The Economics of Climate Change

C 175 - Christian Traeger

Part 3: Policy Instruments

continued

Bargaining (Coase)

Ronald Coase (Nobel Price 1991) sees externalities as arising through the absence of property rights: pollution occurs when property rights are ill-defined.

If property rights are well-defined, side of market without rights has to compensate other side:

- If atmosphere is a free public good, those who suffer from emissions have to (buy some of the rights from) emitters
- If agents have right to have clean environment, potential polluters have to compensate (buy some of the rights from) 'consumers' of clean environment

Coase Theorem, Part 1

In a competitive economy with complete information and zero transaction costs, the allocation of resources will be Pareto-efficient if all property rights are assigned.

- The Coase Theorem proposes that economic agents will solve externality problems without intervention, simply by assigning property rights
- Legal rules of entitlement = *property rights* determine ownership in the economy...
- ...and determine the direction of compensating payments if property right is violated.

Example: Introducing property rights

Example:

- Polluter with benefits from emission level e: B-C(e) (cost curve convex, same for damage below)
- Marginal abatement costs MC = -C'(e)
- Pollutee with income M suffers damages D(e) from emissions, utility: M-D(e) (note: once more quasi linear money metric)
- Marginal damages MD = D'(e)

Social (Pareto) optimum given by

- Maximize B-C(e)+U-D(e)
- Yields D'(e) = -C'(e)
- Marginal damages = marginal benefits = marginal abatement costs

Introducing property rights

Right to clean environment:

- Starting point: zero emissions, *e*=*o*
- Polluter with large abatement costs C(o), pollutee with large utility U-D(o)
- Polluter can try to convince pollutee to accept a certain level of emissions if appropriately compensated.
- Pollutee demands compensation (Transfers T) such that U-D(e)+T>=U-D(o) -> minimal transfer: T=D(e)-D(o)
- Polluter maximizes: B-C(e)-(D(e)-D(o))
- Solution: **Marginal damages** = **marginal benefits** (D'(e) = -C'(e))
- Utility of pollutee: U-D(o)
- Benefits of polluters: B-C(e)-(D(e)-D(o))

Introducing property rights

Right to pollute:

- Starting point: emissions as chosen by polluter $e^*>o$ (- $C'(e^*)=o$)
- Polluter with no abatement cost $C(e^*)$, pollutee suffers large damages $D(e^*)$
- Pollutee can try to convince polluter to reduce emissions if appropriately compensated.
- Polluter demands compensation (Transfers T) such that B-C(e)+T>=B- $C(e^*)$ ->minimal transfer: T=C(e)- $C(e^*)$
- Pollutee maximizes $U-D(e)-(C(e)-C(e^*))$
- Solution: **Marginal damages** = **marginal benefits** (D'(e) = -C'(e))
- Utility of pollutee: *U-D(e)-(C(e)-C(e*))*
- Benefits of polluters: B-C(e*)

- If there are no income effects (quasi linear money metric utility, i.e. no effect of income on the marginal disutility of the emissions), then
- Coase Theorem, Part 2
 The obtained Pareto-efficient allocation does not depend on the assignment of property rights.
- The efficient emission level does not depend on whether polluter compensates victim, or whether victim has to compensate polluter for not emitting
- Wealth distribution however does depend on whom has to pay the compensation

- The practical limitations of the Coase theorem for global warming are:
 - The lack of clear property rights
 - Transaction costs in reaching compensation agreements:
 - often at least one side of market consists of many agents:
 GHG emissions: billions of polluters,
 global warming: millions of victims (and winners)
 - Court may be too costly or not exist (international GHG bargaining!)
- In sum, the Coase theorem suggests a market solution to the externality problem, but there are reasons why the market may not function
- In practice, Coase solutions are rarely observed