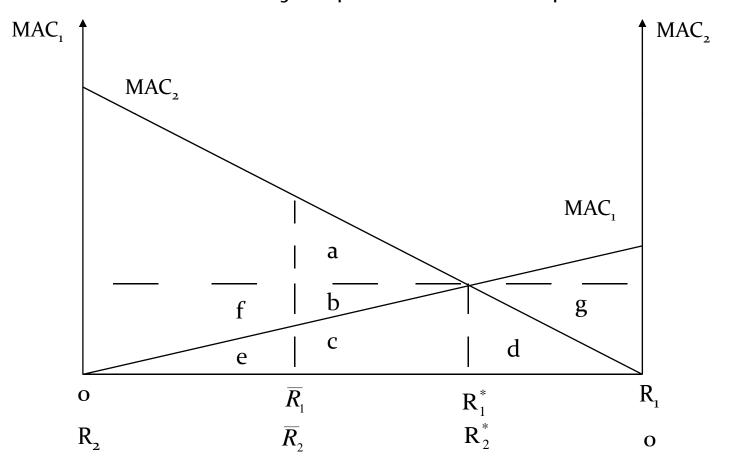
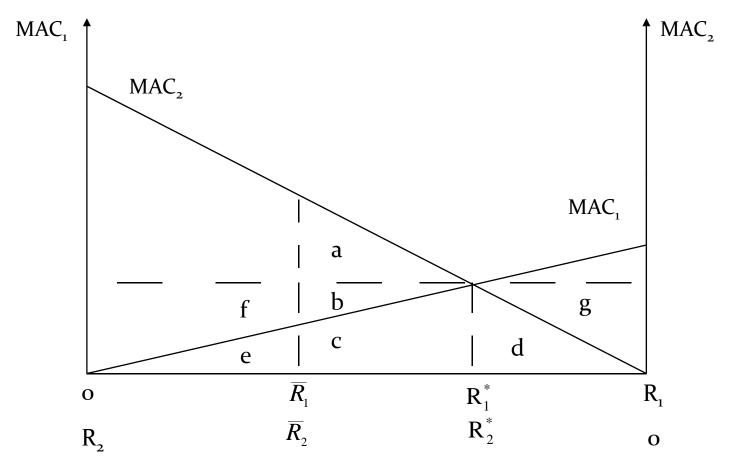
# The Economics of Climate Change

C 175 - Christian Traeger

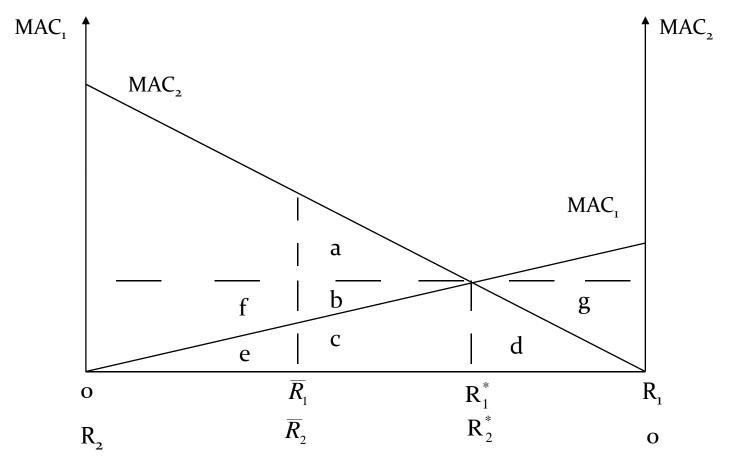
Part 3: Policy Instruments

continued


# Standards and Taxes Lecture 10


Read: Parry, I.W.H. & W.A. Pizer (2007), Emissions Trading versus CO<sub>2</sub> Taxes, Resources for the Future.

# **Command and control (Standards)**


- Past environmental policy largely based upon direct regulation, or command and control (CAC)
  - Input control: ban on certain toxic inputs
  - Output control: each firm not allowed to emit more than X tonnes of pollutant Y
  - Technology control: requirement to use particular method or technology
     (e.g. BATNEEC= Best Available Technology Not Entailing Excessive Cost)
- Information requirement for static cost-effectiveness: government must know exact marginal costs of emission reduction of EVERY firm: not feasible
- Suppose government dictates emission reduction (output control) to 2 firms that differ in marginal abatement cost (MAC) functions, where MACs are not equalized

Recall that efficiency requires that MAC equal over all firms





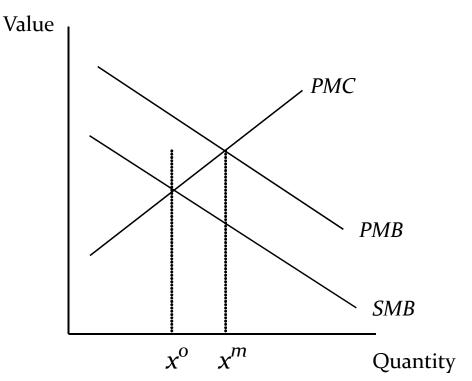
• At  $R_1 = R_1^*$ ;  $R_2 = R_2^*$  total costs are c + d + e



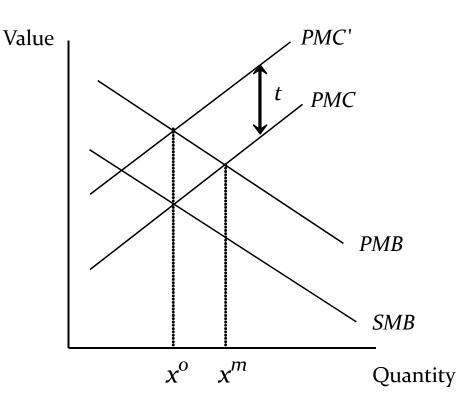
• At  $R_1 = \overline{R_1}$ ;  $R_2 = \overline{R_2}$  total costs are a + b + c + d + e: inefficient!

- So CAC does not meet requirement of static efficiency
- Neither is it dynamically efficient:
  - Suppose all (new) firms are required to use technology X
  - Then why develop a technology that is cleaner?

Why have CAC policies been used so often? Advantages of command and control:


- Very effective: past experience shows successful reduction in emissions of many pollutants
  - But at higher total costs than with use of efficient instrument
- Politically attractive: firms prefer CAC to taxes and permits
  - Because technology standards produce economic rents for firms;
  - Rents can be sustainable if coupled with more stringent requirements for new sources: entry deterrence!
  - With auctioned permits or taxes, firms pay abatement cost *and* also costs of emitting up to that level.

Can CAC play a role in climate policy?


- Many industries face cap-and-trade system (next week)
- But what about consumers? Transport sector? Service industry?
  - Often hard to reduce emissions (service sector)
  - Too many consumers to monitor CO<sub>2</sub> emissions
- Technology standards as well as output targets are and will be used:
  - Transport sector: car industry has to meet requirements for cars produced
  - Consumers: ban on sale of ,normal' light bulbs
  - Consumers; service industry: energy labelling on electronic devices

- Externalities cause inefficiency because of the divergence between social and private benefits or costs
- With a *negative* externality, a tax can be used to raise the private marginal cost (or a subsidy on emission reductions can be introduced)
- With a positive externality, a subsidy can be used to reduce the private marginal cost
- If the tax is set at the level equal to the marginal damage caused by an externality, then the tax is a Pigovian tax

- Example: correction of a negative consumption externality
- Social marginal benefit (SMB)
   is below Private marginal
   benefit (PMB)
- $x^m$  is market outcome
- x<sup>o</sup> is Pareto efficient with
   SMB = PMC



- Example: correction of a negative consumption externality
- Social marginal benefit (SMB) is below Private marginal benefit (PMB)
- The tax, t, raises Private marginal cost from PMC to PMC'
- The quantity consumed falls from  $x^m$  to  $x^o$
- x<sup>o</sup> is efficient with SMB = PMC



# Pigovian 'tax': A simple example

- Consider once more the windmill farmer and the winery
- Positive externality!
- See blackboard

# Pigovian taxation: A slightly more complicated case...

• Consider two consumers (index h=1,2) with utility functions

$$U^{1} = x^{1} + u_{1}(z^{1}) + v_{1}(z^{2})$$

$$U^{2} = x^{2} + u_{2}(z^{2}) + v_{2}(z^{1})$$

- Externality arises from consumption of good z
- For  $v_h'(.) > 0$  we have a positive externality
- For  $v_h'(.) < 0$  we have a negative externality
- Assume that  $p_x = p_z = 1$  and that agents have income M
- Then budget constraint requires:  $x^h = M z^h$

$$U^{1} = x^{1} + u_{1}(z^{1}) + v_{1}(z^{2})$$
  $U^{2} = x^{2} + u_{2}(z^{2}) + v_{2}(z^{1})$   $x^{h} = M - z^{h}$ 

Competitive equilibrium:

$$\max U^{1} = M - z^{1} + u_{1}(z^{1}) + v_{1}(z^{2})$$

$$\frac{\partial U^{1}}{\partial z^{1}} = 0 \implies -1 + \frac{\partial u_{1}}{\partial z^{1}} = 0 \iff \frac{\partial u_{1}}{\partial z^{1}} = 1 \qquad \text{Private marginal benefit cons 1}$$

Similarly for consumer 2:

$$\frac{\partial U^2}{\partial z^2} = 0 \implies -1 + \frac{\partial u_2}{\partial z^2} = 0 \iff \frac{\partial u_2}{\partial z^2} = 1 \quad \text{Private marginal benefit cons 2}$$

 Social optimum (Pareto efficient allocation) with equal welfare weights: W = U1 + U2

$$\max W = M - z^{1} + u_{1}(z^{1}) + v_{1}(z^{2}) + M - z^{2} + u_{2}(z^{2}) + v_{2}(z^{1})$$

$$\frac{\partial W}{\partial z^{1}} = 0 \Rightarrow -1 + \frac{\partial u_{1}}{\partial z^{1}} + \frac{\partial v_{2}}{\partial z^{1}} = 0 \Leftrightarrow \frac{\partial u_{1}}{\partial z^{1}} + \frac{\partial v_{2}}{\partial z^{1}} = 1$$
 Social marginal benefit from  $z^{1}$ 

$$\frac{\partial W}{\partial z^2} = 0 \implies -1 + \frac{\partial u_2}{\partial z^2} + \frac{\partial v_1}{\partial z^2} = 0 \iff \frac{\partial u_2}{\partial z^2} + \frac{\partial v_1}{\partial z^2} = 1 \quad \text{Social marginal benefit from } z^2$$

Compare with private (or 'market') outcome:

$$\frac{\partial u_1}{\partial z^1} = 1 \qquad \frac{\partial u_2}{\partial z^2} = 1$$

- So far: consumer price equals producer price which is equal to 1
- FOC for consumer U max imply marginal utility = consumer price
- Idea: Can we set the consumer price, say  $q_h$ , such that social optimum is result of 'marginal utility equals consumer price'?
- Social optimum:

$$\frac{\partial W}{\partial z^{1}} = 0 \Rightarrow \frac{\partial u_{1}}{\partial z^{1}} + \frac{\partial v_{2}}{\partial z^{1}} = 1 \Rightarrow \frac{\partial u_{1}}{\partial z^{1}} = 1 - \frac{\partial v_{2}}{\partial z^{1}} \equiv q_{1}$$

$$\frac{\partial W}{\partial z^2} = 0 \Rightarrow \frac{\partial u_2}{\partial z^2} + \frac{\partial v_1}{\partial z^2} = 1 \Rightarrow \frac{\partial u_2}{\partial z^2} = 1 - \frac{\partial v_1}{\partial z^2} \equiv q_2$$

The difference between the consumer price needed to reach the social optimum and the producer price is the Pigovian tax  $\tau_h$ :

$$\tau_1 = q_1 - 1 = -\frac{\partial v_2}{\partial z^1}$$
,  $\tau_2 = q_2 - 1 = -\frac{\partial v_1}{\partial z^2}$  Note: in general  $\tau_1 \neq \tau_2$ !

- Pigovian taxation appears a simple solution: a price is set on the externality
  - A tax is paid equal to the marginal damage
  - A subsidy is received equal to marginal benefit
- However, for Pigovian tax
  - In general taxes need to be differentiated between consumers, firms, and goods (depending on the particular externalities they cause)
  - Even when MD same for all agents, government needs to know that marginal damage to set correct Pigovian tax
- BUT: for ANY target level, a tax is an efficient instrument
  - For given tax, firms will adjust emissions until MAC equal tax:
     MAC equalized over all firms, hence tax cost-effective

#### **Taxation**

- Tax income can be used to lower distorting taxes
   (e.g. taxes on labor income with distortion of offering less labor)
  - Weak double dividend hypothesis:
     non-environmental welfare loss due to environmental tax is
     lower if tax income is used to lower distorting tax on e.g. labor
     income
     (compared to case where they are recycled in a lump-sum fashion)
  - Strong double dividend hypothesis: environmental tax not only improves environmental quality but also non-environmental welfare

#### **Taxation**

- Dynamic efficiency of emissions tax:
  - If a firm has to pay *t* per unit of emissions, then an emission reduction always means less tax payments
  - Gives incentives to develop (or adopt) a new technology that reduces emissions (for current emission levels) at lower costs (MAC < t)</li>
- Ecological accuracy:
  If there is uncertainty in MAC, then given tax leads to uncertain emission reduction
- Political feasibility:
   With taxation, large transfers of money: if target is to reduce emissions by 10%, still taxes are paid over 90% of initial amount -> firms are hostile to taxes

#### **Subsidies**

- Economists are in favor of market-based instruments like tax.
   Subsidy is negative tax.
- Is subsidizing 'good behavior' efficient? (emission reductions, or particular technologies like solar panels, windmills)
- Political feasibility: yes!! Firms love subsidies!
- But less desirable in terms of efficiency:
  - Have to be financed through distorting taxes
  - Hard to stop once started
- In case of subsidy on particular technology: dynamically inefficient:
  - Does government know which technology is best?
  - Hampers technology competition