Vertical Integration as a Price Discrimination Tool: The Case of Alcoa

History

- Aluminum Company of America (Alcoa) dominated the market for aluminum during the first half of the 20th century
- 1945: Appellate court ruled Alcoa guilty of antitrust violations
- Significant debate as to whether or not Alcoa was a true monopoly (question of secondary market from remelting)
- We know that they had significant market power
- Dominant Firm and Competitive Fringe (domestic entry, imports, secondary aluminum, magnesium)
 Extent of the fringe matters in terms of Alcoa’s ability to PD
Key Definitions

- Vertical Integration
 * When a single firm participates in more than one successive stage of the production process (C&P p.395)

- Arbitrage
 * When a consumer purchases a good with the intent to immediately resell in another market at a higher price and enjoy the profit

- Ingot
 * A chunk of metal

Uses of Aluminum Ingots

- Iron and Steel Industry
 * Reducing Agent

- Aircraft Industry
 * Airplane parts

- Electric Cable

- Cooking Utensils
 * Alzheimer’s cookware

- Automobile Parts
The Firm’s Derived Demand

- Each firm has a derived demand curve for aluminum
- Derived demand based on final output price, protection technology, and input costs
- Derived demand obtained by setting value of marginal product of aluminum equal to price and solving for quantity of aluminum

Numeric Example (Lecture Notes)

-Assume Alcoa selling to two customers
 1) Electric Cable (High elasticity because of copper substitute)
 \[q_e = 60 - p_e \]
 2) Aircraft industry (Inelastic because there were no substitutes)
 \[q_a = 100 - p_a \]

-Assume Alcoa has a constant marginal cost = 20
Nondiscriminatory Pricing

- Use aggregate demand to find MR curve, set MR=MC, find corresponding price

 Aggregate Demand is:
\[P = \begin{cases}
100 - Q & \text{if } Q < 40 \\
80 - 0.5Q & \text{if } Q > 40
\end{cases} \]

Use above to find:
\[MR = \begin{cases}
100 - 2Q & \text{if } Q < 40 \\
80 - Q & \text{if } Q > 40
\end{cases} \]

\[80 - Q = 20 \rightarrow Q = 60 \rightarrow Pa = Pe = 50 \]

\[\pi = 1800 \]

\[CS_a = 0.5(100-Pa)q_a = 0.5(50)(50) = 1250 \]

\[CS_e = 0.5(60-Pe)q_e = 0.5(10)(10) = 50 \]
Third Degree Price Discrimination

- Alcoa could have maximized profits by charging separate prices in the two markets
 * Higher price to aircraft industry because demand was more elastic
 * Same parameters as previous example

3rd Degree Price Discrimination

<table>
<thead>
<tr>
<th>Electric Cables</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_e = 60 - q_e)</td>
<td>(p_a = 100 - q_a)</td>
</tr>
<tr>
<td>(\text{MR}_e = 60 - 2q_e)</td>
<td>(\text{MR}_a = 100 - 2q_a)</td>
</tr>
<tr>
<td>(\text{MR}_e = \text{MC})</td>
<td>(\text{MR}_e = \text{MC})</td>
</tr>
<tr>
<td>(60 - 2q_e = 20)</td>
<td>(100 - 2q_a = 20)</td>
</tr>
<tr>
<td>(q_e = 20)</td>
<td>(q_a = 40)</td>
</tr>
<tr>
<td>(p_e = 40)</td>
<td>(p_a = 60)</td>
</tr>
<tr>
<td>(\varepsilon_e = 2)</td>
<td>(\varepsilon_a = 1.5)</td>
</tr>
<tr>
<td>(\text{CS}_e = 200)</td>
<td>(\text{CS}_a = 800)</td>
</tr>
</tbody>
</table>

\[\pi = p_eq_e + p_aq_a - c(60) = 2000 \]
3rd Degree PD Graph

Comparison

<table>
<thead>
<tr>
<th>Price Discrimination</th>
<th>Common Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_a = 60$</td>
<td>$p_a = 50$</td>
</tr>
<tr>
<td>$q_a = 40$</td>
<td>$q_a = 50$</td>
</tr>
<tr>
<td>$CS_a = 800$</td>
<td>$CS_a = 1250$</td>
</tr>
<tr>
<td>$p_e = 40$</td>
<td>$p_e = 50$</td>
</tr>
<tr>
<td>$q_e = 20$</td>
<td>$q_e = 10$</td>
</tr>
<tr>
<td>$CS_e = 200$</td>
<td>$CS_e = 50$</td>
</tr>
<tr>
<td>$\pi = 2000$</td>
<td>$\pi = 1800$</td>
</tr>
</tbody>
</table>

Question: Does 3rd degree PD always lead to a less efficient outcome (relative to nondiscriminatory monopoly)?
But, was 3rd degree PD possible for Alcoa?

- NO!
- Arbitrage
 * Easy for members of low price industries to turn around and resell ingots.
 * Question: In the example, who would sell to who?

So, possibilities of arbitrage prevented Alcoa from using standard 3rd degree PD
So what to do?

- Vertical Integration
 * Alcoa could integrate into certain industries to prevent arbitrage
 * Which industries would it have made sense for Alcoa to integrate into?
 ~ If Alcoa integrates into the aircraft industry they must charge a low price to electric cable companies. The cable companies could then use the cheap ingots to produce aircraft parts!
 ~ If Alcoa integrates into the electric cable company they can charge a high price to the aircraft industry. Arbitrage is prevented because of Alcoa’s vertical linkages.

RESULT: Made sense for Alcoa to integrate into industries with elastic derived demand curves.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cookware</td>
<td>Elastic ($\varepsilon = -1.6$)</td>
</tr>
<tr>
<td>Electric Cable</td>
<td>Elastic (copper substitute)</td>
</tr>
<tr>
<td>Auto Parts</td>
<td>Elastic ($\varepsilon = -1.5$)</td>
</tr>
<tr>
<td>Iron and Steel</td>
<td>Inelastic (no substitutes)</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Inelastic (no substitutes in 1930)</td>
</tr>
</tbody>
</table>

Sources: Perry (1980) & Example 9.4 on p. 298 of text
What did they do?

- Sure enough Alcoa established vertical linkages in the cookware, electric cable, and auto parts industries.
- Alcoa did not vertically integrate into the two industries with inelastic derived demand curves.
- This behavior is consistent with the theory of Perry.
- Total welfare effect is ambiguous

Conclusions

- Alcoa’s integration patterns were consistent with the hypothesis regarding 3rd degree Price Discrimination.
- But, could it have been something else?
 * Correlation is not causation
 * Maybe it was something else about the industries w/ high elasticities that caused Alcoa to integrate
 * Costs of integration?
- A good argument, but strength of empirical evidence is questionable