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Abstract
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car auctions. We leverage differences in future fuel costs across otherwise identical vehicles that
have different current mileage, and therefore different remaining lifetimes. By seeing how price
differences across high and low mileage vehicles of different fuel economies change in response
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fuel costs. Our data suggest that used automobile prices move one for one with changes in
present discounted future fuel costs, which implies that consumers fully value fuel economy.
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1 Introduction

One of the great questions facing policy makers in the twenty-first century is whether and how

to mitigate greenhouse gas emissions so as to limit climate change. Automobiles are a critical

part of this policy problem—in the U.S., personal transportation accounts for 28% of greenhouse

gas emissions (Environmental Protection Agency 2014). Gasoline consumption maps neatly into

greenhouse gas emissions. This means that a Pigouvian tax on emissions is feasible (in the form

of a gasoline tax). Such a tax can fully restore market efficiency, and alternative policies, such

as fuel economy standards, will have inferior welfare properties, provided that the environmental

externality is the only market failure leading to inefficiencies.1

However, many have argued that another market failure does exist, which is that consumers

undervalue energy efficiency in a variety of choice situations, including automobile markets. The

root of this hypothesis is the observation that engineering estimates of the cost of deploying fuel

saving technologies often suggest that privately cost-effective technologies often go unadopted.

Jaffe and Stavins (1994) call this the “energy paradox”. If markets substantially undervalue energy

efficiency, then the dominance of a gasoline tax over regulatory approaches may be broken because

alternative policies may be better able to correct for inefficiencies from mis-valuation.2

Motivated by these policy implications, researchers have sought to use revealed preference data

to determine whether consumers do in fact undervalue fuel economy. In this paper, we add to

this literature by developing a unique identification strategy that utilizes two decades worth of

microdata on used vehicle transactions to test whether used vehicle prices change by the amount

predicted by a fully rational asset pricing model. We interpret our results as a test of whether or

not consumers fully value fuel economy, and our results directly provide the parameters necessary

for informed policymaking.

Intuitively, our approach is to first compare the prices of two used cars which are identical except

in their current odometer readings—and therefore in the remaining future operating costs—and

second to repeat this comparison when different gasoline prices prevail. We repeat this comparison
1For reviews of the design of policies to correct driving related externalities, see Parry, Walls, and Harrington

(2007); Anderson, Parry, Sallee, and Fischer (2011) and Sallee (2011). The efficiency property of a gasoline tax is
more complicated for local pollutants, as is explored in several papers, including Fullerton and West (2002, 2010) and
Knittel and Sandler (2012).

2Fischer, Harrington, and Parry (2007), Allcott, Mullainathan, and Taubinsky (2014) and Heutel (2011) explore
the implications of undervaluation for optimal policy design.
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across many vehicle types and many months, during which changes in the price of gasoline drive

changes in fuel costs, in order to estimate the relationship between vehicle prices and a measure of

the present discounted fuel cost that we construct. For example, we calculate the price and fuel cost

of a 2000 Ford Taurus SE six cylinder 3.0L vehicle with automatic transmission and front-wheel

drive that has 50,000 miles in July 2005 to a different 2000 Ford Taurus SE six cylinder 3.0L vehicle

with automatic transmission and front-wheel drive that has 60,000 miles in July 2005. We then

calculate the price and fuel cost of two different cars with the exact same configuration and mileage

in July 2006. Changes in the gasoline price between July 2005 and July 2006 will cause changes in

the difference in expected fuel costs across the higher and lower mileage vehicles. We test whether

the change in the price difference between the high and low mileage vehicle over time corresponds

to the change in the cost difference.

This is conceptually similar to a difference-in-difference approach. The fact that our comparison

is within vehicle type, and not across vehicles, allows us to provide an exceptionally rich set of

controls, including time-period shocks and depreciation schedules that are unique for each vehicle

type. Specifically, our preferred specification allows for a unique fixed effect in every month of our

sample for every vehicle type, and it controls for a unique depreciation schedule for each vehicle

type, where a vehicle type is very finely defined. To execute this research design, we employ used

vehicle price data that include actual transaction prices, dates of sale, vehicle identification numbers

(VINs), and odometer readings for a large sample of vehicles sold at wholesale auctions.

In our baseline specification, we find that vehicle prices do move one for one with future fuel

costs. This conclusion is robust to a number of specification checks.3 Given some simplifying

assumptions about the structure of the used car market, this result implies that consumers do

value fuel economy properly. This finding casts doubt on the idea that regulatory policies, such as

fuel economy standards, might be more efficient than fuel taxation because they correct both the

environmental externality and private mis-optimization due to limited rationality.

Our data come from wholesale auctions, but our interest is in what consumers pay in the retail

market. Using an auxiliary data set from used car guide books, we demonstrate that price changes
3The main exception is that we find that for our highest mileage cars (those with over 100,000 miles when sold

at auction), prices are significantly less responsive to fuel cost shocks. This may indicate that buyers of the oldest
and least expensive used cars undervalue fuel economy, but it may also be due to a selection process by which only
certain types of high mileage vehicles appear in wholesale auctions.
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in the retail market appear to pass through one to one into retail prices. This is consistent with

a competitive used car market, and it allows us to interpret our wholesale price results as directly

reflecting consumer willingness to pay in the retail used car market.

We are not the first to ask whether or not consumers value fuel economy properly.4 The most

similar existing papers are Allcott and Wozny (2014), Busse, Knittel, and Zettelmeyer (2013) and

Grigolon, Reynaert, and Verboven (2014). These papers use a panel identification strategy that

leverages the fact that common gasoline price shocks translate into different fuel cost shocks for

different vehicles based on their fuel economies.5 Compared to these papers, we are able to relax a

number of restrictive assumptions on the set of control variables. Specifically, because we leverage

differences across vehicles of the same type in the same month by using variation in the odometer,

we can control nonparametrically for time period shocks specific to each vehicle type, and we can

control very flexibly for a depreciation schedule for each vehicle type. These papers find a range

of estimates of consumer valuation across specifications that overlap with each other, with Allcott

and Wozny (2014) emphasizing estimates that find modest undervaluation while Busse, Knittel,

and Zettelmeyer (2013) and Grigolon, Reynaert, and Verboven (2014) emphasize that their results

cannot consistently reject full valuation.

We interpret our estimates as consistent with their results. Moreover, we believe that our

procedure presents a more difficult test because we identify consumer valuation off of variation in

odometers within a set of identical vehicles, which may not be very salient to consumers, whereas

other approaches identify valuation by looking across vehicles. If consumers have limited attention,

in the sense of Sallee (2014), then we might expect them to ignore the type of within model

variation in fuel costs that we leverage. That is, one could imagine consumers recognizing the fuel

cost differences across categories of automobiles, but not “noticing” the difference in implied fuel

costs across high and low mileage versions of the same model.

Our baseline model produces precise estimates consistent with full valuation. Our procedure

yields statistical precision, and our results are robust across a number of dimensions. But, we

emphasize that our procedure can be made to yield different results because they hinge on a number

of assumptions about underlying parameters that are used to construct our estimate of the future
4We discuss the literature, and our relationship to it, more fully in the next section.
5Linn and Klier (2010) use the same strategy to study sales volumes, rather than prices. Li, Timmins, and von

Haefen (2009) and Jacobsen and van Benthem (Forthcoming) use it to study vehicle scrappage decisions.
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fuel cost of a vehicle, including consumer discount rates, expectations regarding future gasoline

prices, perceived on road fuel economy, and typical patterns of vehicle utilization and scrappage.

We have empirical support for each of the assumptions we use, but reasonable alternative parameter

choices could shift our coefficient estimate in either direction. The same is true of other papers in

the literature.

Thus, while the literature fails to consistently reject the null hypothesis of full valuation, the

data cannot consistently rule out modest undervaluation, unless one takes a firm stand on underly-

ing parameters that are themselves uncertain. What is clear from our results, in conjunction with

the existing literature, is that the assumption that consumers place a zero value on fuel economy

is indefensible. Nevertheless, this assumption is still employed, implicitly, in regulatory impact

analyses that credit the entire fuel savings of consumers as a benefit of programs like the Cor-

porate Average Fuel Economy (CAFE) standards. If consumers value fuel economy properly and

automakers deploy fuel-saving technologies so long as their cost lies below consumer willingness

to pay, then fuel economy improvements forced upon the market by regulation must be causing a

trade-off in vehicle characteristics or market shares that lowers consumer surplus. This crediting

of fuel savings as a program benefit is often pivotal to the cost-benefit analysis. For example, fuel

savings represent nearly 80% of the total benefits of the 2017-2025 CAFE standards (Environmental

Protection Agency 2012).

Our empirical evidence, combined with the previous literature, implies that consumers at worst

undervalue fuel economy modestly. If there are energy efficient technologies that are not being

deployed, then researchers and regulators should perhaps shift their attention to supply side expla-

nations, like competitive failures, technological spill overs or other hold ups within the automobile

industry.6

2 Conceptual approach

Our estimation strategy is based on exploiting variation in the expected future fuel cost of vehicles

resulting from differences in the odometer reading and the price of fuel at the time a vehicle is sold.
6Sallee (2014) suggests one possible caveat. He argues that in a model with rational inattention it is possible that

consumers are attentive to (fully value) the set of energy efficiency technologies that are deployed in equilibrium, but
nevertheless there are cost-effective technologies that are not deployed because they are not salient and would be
undervalued if they were deployed.
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For example, suppose that two 2005 Toyota Camrys are sold in November 2009, one with 80,000

miles on the odometer and the other with 90,000 miles. The price difference between these two cars

should reflect the difference in value of having a lower mileage vehicle (which is in better condition

and has a longer expected remaining life) net of the larger operating costs, which are a function of

fuel prices. Next, imagine that the price of gasoline changes between November 2009 and December

2009, and that in December two other 2005 Toyota Camrys, one with 80,000 miles and the other

with 90,000 miles, are sold. Now, the price difference should reflect the same factors as before, and

the difference-in-difference should reflect only the change in operating costs that resulted from the

gasoline price change. There may be many factors that affect the level of these prices, but as long

as these factors have the same effect on an 80,000 mile Camry and a 90,000 mile Camry, they can

be accounted for with fixed effects.

Our final estimating equation has the intuitive flavor of this example, but it is not literally a

difference-in-difference because we use a continuous measure of odometer readings. In the end, we

regress used vehicle transaction prices on a rich set of mileage controls, time period fixed effects and

a measure of the discounted expected future operating costs of vehicles. Our specification allows

different models to have different depreciation schedules. Specifically, we allow the odometer poly-

nomial and the time period fixed effects to vary for each vehicle type—where a type is defined by all

observed characteristics contained in the “stub” of the Vehicle Identification Number (VIN), which

includes model name, vintage, cylinders, displacement, and, sometimes additional information on

transmission and trim levels. We are able to do this and still identify the parameter because we

use individual transaction prices and use variation in fuel costs within a car type and time period

by exploiting the odometer information.

To arrive at our estimation equation, we start with a simple model of the price of used cars

which assumes that the used car market is competitive, the supply of used cars is inelastic, and

that transaction costs are small.7 The logic of the inelastic supply assumption is that, in any given

period, the full stock of used cars (not necessarily the set listed for sale) of a given vintage and

type is fully predetermined. Under these assumptions, the expected discounted price, P , of an

individual vehicle i of type j at time t is equal to the expected discounted value of operating the
7With zero transaction costs, the market allocation will be the same as if people rented a vehicle each period.

This abstracts from sorting concerns.
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car V (·) over its remaining lifetime, minus the expected discounted values of fuel costs C(·), and

maintenance costs Z(·):

Pijt = V (Oijt, Xj , r) − C(Oijt,mijt, gt,MPGj , r)− Z(Oijt, Xj , r), (1)

where O is the car’s mileage (“O” is for odometer) at the start of period j, Xj is a vector of vehicle

attributes, m is per period miles driven, g is the price of gasoline, MPG is the vehicle’s fuel economy

in miles per gallon, and r is the discount rate.

The discounted value of fuel costs, C(·), is given by:

Cijt = E

[
T∑

s=t

H(Oijt, Xj)
(

1
1 + r

)(s−t) mjsgs

MPGj

]
, (2)

where T is the final period at which time all vehicles are scrapped, and H(·) is the probability

of survival of a vehicle as a function of its odometer reading and its attributes. We detail the

construction of this variable in Section 3.1, below.

The fundamental question in the literature on the energy efficiency gap is whether or not

consumers fully value fuel economy, which is typically formulated as the existence of a one to one

mapping between price and future discounted fuel costs, in the used car market where supply is

assumed to be perfectly inelastic. Thus, the goal is to find a way to regress prices P on future

discounted fuel costs C that leaves variation in C but protects against omitted variable biases.

Variation in fuel costs comes from several sources. It comes across vehicles because of differences

in fuel economy. It comes over time because of differences in the price of gasoline. And, it comes

across individual vehicles depending on their remaining lifetime.

Different articles in the literature have used different types of variation, and all approaches

require some assumptions to achieve identification. The cross-sectional hedonic approach that

was once prominent in the literature used cross vehicle variation in studies of new car prices.8

Automobiles have many unobserved characteristics, however, so the cross-sectional approach lacks

credibility as an identification strategy.
8This approach goes back at least to the seminal contributions in Hausman (1979) and Dubin and McFadden (1984)

on household durables using cross-sectional data. The cross-sectional literature on automobiles includes Dreyfus and
Viscusi (1995), Goldberg (1998) and Espey and Nair (2005). This literature found mixed evidence of consumer
undervaluation. See Greene (2010) and Helfand and Wolverton (2009) for reviews.
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The literature recently switched to a focus on the use of panel strategies that use changes

in gasoline prices as a source of quasi-experimental variation (Kahn 1986; Kilian and Sims 2006;

Allcott and Wozny 2014; Busse, Knittel, and Zettelmeyer 2013; Grigolon, Reynaert, and Verboven

2014). A common gasoline price shock creates different fuel cost changes across models, because

of differences in fuel economy.9 Thus, a single gasoline price time series generates panel variation

that allows for price regressions that include fixed effects for each vehicle type, which will absorb

any time invariant unobserved factors. When the unit of analysis is the same vintage of vehicle

observed several times in the used car market, these fixed effects will capture all attributes of the

vehicle.

This approach uses variation from the interaction of fuel prices and vehicle fuel economy. This

does not require the use of micro data (though it can be used, as in Busse, Knittel, and Zettelmeyer

(2013)) because it uses differences across car types over time, rather than making predictions about

how different vehicles of the same type would differ in price within a time period. As such, this

approach cannot control for vehicle type specific time period shocks; it rests on assumptions that

some broader level of time period fixed effects are able to account for demand shocks that influence

the price of models. If there are demand shocks in different time periods that have differential

effects on different vehicles prices, and if these differential shocks are correlated with fuel economy,

then this approach may still be biased. As suggested in Langer and Miller (2013), the prices of

competing products may be one such source of correlated shocks.

Our approach focuses on vehicle mileage in order to relax those assumptions. We isolate the

effect of fuel price changes over time on the differences in prices across vehicles of the same type in

the same time period, which differ only in their remaining lifetime by virtue of having been driven

more or less prior to that time period.10 This approach inherently requires micro data.

Our approach may involve trade-offs, both practical and conceptual. Practically, our procedure

eliminates the vast majority of variation in prices and fuel costs through our control variables,
9Grigolon, Reynaert, and Verboven (2014) differ from our approach and from the existing literature on the U.S.

in focusing on the demand for diesel versus gasoline vehicles in Europe.
10Our conceptual framework assumes a risk neutral agent who cares only about the average future fuel cost. Risk

averse agents will perceive some value in more fuel economic vehicles, which condense the variation in fuel costs that
arise from shocks to the future gasoline price. Changes in the volatility of the price of gasoline may therefore influence
the value of fuel economy over our sample period. But, our identification strategy limits this concern. Any increase
in demand for a particular car type due to volatility considerations will be soaked up in our vehicle by time fixed
effects.
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and the variation that remains may be too small to yield statistical precision. That turns out not

to be the case, both because the gasoline price moves a great deal during our sample period and

because we have a large data set. Aside from practical concerns, isolating variation in fuel costs

to within model differences due to odometer variation leads us to focus on a type of variation that

may be particularly non-salient to consumers. Consumers might ignore differences in fuel costs due

to odometer variation, while still accurately considering the difference in fuel costs across models.11

That is, when gasoline prices rise, consumers may switch demand away from heavy trucks towards

compact cars, but they might simultaneously fail to account for the differential implication for low

versus high mileage compact cars. For this reason, we think that ours is a more stringent test of

consumer valuation than the cross-vehicle approaches in the prevailing literature.

3 Data

Our used car price data come from a large sample of wholesale used car price auctions. The data

include the transaction price, transaction date, odometer reading and truncated Vehicle Identifi-

cation Number (VIN) of each vehicle sold in several large auction houses.12 This market does not

include individual end users. Automobile dealers, manufacturers and businesses and governments

that own large fleets sell their vehicles at these auctions. The buyers are licensed used car dealers,

who subsequently resell the vehicles to consumers. Used car dealers routinely use these auctions

to optimize the stock of vehicles they have for sale to final consumers by both buying and selling

vehicles.

Our data sample includes millions of transactions that took place between July 1993 and July

2008.13 We match these vehicles to official EPA fuel economy ratings using all available information

on model, model year, cylinders, displacement, body type, transmission and trim. In the estimation,

we use the combined EPA fuel economy rating. For some early model years and for model years
11Allcott and Wozny (2014) make this same point in discussing our approach versus theirs. Sallee (2014) explores

the same issue, arguing that, when perfect information is costly to acquire, consumers may be rationally inattentive
to some types of fuel cost variation, while being attentive to others, due to differences in the consequences of ignoring
each type of variation.

12One source of error may exist in the odometer readings for a small fraction of our data. Goh, Fischbeck, and
Gerard (2007) show that many domestic vehicles built prior to the mid-1990s had five-digit odometers. This leads
to rollover, where it is impossible to tell how many hundreds of thousands of miles a vehicle has been driven. Our
estimates are similar when we look only at vehicles known to have six-digit odometers, such as Toyotas and Hondas.

13The raw data include some data before 1993, but the coverage is limited. We have access to data through part
of 2009, but we limit our sample to the period before the financial crisis.
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after 2007, we lack a complete VIN decoder and for vehicles made before 1978, there are no fuel

economy ratings. Such vehicles are dropped from our sample. In the results reported here, we focus

on a 10% random sample of our data for computational reasons.

We also focus primarily on vehicles sold at auction by dealers, rather than vehicles sold by auto

manufacturers themselves or by fleet operators. We do so because our strategy relies on correctly

specifying the remaining lifetime of vehicles, and we believe that vehicles sold by dealers, which

were owned and operated by consumers, will be more likely to depreciate according to the average

schedule that we use for estimation. That is, vehicles operated by fleet owners and manufacturers

may have been used and maintained differently than those owned by consumers. We do report

results from our preferred specifications on these alternative samples.

3.1 Estimating Remaining Cost

A critical step in our estimation is the construction of the future fuel cost variable. This construction

requires assumptions, described here, about vehicle mileage and survival rates and about consumers’

beliefs about future gasoline prices and their discount rates. Throughout the paper we emphasize

our econometric analyses as tests of whether or not consumers fully value fuel economy, but it

is critical to keep in mind that our tests (and those in the existing literature) depend on the

accuracy of these assumptions, and that modifications of these assumptions will mechanically alter

our estimated coefficients.

Mileage and Scrappage

The cost function (equation 2), specified in discrete form, includes the annual miles driven of

vehicles in all future periods. Additionally, since a vehicle might be scrapped, mileage is multiplied

by a survival probability to generate expected miles driven.

We estimate mileage and scrappage by using the results reported in Lu (2006), which details

the average mileage and scrappage probability for passenger cars and light-trucks (pick-ups, sport-

utility vehicles, and vans) as a function of age. For our purposes, we believe the relevant measure

of the lifecycle position of a vehicle is its odometer, not its age in months. Accordingly, we conduct

a transformation of the results in Lu (2006) to respecify her results in terms of odometer, rather

than age. Lu (2006) also does not provide separate results by make (e.g., Dodge), so we use our
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auction data to introduce heterogeneity across makes in an intuitive way.

Our procedure is as follows. We generate a predicted odometer reading for all vehicles in our

sample by class (car and light-duty truck) based on age, measured in annual increments, using the

regression coefficients reported by Lu (2006). We then regress this predicted odometer reading on

the actual odometer reading separately for each make as follows:

dca = θcmOicm + εicm (3)

where c indexes class, a indexes age, and m indexes make. Note that the mileage estimates from

Lu (2006) are all mileage conditional on survival. This procedure estimates a unique θcm for each

make. We use these θs as a measure of how much each vehicle make is driven compared to the

average across all makes. While coarse, this procedure enables us to introduce some heterogeneity

in miles driven across makes.

Next, we transform the results of Lu (2006) to write mileage and scrappage as a function of

odometer, rather than age. Lu (2006) reports mileage and scrappage as functions of a quartic

in age. We invert these functions numerically by using the reported regression coefficients as a

data generating process on a simulated data sample and then regressing the scrappage and mileage

functions on a polynomial in odometer. We then use these functions to create a predicted scrap-

page function and mileage function as a function of odometer. The base mileage function is then

multiplied by the estimated θcm for each make to allow for heterogeneity, but we currently impose

the same scrappage function on all vehicles. Specification testing suggests that the introduction of

this heterogeneity has little effect on our final estimates, but we prefer to include it in our baseline

so as to allow some degree of data driven heterogeneity.

In constructing the cost measure, we assume that each vehicle lasts no more than 25 remaining

periods from the time of observation. Since we are using a scrappage probability, expected mileage

beyond 25 years in the future is negligible for all vehicles. In all results reported in the paper,

we assume that the vehicle miles traveled and scrappage schedules are independent of the price

of gasoline. There is evidence that the gasoline price affects miles traveled and scrappage, but

these affects are modest. For small changes in the price of gasoline, an envelope theory argument

suggests that any such responses will be second order. In addition, we experimented extensively
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with introducing a mileage elasticity and make-specific scrappage elasticities based on results from

Li, Timmins, and von Haefen (2009) and found that our results were insensitive to these additional

considerations.14

Gasoline Price Expectations

The cost function in equation 2 also depends upon the price of gasoline in future periods. We

assume that all consumers use a “no change” forecast—i.e., they expect that the future price of

gasoline in all periods is equal to the current price. This is consistent with evidence on actual

consumer beliefs reported in Anderson, Kellogg, and Sallee (2013). It is also the case that a no

change forecast for oil prices preforms as well, or better than, alternative forecasts based on futures

markets or expert surveys (Alquist and Kilian 2010; Alquist, Kilian, and Vigfusson 2013).

Fuel Economy

Several different fuel economy measures are available. In particular, the EPA reports both a city

and a highway, along with a combined rating which is a harmonic average of the two. We use

the combined rating. In 1986, the EPA adjusted ratings to account for the apparent discrepancy

between the official rating and the actual fuel economy used. Starting in 2008 (which is the very

end of our sample), a significant revision to the test procedures was initiated with the hopes of

improving accuracy further. We use the fuel economy rating published at the time of the vehicle’s

sale, which is the official number still available in the EPA fuel economy guide, without attempting

to adjust for these regime changes. Additionally, we assume that the fuel economy rating is accurate

for the life of the vehicle. Some research exists quantifying the degree to which fuel economy may

degrade as a vehicle ages. In principle, it would be possible to adjust for this in cost measure,

but we suspect that consumers are largely unaware of this phenomenon and know only a vehicle’s

official fuel economy rating.
14Li, Timmins, and von Haefen (2009) and Jacobsen and van Benthem (Forthcoming) document how scrappage

decisions respond to gasoline prices, and there is a large literature studying the mileage response, including Hughes,
Knittel, and Sperling (2008); Gillingham (2011); Knittel and Sandler (2012). Kahn (1986) makes the envelope theory
argument to justify a constant mileage assumption. Kilian and Sims (2006) make the same assumption based on the
same reasoning. Allcott and Wozny (2014) and Busse, Knittel, and Zettelmeyer (2013) assume no mileage response
in their baseline specifications, and, like us, they find that relaxing the assumption has little impact on their results.
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The Discount Rate

The cost function also includes a discount rate. For our baseline estimates, we use a discount

rate of 5%, which we intend to be a conservative (low) benchmark. Allcott and Wozny (2014)

use 6%, based on the average interest rate on car loans according to the Survey of Consumer

Finance. Alternatives rates could be justified by pointing to borrowing costs or other metrics of

the opportunity cost of funds. We do not believe that it is possible to identify a single correct

discount rate, so we select a low rate and discuss the sensitivity of our results to higher discount

rates.

3.2 Summary Statistics

Before presenting our regression results, we briefly describe the summary statistics for our baseline

sample in Table 1. Our baseline sample includes vehicles sold at auction by automobile dealers

that have mileage between 10,000 and 100,000 miles. (Our reason for making this restriction is

explained in the next section.) The average mileage in this sample is just over 58,000 miles. These

vehicles are about four and one-half years old on average. Sixty-two percent are cars (as opposed

to light-duty trucks).

Average transaction prices are about $10,300, as compared to remaining future fuel costs of

$7,800, in present discounted value. (All dollar amounts are inflation adjusted using the CPI-U to

2008 dollars.) Gasoline prices are tax inclusive monthly retail prices from the Energy Information

Administration. Our data range from the July 1993 to June 2008. During that period, there was

substantial variation in the price of gasoline; the trough was less than one-third of the peak price

during our sample. We also have substantial variation in fuel economy; the average fuel economy

in the sample is 21.9 miles per gallon, with a standard deviation of 4.5.

Our estimation sample includes over 9,000 distinct types of vehicles, defined by the “VIN stub”—

the portion of the Vehicle Identification Number that identifies the vehicle’s attributes, excluding

the serial number that identifies a unique vehicle. The VIN stub identifies the model, model year,

and engine type of each vehicle. It typically also indicates the drive type and transmission, and it

often indicates a unique trim or body style (such as an extended cab pickup truck). For example,

an automatic transmission 4-cylinder 2.0L 2005 Toyota Camry will have a VIN stub that differs
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Table 1: Summary Statistics

Mean Standard Deviation Minimum Maximum

Transaction Price (2008 USD) 10,294 7,424 1.03 131,277
Gasoline Price (2008 USD) 2.06 0.60 1.20 3.98
Present Value Remaining Fuel Cost (2008 USD) 7,787 3,333 1,511 32,175
Odometer (Miles) 58,205 25,213 10,000 99,999
Age (Years) 4.6 2.9 0.0 23.1
Fuel Economy (EPA Combined MPG) 21.9 4.51 10.0 46.0
Car Indicator Variable 0.62 0.49 0.0 1.0

Number of Observations 1,649,908
Number of Unique VINs 9,076

Summary statistics reported here are for the final estimation sample used in the baseline specification of vehicles sold

by dealers.

from Camrys from different model years or with different engine sizes or transmission. We use the

VIN stub as our definition of a vehicle type, and our specification allows each VIN stub to have

unique month fixed effects and a unique depreciation schedule.

4 How Do Vehicles Depreciate with Mileage?

Our strategy isolates variation in fuel costs and vehicle price that is driven by variation in the

remaining mileage on a particular vehicle, interacted with changes in the price of gasoline. Because

we are isolating this variation, it is essential to accurately model the relationship between mileage

and vehicle price. Any misspecification of this relationship could bias our results. Thus, before

presenting our main results, we explore the relationship between price and odometer—that is, the

way that vehicles depreciate with use—in our data.

To do so, we take a random sample of one million observations and explore the relationship

between existing mileage at the time the vehicle is sold and price. We first plot the full sample,

collapsed into 5,000 mile bins, in Figure 1. This shows that there is a strong relationship between

vehicle price and odometer readings, but it also points to several anomalies.

First, at very high mileages, the relationship between mileage and price flattens out, and even

begins to rise at the highest readings. This is likely the result of selection. Taking a vehicle to

auction is costly; it takes time, and the vehicle must be transported. Sellers will not bear these

costs for vehicles with a sufficiently low value. Thus, vehicles above 150,000 or 200,000 miles are
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Figure 1: Transaction Prices by Existing Mileage
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Figure plots average transaction prices by 5,000 mile bins.

unlikely to be brought to auction unless they are very valuable models or are in unusually good

condition. Our empirical specification will account for the type of car and its initial value, but we

have no way of accounting for the condition of an individual model (conditional on its odometer

reading). This suggests that we truncate our data at lower odometer readings to avoid selection.

Figure 2 shows a histogram of our data by the same odometer categories. This shows that the

data taper off quickly at the highest odometer ratings. The data also show a significant jump at

100,000 miles. There are discontinuously more vehicles in the auction data that have below 100,000

miles. To account for the selection involved, we restrict our main estimates to vehicles with fewer

than 100,000 miles, and we also check for sensitivity when we expand our sample to include vehicles

with up to 150,000 miles.

Second, Figure 1 shows that vehicles with very low mileage appear to be outliers; they have a

much lower price than would be expected based on the other data. Further investigation reveals

that the outliers primarily have mileage below 1,000 miles. It is unusual for very new vehicles

14



Figure 2: Histogram of Observations by Existing Mileage
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to appear in a wholesale auction because they were sold by consumers; yet Figure 2 shows that

many such vehicles appear. We suspect that these may have been demonstration vehicles, vehicles

that were returned by a customer under warranty due to some significant problem, vehicles that

were in significant accidents, or they may even indicate coding errors. We thus drop all vehicles

with odometer readings below 5,000 miles in the remaining analysis in this section, and, to be

conservative, we limit our main sample to vehicles with at least 10,000.

We are interested in the relationship, in levels, between price and fuel costs, so we wish to

estimate a model that has price levels on the left-hand side. But, it makes little sense to expect

all vehicles to depreciate by the same amount in price levels (as opposed to percentages) over the

mileage distribution. To demonstrate this, we calculate the average price over the entire sample

period for each type of vehicle and, according to this average, define vehicles as either above or below

average priced. Figure 3 plots the high and low priced vehicles separately to demonstrate that, in

level terms, high priced vehicles depreciate faster. In general, different vehicles can be expected

to depreciate according to a different schedule, and this is particularly true when measured in
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Figure 3: Transaction Prices by Existing Mileage: High versus Low-Priced Models
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Figure plots average transaction prices by 5,000 mile bins, with sample divided into types of

cars whose average price over the entire sample period is above or below the median sample

average.

level dollars. Moreover, fuel economy is correlated with price (in our raw data this correlation is

negative), which heightens concerns about bias if the depreciation schedule is not specified correctly

for each model.

To account for this, we allow each type of vehicle (VIN stub) in our sample to depreciate

according to a unique schedule. This differs substantially from existing literature, and it represents

one of the key benefits of our microdata approach that leverages differences in cost and price across

the same car that derive from differences in their odometer.15

Figure 1 suggests a fairly smooth relationship between odometer and price, and thus at first

blush one might expect that a simple polynomial in mileage could account for depreciation. Figure 4,

which plots the residuals—in 5,000 mile bins—from a regression of prices on a fifth-order polynomial
15Allcott and Wozny (2014) and Busse, Knittel, and Zettelmeyer (2013) both explore depreciation that varies by

vehicle segments, but our approach is far less restrictive.
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Figure 4: Transaction Price Residuals by Existing Mileage from Fifth-Order Polynomial
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Figure plots average price residuals by 5,000 mile bins from a regression of prices on a fifth-

order polynomial, omitting vehicles with fewer than 5,000 miles or more than 150,000 miles.

in mileage, shows that this approach suffers from at least two problems. First, the polynomial is

a poor fit at higher odometer levels. In principle, this could be corrected by adding splines in

addition to smooth polynomials or by simply increasing the order of the polynomial to very high

orders. The second problem, however, is the “jigsaw” pattern of residuals at lower odometer levels.

The residuals follow a pattern; they rise for several thousand dollars and then discretely jump

down, and then rise again. This is due to discontinuities in vehicle prices at round numbers, which

is documented by Lacetera, Pope, and Sydnor (2012), who interpret this as a sign of behavioral

biases due to the salience of “left digits”.

To fully account for this pattern, we follow Lacetera, Pope, and Sydnor (2012) and augment

our polynomial by adding dummy variables for each 10,000 mile discrete category (e.g., there is a

dummy equal to 1 for vehicles with 20,000 to 29,999 miles), and a variable that is a linear count of

1,000 mile bins (e.g., vehicle with between 20,000 and 20,999 will each have a thousand-mile count

17



Figure 5: Transaction Price Residuals by Existing Mileage from Seventh-Order Polynomial with
Categorical Controls
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Figure plots average price residuals by 5,000 mile bins from a regression of prices on a seventh-

order polynomial, a set of dummy variables for each 10,000 odometer category and a linear

control for discrete 1,000 mile categories. The sample omits vehicles with fewer than 5,000

miles or more than 150,000 miles.
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variable equal to 20, whereas a vehicles with 21,000 will have a value of 21). The addition of these

terms helps the fit of the polynomial considerably. We also raise the order of the polynomial to

seven in our baseline model.

Figure 5 shows the residuals from a regression of price on a seventh-order polynomial in mileage,

with dummies for each 10,000 mile category, and the linear one thousand mile discrete category

variable. This specification eliminates the patterns in the residuals, which leads us to use this

specification as our baseline specification for modeling vehicle depreciation. Figure 5 also estimates

a single (level) depreciation curve for all models, which hides the variation across types that is

highlighted above in Figure 3. Our preferred estimator allows each model to depreciate in a unique

pattern.

It is important to note that this set of odometer control variables accounts for the vast majority

of the overall variation in vehicle prices and future fuel costs. We suspect that the remaining

variation, which comes from differences in remaining lifetime within vehicles of the same type sold

in the same month, is less salient to consumers and thus our specification presents a harsher test

of the full valuation hypothesis than the approach taken in the related literature.

5 Results

Having arrived at a preferred specification through the examination of the relationship between price

and odometer, we use our data to estimate the relationship between prices and present discounted

value future fuel costs in the following estimating equation:

Pijt = βCijt + δjt +
J∑

j=1

(
7∑

a=1

αjaO
a
ijt +

10∑
k=1

γjkd
k
ijt + ρjlijt

)
+ εijt (4)

where dk
ijt =


1 if (k − 1)× 10, 000 < Oijt < k × 10, 000

0 otherwise

lijt = integer floor(Oijt/1000).

In equation 4, Pijt is the real transaction price of vehicle i of VIN stub type j sold in month t,

and Cijt is the remaining future fuel cost for that vehicle. The additional controls include δjt,
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which is a vector of VIN stub by month of sample fixed effects (e.g., a fixed effect for an automatic

4-cylinder 2.0L 2005 Toyota Camry in January 2008), and a function of the vehicle’s odometer

reading, denoted Oijt.

The odometer function includes a polynomial, denoted by the Oa
ijt terms, where a is an exponent

ranging, in our baseline model, from one to seven. It also includes a set of dummy variables for

each 10,000 odometer bin, denoted as γjk, and a linear control for the discrete thousand mile bin,

denoted lijt, for each vehicle. As described above, these discrete odometer controls are used to

account for the discontinuous relationship between price and mileage that is analyzed by Lacetera,

Pope, and Sydnor (2012). Importantly, the odometer control function is estimated separately for

each vehicle type j, which is indicated by the outside summation term. This allows each type of

vehicle to depreciate in a unique way, which we believe is essential in a regression on price levels

and in a sample with a diverse set of vehicles.

Our object of interest is β. If consumers fully value changes in fuel economy, we would expect

β to be equal to negative one. That is, a one dollar increase in the present discounted value of

the cost of operating a vehicle over its remaining life should correspond to a one dollar drop in

consumer willingness to pay for the vehicle, which, under the assumptions about market structure

that are outlined in our conceptual model (section 2), will translate into a one dollar drop in price.

Along with β, the δ, α, γ and ρ terms are all parameters to be estimated.

Explaining how we actually estimate this equation may be useful for explaining its full flexibility.

The equation includes many thousands of parameters. To estimate the model we make use of the

Frisch-Waugh-Lovell theorem and first regress prices Pijt, and then costs Cijt, on time period fixed

effects and the odometer control variables for each vehicle type j separately, one at a time. We

then regress the residuals from these two sets of regressions on each other to recover β̂, which

returns numerically identical coefficients to the full model estimated in a single step. (We collect

the number of parameters estimated and use them to make the proper degrees of freedom correction

when calculating standard errors in the second step.) We exclude VIN stubs for which we have

insufficient observations to estimate the first-step regression.

Table 2 reports our main results. Our baseline estimate yields a coefficient estimate of -0.98, with

a standard error of 0.04.16 This estimate is statistically indistinguishable from -1, which represents
16All standard errors are clustered at the VIN stub level.
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Table 2: Effects of Future Fuel Cost Shocks on Transaction Prices

(1) (2) (3) (4) (5)

Future fuel cost -0.98 -1.01 -0.94 -0.98 -0.98
(0.04) (0.03) (0.06) (0.03) (0.04)

Number of Observations 1,649,908 1,019,034 630,874 1,673,031 1,641,223
Number of Unique VINs 9,076 5,456 3,620 9,577 8,915
Polynomial Order 7 7 7 5 9
Class All Cars Trucks All All
Minimum Mileage 10,000 10,000 10,000 10,000 10,000
Maximum Mileage 100,000 100,000 100,000 100,000 100,000

The dependent variable is the real transaction price. All specifications include month of sample by VIN stub fixed

effects, a polynomial in odometer, a set of dummy variables for each 10,000 odometer bin, and a linear control for

1,000 odometer categories. Standard errors are clustered on VIN stub. Sample includes vehicles sold by dealers.

Future fuel cost calculations use a 5% discount rate.

the full valuation null hypothesis. It is precise enough to rule out significant undervaluation or

overvaluation. Our estimate changes little when we study only cars or only light-trucks (columns 2

and 3). Decreasing the order of the control polynomial to five, or increasing it to nine, has almost

no effect on our final estimate (columns 4 and 5).17

Our baseline sample includes vehicles with odometer readings between 10,000 and 100,000 miles.

This is because, as discussed in section 4, there is a discontinuity in the volume of vehicles sold at

auction at 100,000 miles, and the lowest odometer vehicles are outliers. To see how this restriction

affects our estimates, Table 3 reports coefficients from samples with alternative odometer ranges.

Lowering the top odometer rating from 100,000 to 90,000 or 80,000 or 70,000 has little effect on

our estimated coefficient.18 Raising the odometer range to exceed 100,000, however, causes our

coefficient to decline. The coefficient declines monotonically, and to an economically important

degree, as we move from 100,000 up to 150,000. When we isolate the sample to include only

vehicles above 100,000 miles (column 10), our coefficient estimate falls precipitously.

There are several possible interpretations of this final result. First, it may be that consumers

who buy newer used vehicles properly value fuel economy, whereas consumers who buy high mileage

vehicles substantially undervalue it. In the high-mileage segment of the used car market, consumers
17The number of observations changes slightly across specifications with different polynomial orders because adding

(or subtracting) regressors in the first step changes whether or not the first-step regression has sufficient observations
for a number of VIN stubs, each of which has a modest number of observations.

18In additional results (not shown), we find that our estimates are similarly insensitive to lowering the minimum
odometer to either 5,000 or 1,000 miles.
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Table 3: Effects of Future Fuel Cost Shocks on Transaction Prices

(1) (2) (3) (4) (5)

Future fuel cost -0.93 -1.02 -1.00 -0.98 -0.94
(0.07) (0.06) (0.05) (0.04) (0.03)

Number of Observations 969,142 1,190,655 1,416,561 1,649,908 1,822,943
Number of Unique VINs 7,212 7,914 8,499 9,076 9,393
Polynomial Order 7 7 7 7 7
Minimum Mileage 10,000 10,000 10,000 10,000 10,000
Maximum Mileage 70,000 80,000 90,000 100,000 110,000

(6) (7) (8) (9) (10)

Future fuel cost -0.87 -0.79 -0.73 -0.69 -0.26
(0.02) (0.02) (0.01) (0.01) (0.01)

No. of Observations 1,975,025 2,101,451 2,201,968 2,278,386 499,199
No. of Unique VINs 9,622 9,791 9,906 9,976 4,232
Polynomial Order 7 7 7 7 7
Minimum Mileage 10,000 10,000 10,000 10,000 100,000
Maximum Mileage 120,000 130,000 140,000 150,000 150,000

The dependent variable is the real transaction price. All specifications include month of sample by VIN stub fixed

effects, a polynomial in odometer, a set of dummy variables for each 10,000 odometer bin, and a linear control for

1,000 odometer categories. Standard errors are clustered on VIN stub. Sample includes vehicles sold by dealers.

might be myopic, or they may simply value other attributes more, which leads them to be inattentive

to energy efficiency. A focus on other features of the car, such as its condition and accident history,

may even be motivated by concerns related to asymmetric information.

Second, consumers who purchase older, lower priced vehicles may, on average, have substantially

higher discount rates. Assuming that they are lower income on average, they are more likely to face

liquidity constraints and will be forced to borrow at higher interest rates, which will (rationally)

drive up the rate at which they trade off future discounted fuel costs against price.

Third, the result could be driven by selection. As argued above, the set of very high mileage

vehicles that appear at wholesale auctions are a selected group. Among this selected group, our

assumption about remaining lifetime mileage, which is based on the national averages reported in

Lu (2006), may be biased. Critically, it could be that consumers who buy older vehicles do so

because they intend to drive very few miles. Thus, we choose to emphasize our baseline sample,

but the results for the high odometer vehicles is a notable caveat to our main results.

Our results align well with the existing literature. Allcott and Wozny (2014) find significant

undervaluation among the oldest models in their sample, but full (or nearly full) valuation among
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the newest models.19 Busse, Knittel, and Zettelmeyer (2013), who intepret their findings as consis-

tent with full valuation, do not report estimates separately by the age of vehicles in their sample,

but their sample is drawn from vehicles sold at used car dealerships that also have a new car retail

business. This leads their sample to be relatively low odometer (and high priced). Their sample

is thus more similar to ours when we restrict to lower odometer vehicles. (Even then, our vehicles

are somewhat older and less expensive on average.)

Finally, equation 4 includes a single cost coefficient estimated for all vehicle types, but our

micro data approach enables us to calculate the coefficient on cost for each VIN stub separately—

that is, we can estimate a vector βj rather than a single scalar β. For our baseline sample and

specification, we estimated these cost coefficients separately and plotted them in Figure 6. Because

the coefficient for any individual VIN is estimated with considerable error, the point estimates show

a large spread. Overall, however, we find it comforting that the distribution is centered around our

unified estimate and appears to be roughly symmetric and, as suggested by econometric theory,

normally distributed.

5.1 Vehicles Sold by Manufacturers and Fleets

Our data include vehicles sold by dealers, fleet operators and the manufacturers themselves. Our

baseline results include only those vehicles sold by dealers because we expect that this sample of

vehicles, which were previously owned by “normal” consumers will best match the depreciation

and scrappage schedule established by Lu (2006), which is a critical component of our measure of

future fuel cost.

Vehicles sold by fleet operators, such as large companies, rental car companies, or governments,

are likely to have been used and maintained differently than the typical vehicle owned by a consumer

household. Similarly, vehicles that were owned by the automobile manufacturers themselves for

some time, for use by employees or for other purposes, may also differ from the average in their use

and maintenance history. For example, in our sample, both fleet and manufacturer sold vehicles

have much higher annual mileage than vehicles sold by dealers.20 As a result, these vehicles may
19When Allcott and Wozny (2014) use mileage and scrappage schedules from Lu (2006), as we do, they get an

estimate of -1.03 for the newest models (1 to 3 years old) and -0.28 for the oldest models (11 to 15 years old) in their
sample (see their Table 5, column 2). This matches closely to our estimates of -0.98 for the baseline and -0.26 for the
highest mileage vehicles.

20A full set of summary statistics for fleet and manufacturer sold vehicles are included in the appendix.
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Figure 6: Histogram of Valuation Coefficient for Individual VIN Stubs
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Each data point is the cost coefficient from equation 4 estimated for a single VIN stub. The

figure truncates the highest and lowest 2.5% of coefficients. The vertical line is the point

estimate from the joint regression from the same specification, which is found in Table 2,

column 1.

have expected remaining lifetimes, conditional on current mileage, that differ from the national

average.

Nevertheless, we present our baseline specification for vehicles sold by fleet operators and manu-

facturers in Table 4 for comparison. Column 1 repeats our main estimate from Table 2 for reference,

and columns 3 and 5 show the corresponding result for fleet and manufacturer sold vehicles, re-

spectively. Estimates from these samples suggest modest undervaluation, assuming a 5% discount

rate. The point estimate for fleet operators is -0.87, while that for vehicles sold by manufacturers

is -0.77. This could imply that these automobiles have indeed been depreciated differently than

vehicles sold by dealers at auction.

The even numbered columns in Table 4 show what happens if we recalculate our estimates

assuming a 10% discount rate, instead of our baseline 5%. This change raises the coefficient
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Table 4: Effects of Future Fuel Cost Shocks on Transaction Prices by Type of Seller

(1) (2) (3) (4) (5) (6)

Dealers Fleet Operators Manufacturers
Discount rate 5% 10% 5% 10% 5% 10%

Future fuel cost -0.98 -1.38 -0.87 -1.22 -0.77 -1.11
(0.04) (0.05) (0.03) (0.04) (0.07) (0.11)

Number of Observations 1,649,908 1,649,908 2,107,541 2,107,541 1,146,855 1,146,855
Polynomial Order 7 7 7 7 7 7
Number of Unique VINs 9,076 9,076 9,302 9,302 4,464 4,464
Minimum Mileage 10,000 10,000 10,000 10,000 10,000 10,000
Maximum Mileage 100,000 100,000 100,000 100,000 100,000 100,000

The dependent variable is the real transaction price. All specifications include month of sample by VIN stub fixed

effects, a polynomial in odometer, a set of dummy variables for each 10,000 odometer bin, and a linear control for

1,000 odometer categories. Standard errors are clustered on VIN stub.

estimates enough so that the full valuation null hypothesis cannot be rejected in any of the three

samples. The point estimates actually suggest overvaluation of fuel economy.

5.2 What is the Value of Our Approach?

Our baseline model includes a very rich set of controls. This has two principal advantages. First,

by allowing each VIN to have its own depreciation schedule, we eliminate any concerns about cor-

relations between fuel economy, prices and misspecification of depreciation that could bias sparser

specifications. Second, by isolating variation within VIN types within a time period, we are able to

control for a very wide set of demand shocks nonparameterically. These features are very appeal-

ing ex ante, but we can check whether these flexibilities actually matter by running more limited

specifications and comparing them to our results.

Table 5 shows our baseline sample estimated with sparser models. Column 1 repeats our

baseline results for reference. Column 2 shows results from a regression that includes only VIN

stub fixed effects, time period fixed effects (not interacted with VIN stubs), and a single odometer

control function that applies to all models. This specification is a standard difference-in-difference

estimator with a single odometer control function. It yields an estimate of -0.83, which suggests

modest undervaluation.

In column 3 we use vehicle segment definitions to categorize our vehicles as falling into one of
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Table 5: Effects of Future Fuel Cost Shocks on Transaction Prices: Alternative Specifications

(1) (2) (3) (4)
Baseline Diff-in-Diff Richer Odo Richer Time

Future fuel cost -0.98 -0.83 -0.97 -0.48
(0.04) (0.03) (0.03) (0.04)

Number of Observations 1,649,908 1,649,908 1,649,908 1,649,908
Time Fixed Effects Interacted with VIN Not Interacted Not Interacted Interacted with Segment
Odometer Controls Interacted with VIN Not Interacted Interacted with Segment Interacted with Segment
Minimum Mileage 10,000 10,000 10,000 10,000
Maximum Mileage 100,000 100,000 100,000 100,000

The dependent variable is the real transaction price. Standard errors are clustered on VIN stub.

eight segments.21 We then interact our odometer control function with each segment. This allows

each segment to have its own depreciation schedule. Our coefficient estimate rises to -0.97, which

is almost exactly the same as our baseline.

When we add segment by time fixed effects in column 4, however, which allow the time pe-

riod effects to have different affects for each segment, the coefficient falls to -0.48. This result is

qualitatively different from our baseline and suggests substantial undervaluation. The sensitivity

of the results to the structure of the controls suggests the value of our approach. The alternative

specifications are all restrictions on our baseline model, which allows for VIN stub specification

time period shocks and depreciation schedules. Thus, where the alternatives create disagreement,

it is logical to prefer our approach because it relaxes restrictive assumptions.

In terms of the existing literature, the results in Busse, Knittel, and Zettelmeyer (2013) are also

sensitive specifically to the inclusion of time period effects that are interacted with vehicle segment

(see column 2 of Table 4 in that paper, where the inclusion of such controls causes a significant

drop in the estimated effect of a gasoline price shock on relative vehicle prices, which translates to

a sharp rise in the implied discount rate). That paper argues that alternative specifications are a

priori preferred. Our analysis here provides direct evidence on the issue by relaxing the restrictions

of the specification further.
21We use a standard industry source to determine classifications. The eight segments are Compact Cars, Midsize

Cars, Fullsize Cars, Luxury Cars, Sports Cars, Pickup Trucks, SUVs and Vans.
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5.3 How Do Wholesale Price Changes Influence Retail Prices?

Our interest is in how consumer prices change in response to future fuel cost changes, but our

data are from wholesale auctions. Dealers purchase vehicles at these auctions and pass them on to

consumers. To the extent that the used car market is competitive, we would expect wholesale price

shocks to be passed on one for one into retail consumer prices. If so, then our regression coefficients

can be directly interpreted as the effect of fuel cost shocks on consumer prices. Alternatively, if

used car dealers add a proportional markup over the purchase price, then our coefficient estimates

should be “scaled up”. We find support for a one to one relationship between wholesale and retail

prices using an auxiliary data set.

To examine the relationship between wholesale and retail prices, we use data from Kelley Blue

Book. To measure wholesale prices, Kelley Blue Book collects data from auctions. To measure

retail prices, they gather data on actual transactions from dealers and other market data sources.

We gathered the wholesale and retail prices of all available cars and light-trucks in the July edition

of the Kelley Blue Book guide from 2003 to 2008. We then regress a vehicle’s retail price on its

wholesale price to determine price pass through.

Table 6 reports our results. The first column presents simple OLS results. The unit of observa-

tion is a particular model and vintage sold in July of each year. We include year dummy variables

and age dummy variables in all specifications. In the OLS specification, most of the variation

in prices comes from differences across models. The OLS coefficient implies that when wholesale

prices rise by $1, retail prices rise by $1.03. This is not statistically different from the one to one

benchmark.22

We change the source of identification by adding model by vintage fixed effects in column 2. In

this specification, pass through is identified only from changes in the price of particular models over

time, controlling for year and age effects. These fixed effects soak up a majority of the variation,

which is reflected in a much higher standard error. The coefficient falls significantly, though it is

still not statistically different from 1. The reduction in the coefficient may reflect attenuation from

measurement error, which is exacerbated by the panel strategy.
22This does not imply that retail and wholesale prices are the same. Rather, our data show that average markups

of retail prices over wholesale prices are quite high, on the order of 30%. But, this may reflect fixed costs of shipping,
repairing, holding and selling vehicles that do not vary with the wholesale price of the vehicle.
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Table 6: Pass Through of Wholesale Price Changes to Retail Prices

OLS FE IV
(1) (2) (3)

Wholesale Price 1.03 0.64 1.05
(0.06) (0.21) (0.05)

Number of Observations 29,318 29,318 29,318
Year Dummies Yes Yes Yes
Age Dummies Yes Yes Yes
VIN Stub Dummies No Yes Yes

First-stage F-statistic 428

Dependent variable is the retail price of a vehicle, as reported by Kelley Blue Book. In column 3, the instrument is

the interaction between each vehicle’s fuel economy rating and the current real price of gasoline.

Both to overcome possible measurement error attenuation in the panel and to provide a more

solid identification strategy, we use an instrumental variables approach in the third column. We

instrument wholesale prices using the interaction of fuel economy and the price of gasoline in that

year. This instrument isolates variation in wholesale prices due to price shocks associated with

gasoline price changes. This is a valid instrument if the only way that fuel economy interacted

with gasoline prices affects retail prices is “through wholesale prices”, which is consistent with

interpreting wholesale prices as the outside option for a dealer who is deciding whether to hold and

sell a particular model or to take it to auction and swap it for another model to have on their lot.

Our instrument is very powerful in the first stage.

The IV estimates are quite similar to the OLS. The point estimate implies a very small pro-

portional markup, at 5%, of retail over wholesale prices. Taken at face value, this implies that

our estimates from the auction data could be scaled up by 5%, which would change none of our

qualitative conclusions. The standard error is not tight enough to rule out perfect pass through,

however, and so we prefer to interpret these results as a failure to reject a null hypothesis of one to

one pass through. This is consistent with the used car market being competitive. Under that inter-

pretation, our main results can be interpreted directly as estimates of consumer valuation without

any rescaling to account for retail markups.
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5.4 Interpretation and Caveats

Our baseline estimates provide results that are precisely estimated and statistically indistinguish-

able from the full valuation null hypothesis. We interpret this as a failure to find evidence in

support of consumer undervaluation. It is important to note, however, that the testing of this

hypothesis requires a series of assumptions that are embedded in the construction of our future

fuel cost variable. Just as in the other papers in this literature, our approach requires us to take a

stand regarding consumer’s beliefs about future fuel prices, about the schedule of vehicle mileage

and scrappage, and about the discount rate. Our results would move, mechanically, if we changed

any of these assumptions, and indeed the results in Table 4 suggest that the coefficients could

suggest meaningful overvaluation at higher discount rates.

Additionally, our specification (again, like others in the literature) makes simplifying assump-

tions about the structure of the used car market. It is not obvious that any of these assumptions

should create a bias that exaggerates our estimates, but it is important to understand the assump-

tions involved. Thus, we briefly discuss these implicit assumptions before concluding.

The New Car Market

Past literature has either assumed that supply responses in the new car market, which may be

endogenous to the price of gasoline, do not affect used car prices (Kahn 1986; Busse, Knittel,

and Zettelmeyer 2013) or attempted to account for the new car market using a vehicle choice

model (Allcott and Wozny 2014). By including vehicle type by time fixed effects, we control

nonparametrically for any effect that new car supply decisions have on used car prices, so long as

the effect is common across vehicles with the range of odometer readings that appear in the sample.

Even so, the supply elasticity of the new car market could influence results. To see why, suppose

that the supply for a particular vehicle in the used car market is perfectly inelastic. What we (and

others) identify is the change in the willingness to pay for each model. But, the change in the

willingness to pay for a model depends also on the prices of alternatives. (This point is made

empirically in Langer and Miller (2013).) The elasticity of the new car market might cause a

correlation in price shocks for competing products that could drive the willingness to pay to move

more for some products than others in response to a gasoline price shock.
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The intuitive case is that this should bias us against finding full valuation, which mitigates this

concern given our results. To see why, consider, for example, a rise in the price of gasoline. This

will cause a contraction in the sales of new cars that are inefficient and a (relative) expansion in

the sales of new cars that are efficient. This supply effect will dampen the change in demand for

efficient used cars relative to the change in demand for inefficient used cars, which works against

the main effect we mean to isolate. We suspect that, in practice, the new and used car markets

are sufficiently segregated that, while they undoubtedly affect each other even in the short run, the

effects are being picked up sufficiently by our fixed effects. This would be true so long as new car

market considerations did not differentially affect the same type of vehicle with different current

mileage.

Heterogeneity

We do not explicitly model heterogeneity among consumers in their driving behavior, but of course

some consumers drive more than others. If the scrappage decision, as a function of odometer, is

common across individuals, then heterogeneity in miles driven per period will generate differences

in valuation only through intertemporal shifts in mileage that influence the cost function through

discounting. But, our data are wholesale prices. This means that dealers buying the vehicle do not

know if they will be selling to a high or low mileage customer, so this variation should not actually

influence our estimates, provided that the distribution of mileage across individuals buying a given

type do not change with the price of gasoline.

Consumers may be heterogeneous in a variety of ways. It is surely the case that consumers have

some variation in their discount rates, their degree of myopia, and their gasoline price expectations,

but we model the problem as if there is a single representative agent. Bento, Li, and Roth (2012)

argue that ignoring heterogeneity in fuel economy valuation is likely to cause downward bias. If

the bias is in fact downward, that would work against our finding of full valuation. Note, however,

that Grigolon, Reynaert, and Verboven (2014) explicitly model heterogeneity and conclude that,

when allowing heterogeneity in both fuel economy valuation and in other coefficients, for their data

set, this bias turns out to be minimal.
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6 Conclusion

We use a new approach to answer the question of whether or not consumers properly value fuel

economy in the market for automobiles. Our approach isolates a type of variation in fuel costs

that represents a very small fraction of the overall variation. We do so for reasons of research

design, but we note also that this method could be argued to isolate variation in fuel costs that are

particularly non-salient to consumers, especially compared to the cross quartile design of Busse,

Knittel, and Zettelmeyer (2013). Thus, ex ante, we think that we have presented a more stringent

test for consumer rationality.

Our baseline estimates are consistent with full valuation at low discount rates. These results are

robust to several specification alternatives. The conclusion that consumers fully value fuel economy

is, however, subject to several caveats. First, to estimate the remaining lifetime of vehicles, which

is critical for our estimation, we rely on mileage and vehicle scrappage schedules from a single

government study. This prevents us from directly measuring differences in lifetime mileage across

models. Second, we do find evidence of modest undervaluation (equivalently, of higher discount

rates) in several specifications, especially among vehicles that have higher odometer readings.

We emphasize, however, that given our isolation of a limited source of fuel cost variation that

is likely especially difficult for consumers to understand and calculate, even these coefficients are

strong evidence that consumers are responsive to fuel costs. Even the most pessimistic reading of

our evidence firmly rejects the assumption used in regulatory impact analyses that consumers are

completely inattentive to fuel costs.
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Appendix A Additional Tables

Table 7: Summary Statistics: Fleet Transactions

Mean Standard Deviation Minimum Maximum

Transaction Price (2008 USD) 12,977 7,149 1.05 161,697
Gasoline Price (2008 USD) 2.04 0.60 1.20 3.98
Present Value Remaining Fuel Cost (2008 USD) 7,108 3,290 980 34,701
Odometer (Miles) 43,797 21,765 10,000 99,999
Age (Years) 2.8 1.7 0.0 20.2
Fuel Economy (EPA Combined MPG) 22.0 4.49 13.0 46.0
Car Indicator Variable 0.62 0.49 0.0 1.0

Number of Observations 2,107,872
Number of Unique VINs 9,312

Summary statistics reported here are for the final estimation sample of vehicles sold by fleet operators.

Table 8: Summary Statistics: Manufacturer Transactions

Mean Standard Deviation Minimum Maximum

Transaction Price (2008 USD) 15,940 5,612 55.02 79,511
Gasoline Price (2008 USD) 1.91 0.54 1.20 3.98
Present Value Remaining Fuel Cost (2008 USD) 5,227 2,672 398 26,922
Odometer (Miles) 22,874 10,255 10,000 99,993
Age (Years) 1.0 0.9 0.0 13.25
Fuel Economy (EPA Combined MPG) 22.7 3.65 13.0 40.6
Car Indicator Variable 0.75 0.43 0.0 1.0

Number of Observations 1,146,925
Number of Unique VINs 4,467

Summary statistics reported here are for the final estimation sample of vehicles sold by manufacturers.
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