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A B S T R A C T

Debate about the appropriate design of energy policy hinges critically on whether consumers might under-
value energy efficiency, due to myopia or some other manifestation of limited rationality. We contribute
to this debate by measuring consumers’ willingness to pay for fuel economy using a novel identification
strategy and high quality microdata from wholesale used car auctions. We leverage differences in future
fuel costs across otherwise identical vehicles that have different current mileage, and therefore different
remaining lifetimes. By seeing how price differences across high and low mileage vehicles of different fuel
economies change in response to shocks to the price of gasoline, we estimate the relationship between vehi-
cle prices and future fuel costs. Our data suggest that used automobile prices move one for one with changes
in present discounted future fuel costs, which implies that consumers fully value fuel economy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the great questions facing policy makers in the twenty-first
century is whether and how to mitigate greenhouse gas emissions so
as to limit climate change. Automobiles are a critical part of this pol-
icy problem—in the U.S., personal transportation accounts for 28% of
greenhouse gas emissions (Environmental Protection Agency, 2014).
Gasoline consumption maps neatly into greenhouse gas emissions.
This means that a Pigouvian tax on emissions is feasible (in the form
of a gasoline tax). Such a tax can fully restore market efficiency, and
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alternative policies, such as fuel economy standards, will have infe-
rior welfare properties, provided that the environmental externality
is the only market failure leading to inefficiencies.1

However, many have argued that another market failure does
exist, which is that consumers undervalue energy efficiency in a
variety of choice situations, including automobile markets. The root
of this hypothesis is the observation that engineering estimates
of the cost of deploying fuel saving technologies suggest that pri-
vately cost-effective technologies often go unadopted. Jaffe and
Stavins (1994) call this the “energy paradox”. If markets substan-
tially undervalue energy efficiency, then the dominance of a gasoline
tax over regulatory approaches may be broken because alterna-
tive policies may be better able to correct for inefficiencies from
mis-valuation.2

Motivated by these policy implications, researchers have sought
to use revealed preference data to determine whether consumers
do in fact undervalue fuel economy. In this paper, we add to this
literature by developing a unique identification strategy that utilizes

1 For reviews of the design of policies to correct driving related externalities, see
Parry et al. (2007), Anderson et al. (2011) and Sallee (2011). The efficiency property of
a gasoline tax is more complicated for local pollutants, as is explored in several papers,
including Fullerton and West (2002, 2010) and Knittel and Sandler (2012).

2 Fischer et al. (2007), Allcott et al. (2014) and Heutel (2011) explore the implica-
tions of undervaluation for optimal policy design.
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fifteen years worth of microdata on used vehicle transactions to
test whether used vehicle prices change by the amount predicted
by a fully rational asset pricing model. We interpret our results as
a test of whether or not consumers fully value fuel economy, and
our results directly provide the parameters necessary for informed
policymaking.

Intuitively, our approach is to first compare the prices of two used
cars which are identical except in their current odometer readings—
and therefore in remaining future operating costs—and second to
repeat this comparison when different gasoline prices prevail. We
repeat this comparison across many vehicle types and many months,
during which changes in the price of gasoline drive changes in fuel
costs, in order to estimate the relationship between vehicle prices
and a measure of the present discounted fuel cost that we construct.
For example, we calculate the price and fuel cost of a 2000 Ford
Taurus SE six cylinder 3.0 L vehicle with automatic transmission and
front-wheel drive that has 50,000 miles in July 2005 to a different
2000 Ford Taurus SE six cylinder 3.0 L vehicle with automatic trans-
mission and front-wheel drive that has 60,000 miles in July 2005. We
then calculate the price and fuel cost of two different cars with the
exact same configuration and mileage in July 2006. Changes in the
gasoline price between July 2005 and July 2006 will cause changes
in the difference in expected fuel costs across the higher and lower
mileage vehicles. We test whether the change in the price difference
between the high and low mileage vehicle over time corresponds to
the change in the cost difference.

This is conceptually similar to a difference-in-difference
approach. The fact that our comparison is across vehicles of the
same type that differ only in their current mileage allows us to
provide an exceptionally rich set of controls, including time-period
shocks and depreciation schedules that are unique for each vehicle
type. Our preferred specification allows for a month-by-vehicle
type fixed effect, and it controls for a unique depreciation schedule
for each vehicle type, where a vehicle type is very finely defined.
To execute this research design, we employ used vehicle price
data that include actual transaction prices, dates of sale, vehicle
identification numbers, and odometer readings for a large sample
of vehicles sold at wholesale auctions between July 1993 and
June 2008.

In our baseline specification, we find that vehicle prices do move
one for one with future fuel costs. This conclusion is robust to a
number of specification checks.3 Given some simplifying assump-
tions about the structure of the used car market, this result implies
that consumers do value fuel economy fully. This finding casts doubt
on the idea that regulatory policies, such as fuel economy standards,
might be more efficient than fuel taxation because they correct both
the environmental externality and private mis-optimization due to
limited rationality.

Our data come from wholesale auctions, but our interest is in
what consumers pay in the retail market. Using an auxiliary data
set from used car guide books, we demonstrate that price changes
in the wholesale market appear to pass through one to one into
retail prices. This is consistent with a competitive used car market,
and it allows us to interpret our wholesale price results as directly
reflecting consumer willingness to pay in the retail used car market.

We are not the first to ask whether or not consumers value fuel
economy properly. The most similar existing papers are Allcott and
Wozny (2014), Busse et al. (2013) and Grigolon et al. (2014). These
papers use a panel identification strategy that leverages the fact

3 The main exception is that we find that for our highest mileage cars (those with
over 100,000 miles when sold at auction), prices are significantly less responsive to
fuel cost shocks. This may indicate that buyers of the oldest and least expensive used
cars undervalue fuel economy, but it may also be due to a selection process by which
only certain types of high mileage vehicles appear in wholesale auctions.

that common gasoline price shocks translate into different fuel cost
shocks for different vehicles based on their fuel economies.4 Com-
pared to these papers, we are able to relax a number of restrictive
assumptions on the set of control variables. Specifically, because
we utilize differences across vehicles of the same type in the same
month by using variation in the odometer, we can control nonpara-
metrically for time period shocks specific to each vehicle type, and
we can control very flexibly for a depreciation schedule for each
vehicle type.

The prior literature finds a range of estimates of consumer valua-
tion across specifications that overlap with each other, where Allcott
and Wozny (2014) emphasize estimates that find modest undervalu-
ation, while Busse et al. (2013) and Grigolon et al. (2014) emphasize
that their results cannot consistently reject full valuation. We inter-
pret our estimates as consistent with their results. Moreover, we
believe that our procedure presents a more stringent test of full val-
uation because we identify consumer valuation off of variation in
odometers within a set of otherwise identical vehicles, which may
not be very salient to consumers. If consumers have limited atten-
tion, in the sense of Sallee (2014), then we might expect them to
ignore the type of within model variation in fuel costs that we lever-
age. That is, one could imagine consumers recognizing the fuel cost
differences across categories of automobiles, but not “noticing” the
difference in implied fuel costs across high and low mileage versions
of the same model.

Our baseline model produces precise estimates consistent with
full valuation. Our procedure yields statistical precision, and our
results are robust across a number of dimensions. But, we empha-
size that our procedure can be made to yield different results
because it relies on a number of assumptions about underlying
parameters that we use to construct our estimate of the future fuel
cost of a vehicle, including consumer discount rates, expectations
regarding future gasoline prices, perceived on road fuel economy,
and typical patterns of vehicle utilization and scrappage. We have
empirical support for each of the assumptions we use, but rea-
sonable alternative parameter choices could shift our coefficient
estimate in either direction. The same is true of other papers in
the literature.

Thus, while the literature fails to consistently reject the null
hypothesis of full valuation, the data cannot consistently rule out
modest undervaluation, unless one takes a firm stand on underly-
ing parameters that are themselves uncertain. What is clear from our
results, in conjunction with the existing literature, is that a belief that
consumers place a very low value on fuel economy is not supported
by the data. Such a low valuation, however, would be required to
rationalize the cost-benefit analysis employed in regulatory impact
analyses of Corporate Average Fuel Economy (CAFE) standards. For
example, the EPA estimates CAFE fuel savings from 2017–2025 that
are about three times larger than the program costs (Environmen-
tal Protection Agency, 2012). For benefits to exceed costs in this way
even when consumers fully value fuel economy, the regulatory anal-
ysis must not account for all program costs or it must implicitly
assume that CAFE corrects some other market failure. Importantly,
according to the analysis, fuel savings make up around 80% of the
gross benefits, so if true program costs exceed fuel savings by even a
modest fraction, it is possible that these costs could reverse the sign
of the cost-benefit analysis.

Our empirical evidence, combined with the previous literature,
implies that consumers at worst undervalue fuel economy modestly.
If there are energy efficient technologies that are not being deployed,
then researchers and regulators should perhaps shift their attention

4 Linn and Klier (2010) use the same strategy to study sales volumes, rather than
prices. Li et al. (2009) and Jacobsen and van Benthem (2015) use it to study vehicle
scrappage decisions.
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to supply side explanations, like competitive failures, technological
spillovers or other hold ups within the automobile industry.5

The remainder of the paper is structured as follows. Section 2
explains our econometric strategy in more detail. Section 3 describes
our data. Section 4 details the relationship between vehicle price
and odometer in our data. We use this analysis to determine the
appropriate set of odometer control variables. Section 5 reports our
main results, along with a variety of robustness checks. Section 6
concludes.

2. Conceptual approach

Our estimation strategy is based on exploiting variation in the
expected future fuel cost of vehicles resulting from differences in
the odometer reading and the price of fuel at the time a vehicle is
sold. For example, suppose that two 2005 Toyota Camrys are sold
in November 2009, one with 80,000 miles on the odometer and the
other with 90,000 miles. The price difference between these two
cars should reflect the difference in value of having a lower mileage
vehicle (which is in better condition and has a longer expected
remaining life) net of the larger operating costs, which are a func-
tion of fuel prices. Next, imagine that the price of gasoline changes
between November 2009 and December 2009, and that in December
two other 2005 Toyota Camrys, one with 80,000 miles and the other
with 90,000 miles, are sold. Now, the price difference should reflect
the same factors as before, and the difference-in-difference should
reflect only the change in operating costs that resulted from the gaso-
line price change. There may be many factors that affect the level of
these prices, but as long as these factors have the same effect on an
80,000 mile Camry and a 90,000 mile Camry, they can be accounted
for with fixed effects.

Our final estimating equation has the intuitive flavor of this
example, but it is not literally a difference-in-difference because
we use a continuous measure of odometer readings. In the end,
we regress used vehicle transaction prices on a rich set of mileage
controls, time period fixed effects and a measure of the discounted
expected future operating costs of vehicles. Our specification allows
the effect of odometer and time period to vary for each vehicle
type—where a type is defined by all observed characteristics con-
tained in the “stub” of the Vehicle Identification Number (VIN),
which includes model name, vintage, cylinders, displacement, and
sometimes additional information on transmission and trim levels.
We are able to do this and still identify a coefficient measuring
consumer valuation of fuel economy because we use individual
transaction prices and odometer readings. Differences in the cur-
rent odometer reading of vehicles generate variation in expected
remaining fuel costs across individual cars of the same type sold
in the same time period.

To arrive at our estimation equation, we start with a simple model
of the price of used cars which assumes that the used car market
is competitive, the supply of used cars is inelastic, and that transac-
tion costs are small.6 The logic of the inelastic supply assumption is
that, in any given period, the full stock of used cars (not necessarily
the set listed for sale) of a given vintage and type is fully predeter-
mined. Under these assumptions, the expected discounted price, P,
of an individual vehicle i of type j at time t is equal to the expected

5 Sallee (2014) suggests one possible caveat. He argues that in a model with rational
inattention it is possible that consumers are attentive to (fully value) the set of energy
efficiency technologies that are deployed in equilibrium, but nevertheless there are
cost-effective technologies that are not deployed because they are not salient and
would be undervalued if they were deployed.

6 With zero transaction costs, the market allocation will be the same as if people
rented a vehicle each period. The zero transaction cost assumption thus abstracts from
sorting concerns.

discounted value of operating the car V( • ) over its remaining life-
time, minus the expected discounted values of fuel costs C( • ), and
maintenance costs Z( • ):

Pijt = V(Oijt , Xj, r) − C(Oijt , mijt , gt , MPGj, r) − Z(Oijt , Xj, r), (1)

where O is the car’s mileage at the start of period j, Xj is a vector
of vehicle attributes, m is per period miles driven, g is the price of
gasoline, MPG is the vehicle’s fuel economy in miles per gallon, and r
is the discount rate.

The discounted value of fuel costs, C( • ), is given by:

Cijt = E

[
T∑

s=t

S(Oijt , Xj)
(

1
1 + r

)(s−t) mjsgs

MPGj

]
, (2)

where T is the final period at which time all vehicles are scrapped,
and S( • ) is the conditional probability of survival of a vehicle as a
function of its odometer reading and its attributes. We detail the
construction of this variable in Section 3.1, below.

The fundamental question in the literature on the energy effi-
ciency gap is whether or not consumers fully value fuel economy.
In the used car market (where supply is assumed to be perfectly
inelastic), this is typically formulated as the existence of a one to
one mapping between price and future discounted fuel costs. Thus,
the goal is to find a way to regress prices P on future discounted
fuel costs C that leaves variation in C but protects against omitted
variable biases. Variation in fuel costs comes from several sources. It
comes across vehicle types because of differences in fuel economy. It
comes over time because of differences in the price of gasoline. And,
it comes across individual vehicles depending on their remaining
lifetime.

Different articles in the literature have used different types of
variation, and all approaches require some assumptions to achieve
identification. The cross-sectional hedonic approach that was once
prominent in the literature used variation across vehicle types in
studies of new car prices.7 Automobiles have many unobserved char-
acteristics, however, so the cross-sectional approach lacks credibility
as an identification strategy.

The literature recently switched to a focus on the use of panel
strategies that use changes in gasoline prices as a source of quasi-
experimental variation (Kahn, 1986; Kilian and Sims, 2006; Allcott
and Wozny, 2014; Busse et al., 2013; Grigolon et al., 2014). A com-
mon gasoline price shock creates different fuel cost changes across
vehicle types, because of differences in fuel economy.8 Thus, a sin-
gle gasoline price time series generates panel variation that allows
for price regressions that include fixed effects for each vehicle type,
which will absorb any time invariant unobserved factors. When the
unit of analysis is the same vintage of vehicle observed several times
in the used car market, these fixed effects will capture all attributes
of the vehicle.

The cross-vehicle panel approach uses variation from the inter-
action of fuel prices and vehicle fuel economy. This does not require
the use of micro data (though it can be used, as in Busse et al. (2013))
because it uses differences across vehicle types over time, rather
than making predictions about how different vehicles of the same

7 This approach goes back at least to the seminal contributions in Hausman (1979)
and Dubin and McFadden (1984) on household durables using cross-sectional data.
The cross-sectional literature on automobiles includes Dreyfus and Viscusi (1995),
Goldberg (1998) and Espey and Nair (2005). This literature found mixed evidence of
consumer undervaluation. See Greene (2010) and Helfand and Wolverton (2009) for
reviews.

8 Grigolon et al. (2014) differ from our approach and from the existing literature on
the U.S. in focusing on the demand for diesel versus gasoline vehicles in Europe.
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type would differ in price within a time period. As such, the cross-
vehicle panel approach cannot control for vehicle type specific time
period shocks; it rests on assumptions that some broader level of
time period fixed effects are able to account for demand shocks that
influence the price of vehicles. If there are demand shocks in dif-
ferent time periods that have differential effects on different types
of vehicles, and if these differential shocks are correlated with fuel
economy, then this approach may still be biased. As suggested in
Langer and Miller (2013), the prices of competing products may be
one such source of correlated shocks.

Our approach focuses on vehicle mileage in order to relax the
assumptions required by the cross-vehicle panel literature. We iso-
late the effect of fuel price changes over time on the differences
in prices across vehicles of the same type in the same time period,
which differ only in their remaining lifetime by virtue of having been
driven more or less prior to that time period.9

In addition to requiring micro data, our approach may involve
trade-offs, both practical and conceptual. Practically, our procedure
eliminates the vast majority of variation in prices and fuel costs
through our control variables, and the variation that remains may be
too small to yield statistical precision. That turns out not to be the
case, both because the gasoline price moves a great deal during our
sample period and because we have a large data set.

Aside from practical concerns, our strategy also has conceptual
implications. Like the rest of the literature that employs panel tech-
niques, our approach identifies the relationship between fuel costs
and prices using variation in fuel costs within a product over time,
whereas the ultimate concern for policy is whether consumers make
rational choices between products. It is conceivable that agents with
limited rationality might make rational choices in one dimension but
not the other. This implies that the move from cross-sectional to
panel identification may pose a trade-off—the cross-sectional litera-
ture directly studies the choice situation most of interest to policy,
but it is subject to omitted variable bias.

In our context, we are most concerned that our econometric strat-
egy isolates variation that is far less salient to consumers than are
cross-sectional differences in fuel costs between different types of
automobiles, so that we may have tilted the scales in favor of find-
ing undervaluation. That is, consumers might ignore differences in
fuel costs due to odometer variation, while still accurately consider-
ing the average differences (across all odometer levels) in fuel costs
across models.10 If so, then when gasoline prices rise, consumers
would switch demand away from heavy trucks towards compact
cars, but they might simultaneously fail to account for the differ-
ential implications of the gasoline price change for low versus high
mileage compact cars. As a result, we think our approach would be
more likely to find undervaluation than the prior literature. The fact
that we do not therefore provides relatively strong evidence in favor
of the full valuation null hypothesis.

The opposite could be true—consumers might rationally adjust
their evaluation of the lifetime fuel costs of models with different
odometer levels when gasoline prices change, while simultaneously
making inconsistent comparisons across models. We are unable to
come up with internally consistent explanations as to why that

9 Our conceptual framework assumes a risk neutral agent who cares only about the
average future fuel cost. Risk averse agents will perceive some value in more fuel eco-
nomic vehicles, which condense the variation in fuel costs that arise from shocks to
the future gasoline price. Changes in the volatility of the price of gasoline may there-
fore influence the value of fuel economy over our sample period. But, our identification
strategy limits this concern. Any increase in demand for a particular car type due to
volatility considerations will be soaked up in our vehicle type by time fixed effects.
10 Allcott and Wozny (2014) make this same point in discussing our approach versus

theirs. Sallee (2014) explores the same issue, arguing that, when perfect information
is costly to acquire, consumers may be rationally inattentive to some types of fuel cost
variation, while being attentive to others, due to differences in the consequences of
ignoring each type of variation.

would happen, but neither can we prove that it is impossible. Fur-
ther exploration of this conceptual point would be valuable to the
literature.

3. Data

Our used car price data come from a large sample of wholesale
used car price auctions. The data include the transaction price, trans-
action date, odometer reading and truncated Vehicle Identification
Number (VIN) of each vehicle sold in several large auction houses.
This market does not include individual end users. Automobile deal-
ers, manufacturers, and businesses and governments that own large
fleets sell their vehicles at these auctions. The buyers are licensed
used car dealers, who subsequently resell the vehicles to consumers.
Used car dealers routinely use these auctions to optimize the stock
of vehicles they have for sale to final consumers by both buying and
selling vehicles.

Our data sample includes millions of transactions that took place
between July 1993 and July 2008.11 We match these vehicles to
official EPA fuel economy ratings using all available information on
model, model year, cylinders, displacement, body type, transmission
and trim. In our estimation, we use the combined EPA fuel economy
rating. For some early model years and for model years after 2007,
we lack a complete VIN decoder and for vehicles made before 1978,
there are no fuel economy ratings. Such vehicles are dropped from
our sample. We also drop diesel and hybrid vehicles. In the results
reported here, we focus on a 10% random sample of our data for
computational reasons.

We also focus primarily on vehicles sold at auction by dealers,
rather than vehicles sold by auto manufacturers themselves or by
fleet operators. We do so because our strategy relies on correctly
specifying the remaining lifetime of vehicles, and we believe that
vehicles sold by dealers, which were owned and operated by con-
sumers, will be more likely to depreciate according to the average
schedule that we use for estimation. That is, vehicles operated by
fleet owners and manufacturers may have been used and maintained
differently than those owned by consumers. We do report results
from our preferred specifications using these vehicles.

3.1. Estimating remaining cost

A critical step in our estimation is the construction of the future
fuel cost variable. This construction requires assumptions about
vehicle mileage and survival rates and about consumers’ beliefs
about future gasoline prices and their discount rates. Throughout the
paper we interpret our regressions as tests of whether or not con-
sumers fully value fuel economy, but it is critical to keep in mind
that our tests depend on the accuracy of these assumptions, and
that modifications of these assumptions will mechanically alter our
estimated coefficients.

3.1.1. Mileage and scrappage
The cost function (Eq. (2)), specified in discrete time, includes the

number of miles to be driven annually by the vehicle in all future
periods. Additionally, since a vehicle might be scrapped, mileage is
multiplied by a conditional survival probability to generate expected
miles driven. Finally, future miles driven are discounted to reflect
present values.

We calculate mileage and scrappage using the results reported
in Lu (2006), which presents estimates of average mileage per year

11 The raw data include some data before 1993, but the coverage is limited. We have
access to data through part of 2009, but we limit our sample to the period before the
financial crisis.
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and scrappage probabilities for passenger cars and light-trucks (pick-
ups, sport-utility vehicles, and vans) as functions of age in years.
To accommodate our identification strategy, we invert the formulas
in Lu (2006) to create future annual mileage and scrappage prob-
abilities that are a function of current mileage, rather than current
age.12 This enables us to calculate the expected future remaining
mileage (and hence fuel cost) of each vehicle, according to its current
odometer reading. We do this separately for cars and trucks.

Describing future mileage and scrappage as a function of current
odometer allows us to maintain econometric identification while
controlling more flexibly for price shocks to each VIN stub than
was possible in the prior literature. Specifically, we include VIN stub
fixed effects interacted with dummies for each month of our sample,
which is the level of variation of our gasoline price variable. These
fixed effects fully control for the relationship between vehicle age
and price, which is desirable to account for depreciation, but they
also fully control for the relationship between age and fuel cost, so
that there is no remaining variation in future fuel cost with which
to identify a regression coefficient. Our insight is that, conditional
on age, vehicles with higher odometer readings have less remain-
ing life, so that there is still variation in fuel costs within a VIN stub
crossed with month. To utilize this variation, we must describe the
future mileage and scrappage schedule of a vehicle as a function of
its current odometer, not just its age.

We also use our auction data to introduce heterogeneity in
remaining miles driven across makes, as Lu (2006) does not provide
make-specific results (e.g., Dodge). Our procedure simply shifts the
expected future mileage schedule up or down proportionally for dif-
ferent automobile makes. We first generate a predicted odometer
reading for all vehicles in our sample, separately for cars and trucks,
based on age measured in annual increments, using the regression
coefficients reported by Lu (2006). We then regress this predicted
odometer reading on the actual odometer reading separately for each
make as follows:

dca = hcmOicm + eicm (3)

where c indexes class, a indexes age, and m indexes make.13 This
procedure estimates a unique hcm for each make, a measure of how
much each vehicle make is driven compared to the average across
all makes. We use these hcm to shift the predicted mileage schedules
for all vehicles in our sample, and use the shifted schedules when we
assign scrappage probabilities and to adjust the future fuel costs.

We transform Lu’s scrappage probabilities, which are for new
vehicles and therefore not conditional on vehicles having survived to
their observed ages, into probabilities that are conditional on having
attained the current odometer reading observed at the time of trans-
action. This adjustment requires only that we divide through the
mileage schedule by the probability of survival up to the observed
odometer.

Finally, having established the future annual mileage and scrap-
page schedule for each model conditional on its observed odometer
at the time of the transaction, we sum over these annual valuations to
construct the future fuel cost variable. Annual mileage is weighted by
conditional scrappage probabilities and discounted for present value.
In constructing the cost measure, we assume that each vehicle lasts
no more than 25 remaining periods from the time of observation.

12 Details regarding this calculation are available from the authors upon request.
13 We could also estimate these h using a data set such as the National Household

Travel Survey (NHTS), but we prefer to use our data to do so, as it contains hundreds
of thousands more observations over many years, which enables us to avoid problems
with sparseness over some makes within the NHTS. In addition, specification testing
suggests that introduction of this heterogeneity has virtually no effect on our final
estimates, though we maintain it in our baseline to allow some degree of data driven
heterogeneity.

Since it is weighted by scrappage probabilities and discounted for
present value, expected mileage beyond 25 years in the future is neg-
ligible for all vehicles. In all results reported in the paper, we assume
that the vehicle miles traveled and scrappage schedules are inde-
pendent of the price of gasoline. There is evidence that the gasoline
price affects miles traveled and scrappage, but these affects are mod-
est. For small changes in the price of gasoline, an envelope theorem
argument suggests that any such responses will be second order. In
addition, we experimented extensively with introducing a mileage
elasticity and make-specific scrappage elasticities based on results
from Li et al. (2009) and found that our results were insensitive to
these additional considerations.14

3.1.2. Gasoline price expectations
The cost function in Eq. (2) also depends upon the price of gaso-

line in future periods. We assume that all consumers use a “no
change” forecast—i.e., they expect that the future price of gasoline in
all periods is equal to the current price. This is consistent with evi-
dence on actual consumer beliefs reported in Anderson et al. (2013).
It is also the case that a no change forecast for oil prices preforms as
well, or better than, alternative forecasts based on futures markets
or expert surveys (Alquist and Kilian, 2010; Alquist et al., 2013).

3.1.3. Fuel economy
Several different fuel economy measures are available. In partic-

ular, the EPA reports both ratings for city and highway driving, along
with a combined rating which is a harmonic average of the two.
We use the combined rating. In 1986, the EPA adjusted ratings to
account for the apparent discrepancy between the official rating and
the actual fuel economy used. Starting in 2008 (which is the very
end of our sample), a significant revision to the test procedures was
initiated with the hopes of improving accuracy further. We use the
fuel economy rating published at the time of the vehicle’s sale, which
is the official number still available in the EPA fuel economy guide,
without attempting to adjust for these regime changes.15 Addition-
ally, we assume that the fuel economy rating is accurate for the life
of the vehicle. Some research exists quantifying the degree to which
fuel economy may degrade as a vehicle ages. In principle, it would be
possible to adjust for this in our cost measure, but we suspect that
consumers are largely unaware of this phenomenon and know only
a vehicle’s official fuel economy rating.

3.1.4. The discount rate
The cost function also includes a discount rate. For our baseline

estimates, we use a discount rate of 5%, which we intend to be a con-
servative (low) benchmark. Allcott and Wozny (2014) use 6%, based
on the average interest rate on car loans according to the Survey of
Consumer Finance. Alternatives rates could be justified by pointing
to borrowing costs or other metrics of the opportunity cost of funds.
We do not believe that it is possible to identify a single correct dis-
count rate, so we select a low rate and discuss the sensitivity of our
results to higher discount rates.

14 Li et al. (2009) and Jacobsen and van Benthem (2015) document how scrap-
page decisions respond to gasoline prices, and there is a large literature studying the
mileage response, including Hughes et al. (2008), Gillingham (2011) and Knittel and
Sandler (2012). Kahn (1986) makes the envelope theory argument to justify a con-
stant mileage assumption. Kilian and Sims (2006) make the same assumption based
on the same reasoning. Allcott and Wozny (2014) and Busse et al. (2013) assume no
mileage response in their baseline specifications, and, like us, they find that relaxing
the assumption has little impact on their results.
15 Our view is that it is appropriate to use the fuel economy rating most likely avail-

able to consumers at the time of purchase. There is a conversion formula that allows
one to estimate how a pre-2008 vintage vehicle’s fuel economy rating would translate
into the new regime, but this formula was not available until the last few months of
our sample.
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Table 1
Summary statistics.

Mean Standard deviation Minimum Maximum

Transaction price (2008 USD) 10,537 7,218 1.05 131,277
Gasoline price (2008 USD) 2.06 0.60 1.20 3.98
Present value remaining fuel cost (2008 USD) 8,544 4,051 1,537 36,056
Odometer (miles) 57,530 24,891 10,000 99,999
Age (years) 4.3 2.6 0.0 22.7
Fuel economy (EPA Combined MPG) 21.9 4.50 10.0 46.0
Car indicator variable 0.62 0.49 0.0 1.0
Number of observations 1,429,677
Number of unique VIN stubs 9,498

Summary statistics reported here are for the final estimation sample used in the baseline specification of vehicles sold by dealers.

3.2. Summary statistics

Before presenting our regression results, we briefly describe the
summary statistics for our baseline sample in Table 1. Our baseline
sample includes vehicles sold at auction by automobile dealers that
have mileage between 10,000 and 100,000 miles. (Our reason for
making this restriction is explained in the next section.) The average
mileage in this sample is just around 57,500 miles.16 These vehicles
are about four and one-half years old on average. Sixty-two percent
are cars (as opposed to light-duty trucks).

Average transaction prices are about $10,500, as compared to
remaining future fuel costs of $8500, in present discounted value. (All
dollar amounts are inflation adjusted using the CPI-U to 2008 dol-
lars.) Gasoline prices are tax inclusive monthly retail prices from the
Energy Information Administration. Our data range from July 1993
to June 2008. During that period, there was substantial variation in
the price of gasoline; the trough was less than one-third of the peak
price during our sample. We also have substantial variation in fuel
economy; the average fuel economy in the sample is 21.9 miles per
gallon, with a standard deviation of 4.5.

Our estimation sample includes over 9000 distinct types of vehi-
cles, defined by the “VIN stub”—the portion of the Vehicle Identifi-
cation Number that identifies the vehicle’s attributes, excluding the
serial number that identifies a unique vehicle. The VIN stub identifies
the model, model year, and engine type of each vehicle. It typically
also indicates the drive type and transmission, and it often indicates
a unique trim or body style (such as an extended cab pickup truck).
For example, an automatic transmission 4-cylinder 2.0L 2005 Toyota
Camry will have a VIN stub that differs from Camrys from different
model years or with different engine sizes or transmission. We use
the VIN stub as our definition of a vehicle type, and our specifica-
tion allows each VIN stub to have unique month fixed effects and a
unique depreciation schedule.

4. How do vehicles depreciate with mileage?

Our strategy isolates variation in fuel costs and vehicle price that
is driven by variation in the remaining mileage on a particular vehi-
cle, interacted with changes in the price of gasoline. Because we are
isolating this variation, it is essential to accurately model the rela-
tionship between mileage and vehicle price. Any misspecification
of this relationship could bias our results. Thus, before presenting
our main results, we explore the relationship between price and
odometer—that is, the way that vehicles depreciate with use—in our
data.

16 One source of error may exist in the odometer readings for a small fraction of our
data. Goh et al. (2007) show that many domestic vehicles built prior to the mid-1990s
had five-digit odometers. This leads to rollover, where it is impossible to tell how
many hundreds of thousands of miles a vehicle has been driven. We report results that
restrict our sample to vehicles shown by Goh et al. (2007) to have six-digit odometers.

To do so, we start with a sample of one million observations from
our original data set that imposes none of the sample restrictions
that we use to form our final estimation sample. We plot these one
million observations, collapsed into 5000 mile bins, in Fig. 1. This
shows that there is a strong relationship between vehicle price and
odometer readings, but it also points to several anomalies.

First, at very high mileages, the relationship between mileage and
price flattens out, and even begins to rise at the highest readings. This
is likely the result of selection. Taking a vehicle to auction is costly; it
takes time, and the vehicle must be transported. Sellers will not bear
these costs for vehicles with a sufficiently low value. Thus, vehicles
above 150,000 or 200,000 miles are unlikely to be brought to auc-
tion unless they are very valuable models or are in unusually good
condition. Our empirical specification will account for the type of car
and its initial value, but we have no way of accounting for the con-
dition of an individual vehicle (conditional on its odometer reading).
This suggests that we truncate our data at lower odometer readings
to avoid selection.

Fig. 2 shows a histogram of our data by the same odometer
categories. This shows that the data taper off quickly at the high-
est odometer ratings. The data also show a significant jump at
100,000 miles. There are discontinuously more vehicles in the auc-
tion data that have below 100,000 miles. To account for the selection
involved, we restrict our main estimates to vehicles with fewer than
100,000 miles, and we also check for sensitivity when we expand
our sample to include vehicles with up to 150,000 miles. We inter-
pret the discontinuity at 100,000 miles as evidence of selection into
the auction sample, but a discontinuity could also be created by
“odometer rollover”—some manufacturers used five-digit odome-
ters that return to 0 after 100,000 miles in vehicles made before
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Fig. 1. Transaction prices by existing mileage. Figure plots average transaction prices
by 5000 mile bins.
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Fig. 2. Histogram of observations by existing mileage.

1994 (Goh et al., 2007). The data provider is aware of this issue and
attempts to account for it in registering odometer readings. Never-
theless, we check that our estimates are robust to a sample restricted
to the set of makes and vintages described by Goh et al. (2007) as
having six-digit odometers.

Second, Fig. 1 shows that vehicles with very low mileage appear
to be outliers; they have a much lower price than would be expected
based on the other data. Further investigation reveals that the out-
liers primarily have mileage below 1000 miles. It is unusual for very
new vehicles to appear in a wholesale auction because they were
sold by consumers; yet Fig. 2 shows that many such vehicles appear.
We suspect that these may have been demonstration vehicles, vehi-
cles that were returned by a customer under warranty due to some
significant problem, vehicles that were in significant accidents, or
they may even indicate coding errors. We thus drop all vehicles with
odometer readings below 5000 miles in the remaining analysis in
this section, and, to be conservative, we limit our main sample to
vehicles with at least 10,000 miles.

We are interested in the relationship, in levels, between price and
fuel costs, so we wish to estimate a model that has price levels on
the left-hand side. But, it makes little sense to expect all vehicles
to depreciate by the same amount in price levels over the mileage
distribution. To demonstrate this, we calculate the average price over
the entire sample period for each type of vehicle and, according to
this average, define vehicle types as either above or below aver-
age in price. Fig. 3 plots the high and low priced vehicles separately
to demonstrate that, in level terms, high priced vehicles depreciate
faster. In general, different vehicles can be expected to depreci-
ate according to a different schedule, and this is particularly true
when measured in level dollars. Moreover, fuel economy is corre-
lated with price (in our raw data this correlation is negative), which
heightens concerns about bias if the depreciation schedule is not
specified correctly for each model. To account for this, we allow each
type of vehicle (VIN stub) in our sample to depreciate according
to a unique schedule. This differs substantially from existing liter-
ature, and it represents one of the key benefits of our microdata
approach.17

Fig. 1 suggests a fairly smooth relationship between odometer
and price, and thus one might expect that a simple polynomial
in mileage could account for depreciation. Fig. 4, which plots the

17 Allcott and Wozny (2014) and Busse et al. (2013) both explore depreciation that
varies by vehicle segments, but our approach is far less restrictive.
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Fig. 3. Transaction prices by existing mileage: high versus low-priced models. Figure
plots average transaction prices by 5000 mile bins, with sample divided into types of
cars whose average price over the entire sample period is above or below the median
sample average.

residuals—in 5000 mile bins—from a regression of prices on a fifth-
order polynomial in mileage, shows that this approach suffers from
at least two problems. First, the polynomial is a poor fit at higher
odometer levels. In principle, this could be corrected by adding
splines in addition to smooth polynomials or by simply increasing
the order of the polynomial to very high orders. The second problem,
however, is the “jigsaw” pattern of residuals at lower odometer lev-
els. The residuals follow a pattern; they rise for several thousand
dollars and then discretely jump down, and then rise again. This is
due to discontinuities in vehicle prices at round numbers, which is
documented by Lacetera et al. (2012), who interpret this as a sign of
behavioral biases due to the salience of “left digits”.

To fully account for this pattern, we follow Lacetera et al. (2012)
and augment our polynomial by adding dummy variables for each
10,000 mile discrete category (e.g., there is a dummy equal to 1 for
vehicles with 20,000 to 29,999 miles), and a variable that is a lin-
ear count of 1000 mile bins (e.g., vehicles with between 20,000 and
20,999 miles will each have a thousand-mile count variable equal to
20, whereas a vehicle with 21,000 miles will have a value of 21). The
addition of these terms helps the fit of the polynomial considerably.
We also raise the order of the polynomial to seven in our baseline
model.

Fig. 5 shows the residuals from a regression of price on a seventh-
order polynomial in mileage, with dummies for each 10,000 mile
category, and the linear one thousand mile discrete category vari-
able. This specification eliminates the patterns in the residuals. We
use this specification as our baseline. Fig. 5 estimates a single (level)
depreciation curve for all models, which hides the variation across
types that is highlighted above in Fig. 3. Our preferred estimator
allows each model to depreciate in a unique pattern.

It is important to note that this set of odometer control vari-
ables accounts for the vast majority of the overall variation in vehicle
prices and future fuel costs. We suspect that the remaining variation,
which comes from differences in remaining lifetime within vehicles
of the same type sold in the same month, is less salient to consumers
and thus our specification presents a harsher test of the full valuation
hypothesis than the approach taken in the related literature.

5. Results

Having arrived at a preferred specification through the examina-
tion of the relationship between price and odometer, we use our data
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Fig. 4. Transaction price residuals by existing mileage from fifth-order polynomial.
Figure plots average price residuals by 5000 mile bins from a regression of prices on
a fifth-order polynomial, omitting vehicles with fewer than 5000 miles or more than
150,000 miles.

to estimate the relationship between prices and present discounted
value future fuel costs in the following estimating equation:

Pijt = bCijt + djt +
∑J

j=1

(∑7
a=1 ajaOa

ijt +
∑10

k=1 cjkdk
ijt + qjlijt

)
+ eijt

(4)

where dk
ijt =

⎧⎨
⎩1 if(k − 1) × 10, 000 < Oijt < k × 10, 000

0 otherwise

lijt = integer floor(Oijt/1000).

In Eq. (4), Pijt is the real transaction price of vehicle i of VIN stub
type j sold in month t, and Cijt is the remaining future fuel cost for
that vehicle. The additional controls include djt, which is a vector of
VIN stub by month of sample fixed effects (e.g., a fixed effect for an
automatic 4-cylinder 2.0L 2005 Toyota Camry in January 2008), and
a function of the vehicle’s odometer reading, denoted Oijt.

The odometer function includes a polynomial, denoted by the
Oa

ijt terms, where a is an exponent ranging, in our baseline model,
from one to seven. It also includes a set of dummy variables for each
10,000 odometer bin, denoted as cjk, and a linear control for the dis-
crete thousand mile bin, denoted lijt, for each vehicle. As described
above, these discrete odometer controls are used to account for the
discontinuous relationship between price and mileage that is ana-
lyzed by Lacetera et al. (2012). Importantly, the odometer control
function is estimated separately for each vehicle type j, which is
indicated by the outside summation term. This allows each type of
vehicle to depreciate in a unique way, which we believe is essential
in a regression on price levels and in a sample with a diverse set of
vehicles.

Our object of interest is b. If consumers fully value changes in fuel
economy, we would expect b to be equal to negative one. That is,
a one dollar increase in the present discounted value of the cost of
operating a vehicle over its remaining life should correspond to a one
dollar drop in consumer willingness to pay for the vehicle, which,
under the assumptions about market structure that are outlined in
our conceptual model (Section 2), will translate into a one dollar drop
in price. Along with b, the d, a, c and q terms are all parameters to
be estimated.
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Fig. 5. Transaction price residuals by existing mileage from seventh-order polynomial
with categorical controls. Figure plots average price residuals by 5000 mile bins from a
regression of prices on a seventh-order polynomial, a set of dummy variables for each
10,000 odometer category and a linear control for discrete 1000 mile categories. The
sample omits vehicles with fewer than 5000 miles or more than 150,000 miles.

Explaining how we actually estimate this equation may be useful
for explaining its full flexibility. The equation includes many thou-
sands of parameters. To estimate the model we make use of the
Frisch–Waugh–Lovell theorem and first regress prices Pijt, and then
costs Cijt, on time period fixed effects and the odometer control vari-
ables for each vehicle type j separately, one at a time. We then regress
the residuals from these two sets of regressions on each other to
recover b̂, which returns numerically identical coefficients to the full
model estimated in a single step. (We collect the number of parame-
ters estimated and use them to make the proper degrees of freedom
correction when calculating standard errors in the second step.) We
exclude VIN stubs for which we have insufficient observations to
estimate the first-step regression.

Table 2 reports our main results. Our baseline estimate yields
a coefficient estimate of −1.01, with a standard error of 0.04.18

This estimate is statistically indistinguishable from −1, which rep-
resents the full valuation null hypothesis. It is precise enough to
rule out significant undervaluation or overvaluation. Our estimate
changes little when we study only cars or only light-trucks (columns
2 and 3).19 Decreasing the order of the control polynomial to five,
or increasing it to nine, has almost no effect on our final estimate
(columns 4 and 5).20

Our baseline sample includes vehicles with odometer readings
between 10,000 and 100,000 miles. This is because, as discussed in
Section 4, there is a discontinuity in the volume of vehicles sold at

18 All standard errors are clustered at the VIN stub level.
19 Our baseline model incorporates heterogeneity in the mileage schedules by

automobile make, as described above. Results are very similar when we omit
this step and use the unadjusted national average for all vehicles. For example,
unadjusted results corresponding to columns 1 to 3 in Table 2 are −1.02, −0.99
and −1.05 respectively. Results are also robust to restricting the sample to makes
and years determined by Goh et al. (2007) to have six-digit odometers. Our
baseline estimate is −1.19 when limited to foreign manufacturers and domestic
manufacturers after model year 1995. This is larger (in absolute value) than our
full sample, but it is consistent with our main conclusion, which is that our data
suggest consumers do not undervalue future fuel costs.
20 The number of observations changes slightly across specifications with different

polynomial orders because adding (or subtracting) regressors in the first step
changes whether or not the first-step regression has sufficient observations for a
number of VIN stubs, each of which has a modest number of observations.
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Table 2
Effects of future fuel cost shocks on transaction prices.

(1) (2) (3) (4) (5)

Future fuel cost −1.01 −1.01 −1.02 −1.01 −1.01
(0.04) (0.03) (0.10) (0.04) (0.04)

Number of observations 1,429,677 880,809 548,868 1,433,453 1,426,720
Number of unique VIN Stubs 9,498 5,712 3,786 9,723 9,352
Polynomial order 7 7 7 5 9
Class All Cars Trucks All All
Minimum mileage 10,000 10,000 10,000 10,000 10,000
Maximum mileage 100,000 100,000 100,000 100,000 100,000

The dependent variable is the real transaction price. All specifications include month of sample by VIN stub fixed effects, a polynomial in odometer, a set of dummy variables for
each 10,000 odometer bin, and a linear control for 1,000 odometer categories. Standard errors (in parentheses) are clustered on VIN stub. Sample includes vehicles sold by dealers.
Future fuel cost calculations use a 5% discount rate.

auction at 100,000 miles, and the lowest odometer vehicles are out-
liers. To see how this restriction affects our estimates, Table 3 reports
coefficients from samples with alternative odometer ranges. Lower-
ing the top odometer rating from 100,000 to 90,000 or 80,000 or
70,000 has little effect on our estimated coefficient.21 Raising the
odometer range to exceed 100,000, however, causes our coefficient
to decline. The coefficient declines monotonically, and to an econom-
ically important degree, as we move from 100,000 up to 150,000.
When we isolate the sample to include only vehicles above 100,000
miles (column 10), our coefficient estimate falls precipitously.

There are several possible interpretations of this final result. First,
it may be that consumers who buy newer used vehicles properly
value fuel economy, whereas consumers who buy high mileage vehi-
cles substantially undervalue it. In the high-mileage segment of the
used car market, consumers might be myopic, or they may simply
value other attributes more, which leads them to be inattentive to
energy efficiency. A focus on other features of the car, such as its
condition and accident history, may even be motivated by concerns
related to asymmetric information.

Second, consumers who purchase older, lower priced vehicles
may, on average, have substantially higher discount rates. Assuming
that they are lower income on average, they are more likely to face
liquidity constraints and will be forced to borrow at higher interest
rates, which will (rationally) drive up the rate at which they trade off
future discounted fuel costs against price.

Third, the result could be driven by selection. As argued above, the
set of very high mileage vehicles that appear at wholesale auctions
are a selected group. Among this selected group, our assumption
about remaining lifetime mileage, which is based on the national
averages reported in Lu (2006), may be biased. Critically, it could be
that consumers who buy older vehicles do so because they intend
to drive very few miles. Thus, we choose to emphasize our baseline
sample, but the results for the high odometer vehicles is a notable
caveat to our main results.

Our results align well with the existing literature. Allcott and
Wozny (2014) find significant undervaluation among the oldest
models in their sample, but full (or nearly full) valuation among the
newest models.22 Busse et al. (2013), who intepret their findings as
consistent with full valuation, do not report estimates separately
by the age of vehicles in their sample, but their sample is drawn
from vehicles sold at used car dealerships that also have a new car

21 In additional to results (not shown), we find that our estimates are similarly
insensitive to lowering the minimum odometer to either 5000 or 1 000 miles.
22 When Allcott and Wozny (2014) use mileage and scrappage schedules from Lu

(2006), as we do, they get an estimate of −1.03 for the newest models (1 to 3 years
old) and −0.28 for the oldest models (11 to 15 years old) in their sample (see their
Table 5, column 2). This matches closely to our estimates of −1.01 for the baseline and
−0.30 for the highest mileage vehicles.

retail business. This leads their sample to be relatively low odome-
ter (and high priced). Their sample is thus more similar to ours when
we restrict to lower odometer vehicles. (Even then, our vehicles are
somewhat older and less expensive on average.)

Finally, Eq. (4) includes a single cost coefficient estimated for all
vehicle types, but our micro data approach enables us to calculate
the coefficient on cost for each VIN stub separately—that is, we can
estimate a vector bj rather than a single scalar b. For our baseline
specification, we estimated these cost coefficients separately and
plotted them in Fig. 6, using the full 100% sample of our data (for
the VIN stubs included in our baseline regression) to improve the
precision of the individual estimates. Even with the full sample, the
coefficient for any individual VIN is estimated with significant error,
so the point estimates show a large spread.23 Overall, however, we
find it comforting that the distribution is centered around our unified
estimate and appears to be roughly symmetric.

5.1. Vehicles sold by manufacturers and fleets

Our data include vehicles sold by dealers, fleet operators and
the manufacturers themselves. Our baseline results include only
those vehicles sold by dealers because we expect that this sample of
vehicles, which were previously owned by “normal” consumers will
best match the depreciation and scrappage schedule established by
Lu (2006), which is a critical component of our measure of future fuel
cost.

Fleet sellers in our data include vehicles that were leased by con-
sumers when new, as well as vehicles sold by fleet operators, such
as large companies, rental car companies, or governments. Leasing
contracts may have mileage clauses. Leases may also present con-
sumers with different incentives for maintenance. Likewise, vehicles
in fleets are likely to have been used and maintained differently
than the typical vehicle owned by a consumer household. Similarly,
vehicles that were owned by the automobile manufacturers them-
selves for some time, for use by employees or for other purposes,
may also differ from the average in their use and maintenance his-
tory. For example, in our sample, both fleet and manufacturer sold
vehicles have much higher annual mileage than vehicles sold by
dealers.24 As a result, these vehicles may have expected remain-
ing lifetimes, conditional on current mileage, that differ from the
national average.

Nevertheless, we present our baseline specification for vehicles
sold by fleet operators and manufacturers in Table 4 for comparison.
Column 1 repeats our main estimate from Table 2 for reference, and

23 The mean of the standard deviations from the individual regressions is 0.47.
24 A full set of summary statistics for fleet and manufacturer sold vehicles are

included in the Appendix.
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Table 3
Effects of future fuel cost shocks on transaction prices.

(1) (2) (3) (4) (5)

Future fuel cost −0.96 −1.04 −1.04 −1.01 −0.98
(0.07) (0.06) (0.05) (0.04) (0.03)

Number of observations 820,297 1,014,319 1,217,404 1,429,677 1,589,980
Number of unique VIN stubs 7,619 8,319 8,907 9,498 9,802
Polynomial order 7 7 7 7 7
Minimum mileage 10,000 10,000 10,000 10,000 10,000
Maximum mileage 70,000 80,000 90,000 100,000 110,000

(6) (7) (8) (9) (10)

Future fuel cost −0.91 −0.84 −0.78 −0.74 −0.30
(0.02) (0.02) (0.01) (0.01) (0.02)

No. of observations 1,733,144 1,851,912 1,947,666 2,021,138 382,541
No. of unique VIN stubs 10,077 10,246 10,384 10,476 4,427
Polynomial order 7 7 7 7 7
Minimum mileage 10,000 10,000 10,000 10,000 100,000
Maximum mileage 120,000 130,000 140,000 150,000 150,000

The dependent variable is the real transaction price. All specifications include month of sample by VIN stub fixed effects, a polynomial in odometer, a set of dummy variables for
each 10,000 odometer bin, and a linear control for 1,000 odometer categories. Standard errors (in parentheses) are clustered on VIN stub. Sample includes vehicles sold by dealers.

columns 3 and 5 show the corresponding result for fleet and man-
ufacturer sold vehicles, respectively. Estimates from these samples
suggest modest undervaluation, assuming a 5% discount rate. The
point estimate for fleet operators is −0.86, while that for vehicles
sold by manufacturers is −0.70. This could imply that these automo-
biles have indeed been depreciated differently than vehicles sold by
dealers at auction.

The even numbered columns in Table 4 show what happens if we
recalculate our estimates assuming a 10% discount rate, instead of
our baseline 5%. This change raises the coefficient estimates enough
so that the full valuation null hypothesis cannot be rejected in any
of the three samples. The point estimates actually suggest overvalu-
ation of fuel economy.

5.2. What is the value of our approach?

Our baseline model includes a very rich set of controls. This has
two principal advantages. First, by allowing each VIN stub to have
its own depreciation schedule, we eliminate any concerns about
correlations between fuel economy, prices and misspecification of
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Fig. 6. Histogram of valuation coefficient for individual VIN stubs. Each data point is
the cost coefficient from Eq. (4) estimated for a single VIN stub. The vertical line is the
point estimate from the joint regression from the same specification, which is found
in Table 2, column 1.

depreciation that could bias sparser specifications. Second, by iso-
lating variation within VIN stubs within a time period, we are able
to control for a very wide set of demand shocks nonparameteri-
cally. These features are very appealing ex ante, but we can check
whether these flexibilities actually matter by running more limited
specifications and comparing them to our results.

Table 5 shows our baseline sample estimated with sparser mod-
els. Column 1 repeats our baseline results for reference. Column 2
shows results from a regression that includes only VIN stub fixed
effects, time period fixed effects (not interacted with VIN stubs), and
a single odometer control function that applies to all models. This
specification is a standard difference-in-difference estimator with
a single odometer control function. It yields an estimate of −0.76,
which suggests modest undervaluation.

In column 3 we use vehicle segment definitions to categorize
our vehicles as falling into one of eight segments.25 We then inter-
act our odometer control function with each segment. This allows
each segment to have its own depreciation schedule. Our coefficient
estimate is −0.74, which is roughly the same as the more simple
difference-in-difference estimator. These models allow for only a
single time period shock (specified in level dollars) to affect the
prices of all cars. This is a restriction on our model, which allows
the time period shock to be different for each VIN stub. In our sam-
ple, imposing this restriction changes our result in an economically
important way. Relaxing this restriction part way, by interacting
time effects with segment (rather than VIN stub), drives the coeffi-
cient down further. In column 4, this specification yields a coefficient
of −0.41, which is qualitatively different than our baseline and sug-
gests substantial undervaluation. These alternative specifications are
all restrictions on our baseline model. Thus, where the alternatives
create disagreement, it is logical to prefer our approach because it
relaxes restrictive assumptions that do not, in our view, have any
basis in theory.

The existing literature has experimented with allowing depreci-
ation schedules and time period effects to vary by different vehicle
categories. Prior to our work, it was not possible to allow depre-
ciation and time effects to vary at the VIN stub level because that
would have absorbed all identifying variation in the fuel cost vari-
able. The sensitivity of the results to the structure of the controls

25 We use a standard industry source to determine classifications. The eight
segments are Compact Cars, Midsize Cars, Fullsize Cars, Luxury Cars, Sports Cars,
Pickup Trucks, SUVs and Vans.
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Table 4
Effects of future fuel cost shocks on transaction prices by type of seller.

(1) (2) (3) (4) (5) (6)

Dealers Fleet operators Manufacturers

Discount rate 5% 10% 5% 10% 5% 10%

Future fuel cost −1.01 −1.42 −0.86 −1.20 −0.70 −1.01
(0.04) (0.05) (0.03) (0.04) (0.08) (0.12)

Number of observations 1,429,677 1,429,677 1,962,420 1,962,420 1,117,094 1,117,094
Polynomial order 7 7 7 7 7 7
Number of unique VIN stubs 9,498 9,498 9,783 9,783 4,628 4,628
Minimum mileage 10,000 10,000 10,000 10,000 10,000 10,000
Maximum mileage 100,000 100,000 100,000 100,000 100,000 100,000

The dependent variable is the real transaction price. All specifications include month of sample by VIN stub fixed effects, a polynomial in odometer, a set of dummy variables for
each 10,000 odometer bin, and a linear control for 1,000 odometer categories. Standard errors (in parentheses) are clustered on VIN stub.

Table 5
Effects of future fuel cost shocks on transaction prices: alternative specifications.

(1) (2) (3) (4)
Baseline Diff-in-diff Richer odo Richer time

Future fuel cost −1.01 −0.76 −0.74 −0.41
(0.04) (0.03) (0.03) (0.04)

Number of observations 1,429,677 1,429,677 1,429,677 1,429,677
Time fixed effects Interacted with VIN Not interacted Not interacted Interacted with segment
Odometer controls Interacted with VIN Not interacted Interacted with segment Interacted with segment
Minimum mileage 10,000 10,000 10,000 10,000
Maximum mileage 100,000 100,000 100,000 100,000

The dependent variable is the real transaction price. Standard errors (in parentheses) are clustered on VIN stub.

suggests the value of our approach. A similar sensitivity to related
specification choices is hinted at in Busse et al. (2013). Table 4 of
that paper reports two specifications, one of which allows odometer
depreciation schedules to vary by segment, and the other allows it to
vary by fuel economy quartile. The choice has a significant impact on
their results, and the authors make an argument about which set of
controls is preferred a priori. A principle benefit of our specification
is that we need not make such choices, but rather can use a more
general set of controls.

5.3. How do wholesale price changes influence retail prices?

Our interest is in how consumer prices change in response to
future fuel cost changes, but our data are from wholesale auctions.
Dealers purchase vehicles at these auctions and pass them on to con-
sumers. To the extent that the used car market is competitive, we
would expect wholesale price shocks to be passed on one for one
into retail consumer prices. If so, our regression coefficients can be
directly interpreted as the effect of fuel cost shocks on consumer
prices. Alternatively, if used car dealers add a proportional markup
over the purchase price, then our coefficient estimates should be
“scaled up”. We find support for a one to one relationship between
wholesale and retail prices using an auxiliary data set.

To examine the relationship between wholesale and retail prices,
we use data from Kelley Blue Book. To measure wholesale prices,
Kelley Blue Book collects data from auctions. To measure retail
prices, they gather data on actual transactions from dealers and other
market data sources. We gathered the wholesale and retail prices of
all available cars and light-trucks in the July edition of the Kelley Blue
Book guide from 2003 to 2008. We then regress a vehicle’s retail price
on its wholesale price to determine price pass through.

Table 6 reports our results. The first column presents simple OLS
results. The unit of observation is a particular model and vintage
sold in July of each year. We include year dummy variables and
age dummy variables in all specifications. In the OLS specification,
most of the variation in prices comes from differences across models.

The OLS coefficient implies that when wholesale prices rise by $1,
retail prices rise by $1.03. This is not statistically different from the
one to one benchmark.26

We change the source of identification by adding model by vin-
tage fixed effects in column 2. In this specification, pass through is
identified only from changes in the price of particular models over
time, controlling for year and age effects. These fixed effects soak
up a majority of the variation, which is reflected in a much higher
standard error. The coefficient falls significantly, though it is still not
statistically different from 1. The reduction in the coefficient may
reflect attenuation from measurement error, which is exacerbated by
the panel strategy.

Both to overcome possible measurement error attenuation in the
panel and to provide a more solid identification strategy, we use
an instrumental variables approach in the third column. We instru-
ment wholesale prices using the interaction of fuel economy and the
price of gasoline in that year. This instrument isolates variation in
wholesale prices due to price shocks associated with gasoline price
changes. This is a valid instrument if the only way that fuel economy
interacted with gasoline prices affects retail prices is through whole-
sale prices, which is consistent with interpreting wholesale prices as
the outside option for a dealer who is deciding whether to hold and
sell a particular model or to take it to auction and swap it for another
model to have on their lot. Our instrument is very powerful in the
first stage.

The IV estimates are quite similar to the OLS. The point estimate
implies a very small proportional markup, at 5%, of retail over whole-
sale prices. Taken at face value, this implies that our estimates from
the auction data could be scaled up by 5%, which would change
none of our qualitative conclusions. The standard error is not tight

26 This does not imply that retail and wholesale prices are the same. Rather, our data
show that average markups of retail prices over wholesale prices are quite high, on
the order of 30%. But, this may reflect fixed costs of shipping, repairing, holding and
selling vehicles that do not vary with the wholesale price of the vehicle.
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Table 6
Pass through of wholesale price changes to retail prices.

OLS FE IV
(1) (2) (3)

Wholesale price 1.03 0.64 1.05
(0.06) (0.21) (0.05)

Number of observations 29,318 29,318 29,318
Year dummies Yes Yes Yes
Age dummies Yes Yes Yes
VIN stub dummies No Yes Yes
First-stage F-statistic 428

Dependent variable is the retail price of a vehicle, as reported by Kelley Blue Book.
In column 3, the instrument is the interaction between each vehicle’s fuel economy
rating and the current real price of gasoline.

enough to rule out perfect pass through, however, and so we prefer
to interpret these results as a failure to reject a null hypothesis of
one to one pass through. This is consistent with the used car market
being competitive. Under that interpretation, our main results can be
interpreted directly as estimates of consumer valuation without any
rescaling to account for retail markups.

5.4. Interpretation and caveats

Our baseline estimates provide results that are precisely esti-
mated and statistically indistinguishable from the full valuation null
hypothesis. We interpret this as a failure to find evidence in support
of consumer undervaluation. It is important to note, however, that
the testing of this hypothesis requires a series of assumptions that
are embedded in the construction of our future fuel cost variable.
Just as in the other papers in this literature, our approach requires us
to take a stand regarding consumers’ beliefs about future fuel prices,
about the schedule of vehicle mileage and scrappage, and about the
discount rate. Our results would move, mechanically, if we changed
any of these assumptions, and indeed the results in Table 4 sug-
gest that the coefficients could suggest meaningful overvaluation at
higher discount rates.

Additionally, our specification (again, like others in the litera-
ture) makes simplifying assumptions about the structure of the used
car market. It is not obvious that any of these assumptions should
create a bias that exaggerates our estimates, but it is important to
understand the assumptions involved. Thus, we briefly discuss these
implicit assumptions before concluding.

5.4.1. The new car market
Past literature has either assumed that supply responses in the

new car market, which may be endogenous to the price of gaso-
line, do not affect used car prices (Kahn, 1986; Busse et al., 2013) or
attempted to account for the new car market using a vehicle choice
model (Allcott and Wozny, 2014). By including vehicle type by time
fixed effects, we control nonparametrically for any effect that new
car supply decisions have on used car prices, so long as the effect is
common across vehicles with the range of odometer readings that
appear in the sample.

Even so, the supply elasticity of the new car market could influ-
ence results. To see why, suppose that the supply for a particular
vehicle in the used car market is perfectly inelastic. What we (and
others) identify is the change in the willingness to pay for each
model. But, the change in the willingness to pay for a model depends
also on the prices of alternatives. (This point is made empirically in
Langer and Miller (2013).) The elasticity of the new car market might
cause a correlation in price shocks for competing products that could
drive the willingness to pay to move more for some products than
others in response to a gasoline price shock.

The intuitive case is that this should bias us against finding full
valuation, which mitigates this concern given our results. To see why,
consider, for example, a rise in the price of gasoline. This will cause a

contraction in the sales of new cars that are inefficient and a (relative)
expansion in the sales of new cars that are efficient. This supply effect
will dampen the change in demand for efficient used cars relative to
the change in demand for inefficient used cars, which works against
the main effect we mean to isolate. We suspect that, in practice, the
new and used car markets are sufficiently segregated that, while they
undoubtedly affect each other even in the short run, the effects are
being picked up sufficiently by our fixed effects. This would be true
so long as new car market considerations did not differentially affect
the same type of vehicle with different current mileage.

5.4.2. Heterogeneity
We do not explicitly model heterogeneity among consumers in

their driving behavior, but of course some consumers drive more
than others. If the scrappage decision, as a function of odometer, is
common across individuals, then heterogeneity in miles driven per
period will generate differences in valuation only through intertem-
poral shifts in mileage that influence the cost function through
discounting. But, our data are wholesale prices. This means that deal-
ers buying the vehicle do not know if they will be selling to a high
or low mileage customer, so this variation should not actually influ-
ence our estimates, provided that the distribution of mileage across
individuals buying a given type do not change with the price of
gasoline.

Consumers may be heterogeneous in a variety of ways. It is surely
the case that consumers have some variation in their discount rates,
their degree of myopia, and their gasoline price expectations, but
we model the problem as if there is a single representative agent.
Bento et al. (2012) argue that ignoring heterogeneity in fuel economy
valuation is likely to cause downward bias. If the bias is in fact down-
ward, that would work against our finding of full valuation. Note,
however, that Grigolon et al. (2014) explicitly model heterogeneity
and conclude that, when allowing heterogeneity in both fuel econ-
omy valuation and in other coefficients, for their data set, this bias
turns out to be minimal.

6. Conclusion

We use a new approach to answer the question of whether or
not consumers properly value fuel economy in the market for auto-
mobiles. Our approach isolates a type of variation in fuel costs that
represents a very small fraction of the overall variation. We do so
for reasons of research design, but we note also that this method
could be argued to isolate variation in fuel costs that are particularly
non-salient to consumers, especially compared to the cross quartile
design of Busse et al. (2013). Thus, we think that we have presented
a more stringent test for consumer rationality.

Our baseline estimates are consistent with full valuation at low
discount rates. These results are robust to several specification alter-
natives. The conclusion that consumers fully value fuel economy is,
however, subject to several caveats. First, to estimate the remain-
ing lifetime of vehicles, which is critical for our estimation, we rely
on mileage and vehicle scrappage schedules from a single govern-
ment study. This prevents us from directly measuring differences in
lifetime mileage across models. Second, we do find evidence of mod-
est undervaluation (equivalently, of higher discount rates) in several
specifications, especially among vehicles that have higher odometer
readings.

We emphasize, however, that given our isolation of a limited
source of fuel cost variation that is likely especially difficult for
consumers to understand and calculate, even these coefficients are
strong evidence that consumers are responsive to fuel costs. Even the
most pessimistic reading of our evidence firmly rejects the implicit
assumption used in regulatory impact analyses that consumers are
highly inattentive to fuel costs.
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Appendix A. Additional Tables

Table A1
Summary statistics: fleet transactions.

Mean Standard deviation Minimum Maximum

Transaction price (2008 USD) 13,130 6,945 11.7 95,629
Gasoline price (2008 USD) 2.04 0.61 1.20 3.98
Present value remaining Fuel cost (2008 USD) 7,766 3,932 983 39,278
Odometer (miles) 42,863 21,036 10,000 99,999
Age (years) 2.6 1.5 0.0 19.0
Fuel economy (EPA Combined MPG) 22.0 4.48 11.0 46.0
Car indicator variable 0.60 0.49 0.0 1.0
Number of observations 1,962,720
Number of unique VIN stubs 9,783

Summary statistics reported here are for the final estimation sample of vehicles sold by fleet operators.

Table A2
Summary statistics: manufacturer transactions.

Mean Standard deviation Minimum Maximum

Transaction price (2008 USD) 15,970 5,536 175.8 105,986
Gasoline price (2008 USD) 1.92 0.53 1.20 3.98
Present value remaining Fuel cost (2008 USD) 5,513 3,115 406 30,581
Odometer (miles) 22,513 9,571 10,000 99,993
Age (years) 0.92 0.80 0.0 7.75
Fuel economy (EPA Combined MPG) 22.7 3.62 13.0 40.6
Car indicator variable 0.76 0.43 0.0 1.0
Number of observations 1,117,094
Number of unique VIN stubs 4,628

Summary statistics reported here are for the final estimation sample of vehicles sold by manufacturers.
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