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On the Optimal Allocation of Students and
Resources in a System of Higher Education∗

James M. Sallee, Alexandra M. Resch, and Paul N. Courant

Abstract

We model the social planner’s decision to establish universities and populate them with stu-
dents and resources, given a distribution of student ability and a limited pool of resources for
higher education. If student ability and school resources are complements, and if there is a fixed
cost to establishing a school, then the optimal allocation will involve a tiered system of higher ed-
ucation that sorts students by ability. In contrast to previous research, we show this tiered system
is optimal even in the absence of peer effects. In considering where to locate students, the plan-
ner balances the benefit of providing students with more resources against the congestion costs of
overcrowding schools. Nearly identical students who are close to the margin of entry to a higher
or lower tier will experience discrete gaps in education quality. In considering how many univer-
sities to establish, the planner will balance the value of more precise tailoring against the cost of
establishing additional schools. The planner’s inability to perfectly tailor education quality will
result in both winners and losers. Our model also makes predictions about how university sys-
tems that serve different populations should vary. Larger systems will produce more per dollar of
expenditures and more education per student, due to economies of scale.
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1 Introduction

Approximately 77% of college students in the United States attend public in-
stitutions, where total annual expenditures now exceed $190 billion (NCES,
2005a,b). Despite the magnitude of public involvement in higher education,
and despite the enormous body of research on the economics of education,
economists have not established a normative model of how students and re-
sources should be allocated in a system of public higher education. The aim
of this paper is to provide a simple and tractable framework for the analy-
sis of this issue and to derive several intuitive results regarding the optimal
allocation of students and resources.

Given a distribution of student ability and a limited pool of resources for
higher education, we model the social planner’s decision to establish schools
and populate them with students and resources. Our model is driven by two
simple assumptions: (1) that there is complementarity between resources and
student ability in producing educational outcomes; and (2) that there is a fixed
cost to establishing a school. We show that these assumptions produce a tiered
structure that sorts students by skill and results in discontinuous spending and
educational output per student for essentially identical students at the margin
between schools.

The existence of a fixed cost creates economies of scale, both for individual
schools and for the whole system. Because they can tailor educational spending
more closely to student quality, university systems serving a larger population
produce more output per student, holding constant total resources per student.
Improved tailoring raises aggregate social welfare, but it does not benefit all
students (i.e., it is not Pareto improving). In particular, the lowest ability
students at each school will lose when an additional school is introduced into
the system, because they will be dropped into a lower tier. Larger systems
with more schools will provide a college education to a larger fraction of the
population, and they will feature a wealthier and more selective flagship school,
at the optimum.

The principal contribution of this paper is that these results, which are
broadly consistent with observed stylized facts, can be derived from a very
simple model. Most states have a hierarchy of postsecondary institutions ex-
hibiting markedly different levels of resources. The most obvious example is
California, where the state’s Master Plan for Higher Education clearly lays
out a three tier structure comprised of the University of California system, the
California State University system, and the California Community Colleges.
Even without an explicit plan, most states have a flagship public university,
some number of other four year institutions, and a system of local commu-
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nity colleges. Students are distributed among these schools largely on the
basis of their measured academic ability, and discontinuous levels of public
spending per student in each tier are strongly and positively associated with
average ability. On average across the country, instructional expenditure per
student in public universities that grant doctorates is more than twice that
in community colleges. The difference in total expenditures directly relevant
to education is higher.1 Further, Winston (1999) shows that spending per
student and subsidy per student are generally increasing in student quality in
the U.S across all universities.

Our paper is closely related to existing work on systems of educational
provision at the elementary and secondary level, as well as earlier work on
competitive (as distinct from planned) systems of higher education. All of
the earlier work that we are aware of contains explicit consideration of peer
effects. Arnott and Rowse (1987) study an elementary and secondary system
from a planning perspective similar to ours. They consider the allocation of
students to various classes within a school, where students vary in ability and
classrooms have a level of resources per student that applies to all students
in the class. Their principal finding is that any type of partition is possible,
depending on the strength of peer effects.2

Peer effects are a central feature of other related work. Rothschild and
White (1995) analyze competitive outcomes in higher education with peer
effects and demonstrate the potential for efficient private provision. Epple and
Romano (1998) construct a model of private and public secondary schools in
order to analyze the effects of voucher reforms. Epple, Romano and Sieg (2003)
and Epple, Romano and Sieg (2006) consider a model of higher education in
which universities compete on quality and university differentiation is driven
by exogenous endowment differences.

The driving force in our model is complementarity in production. The no-
tion that complementarity leads to positive assortative matching (tiers, in this
case) is hardly new. This is the underlying mechanism in the marriage market
model of Becker (1973), for example. In the education literature, Arnott and
Rowse (1987), Bénabou (1996), Epple and Romano (1998), Epple et al. (2003)
and Epple et al. (2006) all derive at least some results that resemble our tiered

1Based on authors’ calculations of 2004 data from the Integrated Postsecondary Educa-
tion Data System.

2Effinger and Polborn (1999) work with a model that, on the surface, appears similar to
ours. They begin, however, by assuming that there are two different schools and that some
students are innately better served at the “lower” school. They then solve an allocation
problem, under the assumption that attendance at one school versus the other affects wages
in a market with imperfect information.
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structure.3 In addition to assuming complementarity between resources and
ability, this earlier work considers peer effects, and, in most cases, outcomes
are influenced by the distribution of income.

Our model can be interpreted as a simplified case of much of this earlier
work. As is often the case, simplification yields both benefits and costs. We
show that it takes only two strong (but not unreasonable) assumptions to
generate an optimal system that is broadly consistent with the stylized facts of
state higher education systems. By eliminating peer effects, we demonstrate
that complementarity, along with fixed costs, is sufficient to make a tiered
system optimal. Our simple model also allows us to consider some issues that
do not appear in the prior literature. In particular, our results on resource
discontinuities, our analysis of the optimal number of universities, and our
discussion of the selectivity of schools are new, even as they are latent in
earlier work.

We cannot, however, claim to have captured everything that might be im-
portant in our simple model. As indicated by previous research, markets, peer
effects and associations between income and ability are important in higher
education systems. Transportation costs (and therefore spatial considerations)
and the political economy of education finance are also surely influential. Ab-
stracting from these concerns enables us to isolate the role of complementarity
and to build intuition, but it also eliminates consideration of the ways in which
these factors may reinforce or counteract our findings.

We also believe that our emphasis on a planner’s perspective is of value. In
Epple and Romano (1998), Epple et al. (2003) and Epple et al. (2006), schools
compete with each other by maximizing quality. While this is a reasonable
approach, we think that for the case of public universities in state systems, it
is more natural to consider the planner’s problem of maximizing total output
across a set of schools. While both approaches lead to similar mathemati-
cal results on sorting, we think that framing the problem from a planner’s
perspective is of heuristic value.

We build up our model incrementally throughout the remainder of the
paper. In section 2, we introduce the key elements of the model. Section 3
describes the solution when the optimal number of schools is fixed. Section
4 extends the analysis to consider the optimal number of schools. Section 5
concludes. All proofs are relegated to the appendix.

3A strand of the literature that studies continuous optimization problems has touched
on the implications of complementarity between student ability and student quality. Fer-
nandéz and Gaĺı (1999) is an example. That paper differs significantly from our analysis by
considering a continuum of pre-existing schools of exogenous quality.
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2 A Description of the Model

We model a social planner’s problem. The planner takes as given the distribu-
tion of students, the amount of resources available, the education production
function, and the fixed cost of establishing a school. The planner chooses
the number of universities, selects which students attend each university, and
decides how many resources to give each university.

We model educational output as a function of student ability and resources
per student at the student’s school. We assume that ability and resources are
complementary. Our assumptions about the distribution of students will be
innocuous, but our assumptions about the curvature of the education produc-
tion function are key to our results.

We believe a planner’s problem is attractive both because it is relatively
simple and because it is a good approximation to the real world, where the
vast majority of students attend public institutions. In our model, students
are not explicitly decision-makers. If they were, however, they would all have
unanimous preferences to attend schools with higher resources per student,
because this is the only dimension along which universities vary. The planner
can therefore use selective admissions to produce the desired allocation. In
other words, a planner with control over admissions policy can satisfy all
incentive constraints.

We consider a utilitarian social welfare function, so that the social planner
seeks to maximize the aggregate level of educational output. Distributional
considerations could be modeled by giving the social planner a preference for
equality of outcomes (e.g., a concave social welfare function), equality of ex-
penditure (e.g., a loss function for school quality disparities), or equality of
access (e.g., a loss function for selective admissions). Courant, McPherson
and Resch (2006) argue that distributional considerations may affect the de-
sign of higher education because higher education may be a useful instrument
for smoothing preexisting differences in welfare. We acknowledge that dis-
tributional concerns are interesting, but we focus on the utilitarian case to
maintain simplicity and because we believe it is a good characterization of
higher education (as opposed to primary and secondary education), where se-
lective admissions prevail and there is typically no presumption of education
for all.4

4There is a class of concave social welfare functions that we could employ without chang-
ing any qualitative results. This leads to limited additional insight, at the cost of significant
additional notation. A sufficient condition for our results to hold is that the transformation
U(h(·)) be supermodular and concave, where h(·) is the education production function and
U(·) is the social welfare function. The conditions on U(·) and h(·) that ensure this have no
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We do not consider peer effects. They are not needed to obtain any of
our results, and omitting them simplifies the model and makes the mechanics
more transparent. Previous research has included both peer effects and ex-
penditures per student as inputs to education (Arnott and Rowse, 1987; Epple
and Romano, 1998; Effinger and Polborn, 1999; Epple et al., 2003), clouding
the issue of what drives the model. Our results show that complementarity is
sufficient for educational sorting.

The education produced by an individual student is denoted by h(x, r),
where x is that student’s ability and r is the resources per student at the
student’s school. Ability follows a continuous, differentiable cumulative distri-
bution, F (x), with a probability density function denoted by f(x) and a finite
support bounded by x and x.5

To establish a school, the planner pays a fixed cost, θ, and then purchases
the variable input into education. We assume that all students at a school
receive the same resources per student. In effect, educational resources at the
school are a congestible public good. For any level of total resources that a
school provides, the level of resources per student depends only on the number
of students in the school.

We assume that the education production function, h(x, r), is continuous,
twice differentiable, and increasing and concave in each argument. Logically,
output should be increasing in ability and resources. We also suppose that it
is concave in each element. As a normalization, we assume that students with
zero resources produce zero output, and we restrict the domain of h to weakly
positive values of resources. Finally, we assume that the education output
function exhibits complementarity. This may also be called supermodularity,
and it is equivalent to a positive cross partial derivative.

h = h(x, r)
h1 > 0 h11 < 0
h2 > 0 h22 < 0
h12 > 0 h(x, 0) = 0

Only complementarity should be a controversial assumption. Complemen-
tarity means that, at any given level of resources per student, higher ability
students produce more when given a marginal increase in resources. While it
is not obvious that this is true in all cases, we find it to be a plausible assump-
tion. We note also that it is pervasive in the literature (Arnott and Rowse,
1987; Epple et al., 2003).

obvious economic interpretation.
5A finite support is not necessary generally, but it will be required when we later assume

a uniform distribution.
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The planner will choose to set up K universities, indexed by k = 1, . . . , K.
The planner must pay θK in fixed costs from the total available resources T .
What remains, R, the resources net of the fixed costs, is partitioned among
the schools. We denote the proportion of R allocated to school k as ρk. The
planner must also partition the distribution F (x) between schools. For each
value of x, the planner allocates a proportion of the distribution to each school,
denoted by pk(x). The total measure of students is denoted by S. The measure
of students at a school is denoted by sk and is equal to S

∫
pk(x)f(x)dx. Thus,

the resources per student at a school, rk, may be written as ρkR
sk

.
The planner simultaneously chooses the number of universities and the

partition of students and resources. It is useful, however, to write the planner’s
problem when the number of schools is fixed as a sub-problem. We denote the
global value function as V , and the value function when K is fixed as W :

V (T, S, θ) = max
K

W (T, S, θ,K), where

W (T, S, θ,K) = max
{ρk},{pk(x)}

S

∫ x

x

h

(
x,
ρ1R

s1

)
p1(x)f(x)dx+

...+ S

∫ x

x

h

(
x,
ρKR

sK

)
pK(x)f(x)dx

s.t. θK +R ≤ T

K∑
k=1

ρk ≤ 1 (P1)

ρk ≥ 0 ∀ k
K∑
k=1

pk(x) ≤ 1 ∀ x

pk(x) ≥ 0 ∀ k, x

Each integral of program P1 represents a school. The output of a school is the
integral of individual student outputs with resources equal to rk, integrated
over pk(x)f(x), the distribution of students assigned to the school.

The first and second constraints are the planner’s budget constraint. The
third disallows “negatively funded” schools. The fourth and fifth restrict the
planner’s partition, disallowing negative assignments, while permitting the
planner to not educate some students.

In choosing the optimal number of schools, the planner balances the burden
of paying the additional fixed costs for more schools against the inefficiency
of sending very different types of students to the same school. The planner
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allocates students and resources, which implicitly sets the resources per student
at each school.

First order conditions for this problem can, at least in principle, be estab-
lished using variational methods. In the interest of clarity, we shall instead
demonstrate that the problem can be reduced to a more tractable form.

3 The Optimal Allocation When the Number

of Universities is Fixed

We begin by isolating the allocation decision, taking the number of schools as
fixed. With a fixed number of universities, the planner’s solution is a mapping
from the set of students and resources into universities. One class of partitions
of the type space involves grouping the highest ability types together in one
school, then grouping the next highest ability types in a second school, and so
on. We call this a monotonic partition.

Definition 1. A partition is monotonic if and only if, for least and greatest
elements xk and xk in each school, a student x is assigned to school k if and
only if xk ≤ x ≤ xk.6

Any partition that results in one school having both higher and lower ability
students than another school cannot be monotonic. Any partition that puts
two students of the same type into different schools cannot be monotonic.
Supermodularity (complementarity) of the underlying education production
function is a sufficient condition to make the optimal partition monotonic.

Proposition 1. If h(x, r) is complementary (supermodular), then the optimal
partition of students is monotonic.7

Supermodularity is sufficient to generate educational sorting, even when
there are no peer effects. Imagine, instead, a non-monotonic partition between
two schools. The allocation can be improved by replacing a lower ability
student with a higher ability student in the school with more resources per
student.

Corollary 1. In any optimal monotonic partition, any school that has higher
ability students than another school will also have higher resources per student.

6Alternatively, this could be stated as, for least and greatest elements xk and xk in each
school, pk(x) = 0 if x < xk or x > xk and pk(x) = 1 if xk < x < xk.

7All proofs are in the appendix.
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Resources and ability are complements. This immediately leads to the
conclusion that universities with higher ability students should have more re-
sources per student.

Proposition 1 tells us the shape of the optimal solution, allowing us to
rewrite program P1. The planner sets an admissions policy by determining
the lowest ability type admitted to each school.8 We denote the highest type
assigned to school k by ak, with a0 denoting the lowest type at the lowest
school.9

V (T, S, θ) = max
K

W (T, S, θ,K), where

W (T, S, θ,K) = max
{ρk,ak}

S

∫ a1

a0

h

(
x,
ρ1R

s1

)
f(x)dx+

...+ S

∫ aK

aK−1

h

(
x,
ρKR

sK

)
f(x)dx

s.t. θK +R ≤ T (P2)

0 ≤ a0 ≤ ... ≤ ak ≤ ak+1 ≤ ... ≤ aK ≤ 1

K∑
k=1

ρk ≤ 1

ρk ≥ 0 ∀ k

Program P2 has one fewer constraint than program P1, and the suboptimiza-
tion problem for W is a standard static optimization problem. One can easily
construct a Lagrangean and characterize the first-order conditions for any
given K. In principle, the planner can find the optimal allocation for each
value of K that is feasible, then choose the best among these.

We find significant heuristic value in further simplifying the problem. First,
we assume that the distribution of student ability is uniform on [0, 1]. This
simplifies notation, but does not substantively affect any interpretations. Sec-
ond, we normalize S to 1. Third, for the remainder of this section only, we
assume that the number of schools is fixed at two. Again, this substantially
clarifies the tension in the model, and all of the following results are easily
translatable to other values of K.

Under these additional assumptions, the planner chooses one value of ρ,
the proportion of resources to be allocated to the lower school, and two cut-off

8There will be no gaps between the lowest type in one school and the highest type in the
next school; otherwise total output could be increased by giving a higher ability student the
place of a student at the lower school.

9I.e., pk(x) = 1 for x ∈ [ak−1, ak] and pk(x) = 0 otherwise.

8

The B.E. Journal of Economic Analysis & Policy, Vol. 8 [2008], Iss. 1 (Advances), Art. 11

http://www.bepress.com/bejeap/vol8/iss1/art11



conditions, the lowest ability type admitted to the lower school, a, and the
lowest ability type admitted to the higher school, b.

max
a,b,ρ

H(a, b, ρ) =

∫ b

a

h

(
x,

ρR

b− a

)
dx+

∫ 1

b

h

(
x,

(1− ρ)R

1− b

)
dx

s.t. 0 ≤ a ≤ b ≤ 1 (P3)

0 ≤ ρ ≤ 1

First-order necessary conditions for an interior solution follow from the uncon-
strained optimization problem. At an interior optimum, the Lagrange multi-
pliers on the inequality constraints are all zero. Only one constraint, a = 0,
can ever bind at the optimum.10

Hρ =
R

b− a

∫ b

a

h2

(
x,

ρR

b− a

)
dx− R

1− b

∫ 1

b

h2

(
x,

(1− ρ)R

1− b

)
dx = 0 (1)

Ha =− h
(
a,

ρR

b− a

)
+

ρR

(b− a)2

∫ b

a

h2

(
x,

ρR

b− a

)
dx = 0 (2)

Hb =h

(
b,

ρR

b− a

)
− h

(
b,

(1− ρ)R

1− b

)
− ρR

(b− a)2

∫ b

a

h2

(
x,

ρR

b− a

)
dx

+
(1− ρ)R

(1− b)2

∫ 1

b

h2

(
x,

(1− ρ)R

1− b

)
dx = 0 (3)

Another way to write these first-order conditions is to substitute sk and rk
back into the equations.

Hρ =
R

s1

∫ b

a

h2 (x, r1) dx− R

s2

∫ 1

b

h2 (x, r2) dx = 0 (1b)

Ha =h (a, r1)− r1

s1

∫ b

a

h2 (x, r1) dx = 0 (2b)

Hb =− h (b, r1) + h (b, r2) +
r1

s1

∫ b

a

h2 (x, r1) dx− r2

s2

∫ 1

b

h2 (x, r2) dx = 0

(3b)

Equation 1 states that the full marginal output of a dollar spent at either
school must be the same in equilibrium. Educational production per student

10The other inequality constraints, a = b, b = 1, ρ = 0, and ρ = 1 all imply that one
university is empty and unused. This cannot be optimal. Whenever the fixed cost has been
paid, the optimal allocation uses all available schools to tailor resources per student. In
the Cobb-Douglas case, which we explore in detail below, with x = 0, a = 0 will not bind
because the lowest student produces zero.
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depends not only on the total budget of a school, but also on the number
of students over which this budget is spread; the key metric is resources per
student. The price of an additional unit of resources per student in a school
is equal to the size of the school. Rearranging 1 yields:

Price of r2

Price of r1

=
s2

s1

=
1− b
b− a

=

∫ 1

b
h2

(
x, 1−ρ

1−b

)
dx∫ 1

a
h2

(
x, ρ

b−a

)
dx

=
Marginal Effect of r2

Marginal Effect of r1

Equation 2 describes the condition for the lowest ability person who receives
education. The first term represents the contribution to education made by
the marginal person when he or she is admitted. The second term represents
the reduction in education of those already at the school, due to congestion,
when an additional student is added. When the marginal person is added to
the school, holding the school’s total resources fixed, the level of resources per
student falls (at a rate of ρR

(b−a)2
), and this causes a decrease (in the amount

of h2(x, ρR/(b − a))) in production for each student in the school. Thus, at
the optimum, the direct contribution of the marginal student just offsets the
reduction that student causes by congesting resources.

Equation 3 describes a similar condition for the marginal student between
schools. Suppose the decision is made to send the best person from the lower
school to the upper school. Their direct contribution rises by the amount
h(b, (1−ρ)R

1−b )− h(b, ρR
b−a), as a result of attending a school with higher resources

per student (recall from corollary 1 that the higher school will have more
resources per student at the optimum). This gain is exactly equal to the net
crowding effect. The other two terms in 3 are the combined marginal benefit
in the lower school of moving the student and the combined marginal loss to
the students at the upper school from increased congestion.

This marginal student faces a discontinuity. He or she would produce
discretely more at the upper school. Because of the complementarity between
resources and student ability, the students at the better school enjoy more
resources per student. The top person in the lower tier is almost exactly the
same as the lowest person in the upper tier in terms of ability, but there is a
discrete gap in their educational outcomes.

4 The Optimal Number of Universities

The above analysis characterized the optimal allocation, taking the number of
schools as fixed. The planner must also choose the optimal number of schools.
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The B.E. Journal of Economic Analysis & Policy, Vol. 8 [2008], Iss. 1 (Advances), Art. 11

http://www.bepress.com/bejeap/vol8/iss1/art11



This analysis is less straightforward because the problem is discrete.11 We can
develop some intuition by looking at the case where θ = 0, which again allows
the use of standard calculus. When there is no fixed cost, the optimal solution
is to tailor the resources per student to each ability type, with the resources
per student rising in student ability.

Proposition 2. If there are no fixed costs (θ = 0), the optimal solution fea-
tures a unique level of funding (a unique school) for each student ability that is
funded at a positive level. The optimal amount of resources per student, r(x),

is an increasing function with r′(x) = −h21(x,r(x))
h22(x,r(x))

> 0.

When there are no fixed costs, the planner tailors education quality specif-
ically for each ability level. The proof of proposition 2 solves a basic control
problem. The solution demonstrates that resources will be rising in student
ability, and that the rate of this increase will depend on the curvature of
h. Greater complementarity increases the slope of resources as ability rises.
Greater concavity in the value of resources will dampen the relationship.

When there are fixed costs, the planner can provide only finite tailoring,
which implies that almost all ability types will receive resources different from
the infinite school optimum. This creates both winners and losers. Figure 1
shows a hypothetical resources per student function for the no fixed cost case
and the same function when K = 2. For K = ∞, r(x) must be increasing.
The area trapped by r(x) will represent the net resources available, R, when
the distribution of ability is uniform and measure 1. It is possible, but not
necessary, that all students receive some education in this system.

Suppose that K = 2 is the constrained optimum (which will be the case
for some values of θ). Some measure of students at the bottom may receive
no education in the constrained case. Students between a and b attend the
lower tier school, and students above b attend the upper tier school. The lowest
ability students at each school receive more funding than they would in the case
with perfect tailoring. In general, an increase in the ability to tailor resources
will increase total educational output, but it will not be Pareto improving.
The lowest students at each school will lose if the number of schools increases.

When there are fixed costs, the planner must balance the benefits of tailor-
ing against the costs of setting up new universities. A graphical representation

11One may wish to appeal to discrete optimization tools such as integer programming to
solve such a problem. Unfortunately, integer programming techniques, such as cutting plane
methods, are not applicable because they require first solving the case where variables are
not constrained to be integers. This will not work here because the objective function is not
defined for non-integer values of K.
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Figure 1: Resources per Student as a Function of Student Ability

of the planner’s global choice provides further intuition. Figure 2 shows sev-
eral hypothetical curves in total resources versus total educational production
space. These curves are the W (T, S, θ,K) value functions from program P2,
for several values ofK, with S and θ held constant. Each curve shows how total
output changes as total resources rises, holding fixed the number of schools,
and the measure and distribution of students. These curves are increasing
and concave. The global optimum, V (T, S, θ), is the upper envelope of these
curves.

A number of comparative statics can be visualized as the expansion or
compression of figure 2. Holding T constant, a fall in θ compresses the graph.
Each W curve shifts horizontally to the left, and curves at a higher K shift
more. As a consequence, systems with lower θ will be more productive.

Proposition 3. The average product of resources, V
T

, of the optimal system is
rising in the measure of students when resources per student is held constant
and falling in the fixed cost per school.

The second part of proposition 3 is rather obvious. Average productivity
rises when more resources are available for education and fewer are required
for paying the fixed cost. The first part follows from the implied economies of
scale. Larger systems will spread the fixed cost over more students, allowing
more money to be used as an input.

Figure 2 also provides insight into how the optimal number of universities
is chosen. For the given value of T , the planner will choose the highest curve.

12

The B.E. Journal of Economic Analysis & Policy, Vol. 8 [2008], Iss. 1 (Advances), Art. 11

http://www.bepress.com/bejeap/vol8/iss1/art11



Figure 2: Total Output versus Total Resources for Several Values of K

Each W curve begins on the T -axis at T = θK. For T above that point, W is
increasing and concave. If each W satisfies the single-crossing property, then
the optimal number of schools must be rising in T . Currently, we are unable
to prove (or disprove) that the single-crossing property is satisfied without any
additional assumptions, though our intuition is that the property will hold for
a fairly broad class of functions. This property holds in the Cobb-Douglas
case, and we can prove several further results with this functional form.12

Proposition 4. If h(x, r) = xαrβ, with 0 < α, β < 1, then the optimal number
of schools, K∗, is weakly rising in total resources, T .

Proposition 4 implies that richer systems should have more schools, thereby
achieving better tailoring. Note, again, that better tailoring does not mean
that all students benefit. Within each school, there are students who receive

12The assumption of Cobb-Douglas can be slightly relaxed to an assumption that h(x, r) =
αrβg(x) without changing the proof used. We suspect that this property is true for a broader
set of h functions, but the current proof uses the multiplicative separability of Cobb-Douglas,
which is a relatively strong assumption.
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more resources than they would if perfect tailoring were feasible. Thus, there
will be losers from an increase in total system resources if the addition of
resources causes a rise in the number of schools. In particular, some portion
of the lowest ability students at any given school will experience a decrease in
educational quality when K rises. Increases in T are not, therefore, necessarily
Pareto-improving, even if resources are dropped exogenously into the system.

Proposition 4 is closely tied to two additional comparative static results,
which relate the optimal number of schools to the fixed cost of establishing a
school and to the size of a system.

Proposition 5. If h(x, r) = xαrβ, then the optimal number of schools, K∗, is
rising in the measure of students when resources per student is held constant
and falling in the fixed cost per school.

The intuition behind proposition 5 is clear from figure 2. A reduction in θ
shifts all the curves to the left. Curves with higher K values shift more. Thus,
the diagram is contracted, and the cut-off points all move to the left. Holding
T constant, K∗ must weakly rise as a result. Raising the measure of students,
while keeping total resources per student constant, has the same effect on the
cut-off points.

University systems that serve a larger population, therefore, should be
superior in several ways. Even if they are not richer per student, they should
have more universities. They should do a better job of tailoring educational
quality to students, and they should produce more per dollar of resources and
more per student.

Larger university systems will also serve a greater fraction of the ability
distribution, and they will feature more selective flagship universities.

Conjecture 1. If h(x, r) = xαrβ, then the selectivity of the top university will
be rising in K, holding R constant.

This remains a conjecture, because we have been unable to prove this for
the general case, but there are reasons to believe that the claim is true. First,
it is clearly true in the limit. As the number of schools approaches infinity,
the top school will become arbitrarily selective. Second, we have investigated
this claim numerically, assuming that ability is distributed uniformly on [0, 1].
Our assumptions require that 0 < α < 1 and 0 < β < 1. We performed a grid
search over these intervals with a .1 width, for K = 1 through K = 5.13 For

13The numerically estimated solution is very sensitive to starting values when the param-
eters are near 0 or 1, which necessitates an extra layer of search. We checked many values
close to 0 and 1, and we performed a finer grid search over the middle of the parameter
space (from .2 to .8) where starting value sensitivity is reduced.
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Figure 3: Numerically Estimated Optimal Values of A0 and AK for Selected
α and β
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each α, β pair we numerically located the optimal cut points for each value of K
and checked that the selectivity of the top school is rising in K. This procedure
revealed no counterexamples. These examples, of course, do not prove the
conjecture. Note, however, that even if there is some set of values for α, β and
K that generate a counterexample to the claim, the predicted relationship will
likely still emerge in the real world. A similar result about the low end of the
distribution holds in simulations. Systems with more universities will serve a
larger fraction of the distribution.14

We selected additional parameter values and extended the search up toK =
10. Two examples are provided in figure 3 for illustration. When K = 1, the
lowest type admitted to the top school is the same as the lowest type admitted
to the bottom school. As K rises, the lowest type admitted to the top school

14An alternative approach is to calibrate the model. We prefer the grid search primarily
because we do not believe there is a reliable way to calibrate α and β. Since we find no
contradictions to our claim throughout the entire parameter space, we feel that the grid
search is more comprehensive than a calibrated example, which would focus on a single pair
of α and β.
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Figure 4: Flagship SAT Scores versus Number of Universities in State
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Data include all 36 states with available SAT scores from the 2001 Integrated Postsecondary Education
Data System. A regression of 75th Percentile SAT scores at the state flagship on the number of colleges in
a state yields the following estimates: SAT = 1213 (14) + 1.52 (.29) * Number of Schools + error, where
standard errors are in parentheses.

(AK) also rises. The limiting argument suggests that as K → ∞, AK → 1,
giving a sense of how these curves would project forward. A corresponding
shape exists for the lowest student admitted to the bottom school, with this
value approaching 0 in the limit. The corresponding curves have a similar
shape for each of the large number of parameter value pairs that we have
examined.

These results suggest that schools in states with a larger number of universi-
ties should have more selective flagships. Descriptive data from the Integrated
Postsecondary Education Data System on university characteristics in 2001
support this hypothesis.15 Figure 4 plots the 75th percentile of the combined
SAT scores for students at each state’s flagship university against the num-
ber of two- and four-year public universities in that state. It is clear from
the graph that states which have more institutions (better tailoring) feature a
more selective flagship university. Figure 5 plots the percentage of applicants

15These data are available at http://nces.ed.gov/ipeds/.
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Figure 5: Flagship Admissions Acceptance versus Number of Universities in
State
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Data include all 45 states with available admissions data from the 2001 Integrated Postsecondary Education
Data System. A regression of fraction admitted to the flagship on the number of colleges in a state yields the
following estimates: Fraction Admitted = 107 (15) * -1.00 (.20) Number of Schools + error, where standard
errors are in parentheses.

admitted by the flagship university against the number of public universities
in that state. The data again suggest that larger university systems have more
selective flagships.

5 Extensions and Conclusions

The purpose of this paper is to provide a framework for analyzing the optimal
allocation of students and resources within a system of higher education. Our
hope is that future research will enrich the model and test its implications.

Our model does not include tuition.16 At the optimum, the social cost of
moving a student from their assigned university to a better one is the change

16The existing literature primarily considers tuition policies that enable ability screening
for schools maximizing quality (e.g., Epple and Romano (1998); Epple et al. (2003, 2006)).
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in their educational output minus the net crowding effect. If individuals expe-
rience a private gain from educational output, there will be some measure of
students at any university for whom the private gain from a university upgrade
will outweigh the total social cost. This suggests that there are gains to be
made by allowing students to pay for an upgrade.

Similarly, students might be willing to pay a premium to attend a univer-
sity out of state. If the social planner’s objective function includes only the
education of in-state residents, the optimal tuition policy will be to admit out-
of-state students as long as their tuition, at the margin, exceeds the current
resources per student at a school. In general, the introduction of tuition policy
will make the total amount of system resources an endogenous variable.

Our model also makes empirical predictions about the relationship between
the number of universities in a system and the selectivity of its flagship univer-
sity and about the effects of introducing an additional university to a system.
When new universities are introduced, our model suggests that some types of
students will experience a reduction in educational quality, while others will
experience an increase. At the same time, overall educational output, and the
marginal value of additional revenue, should rise with the introduction of a
new university. Our hope is that future research will utilize variation in the
fixed cost (e.g., land grants, changes in federal support) and the size of the
population (e.g., migration, the Baby-Boom) to test and further refine our
findings.

In this paper, we focused on a deliberately simple model. Nevertheless,
it captures a number of key features about the provision of public higher
education. In particular, our model offers a normative explanation for a tiered
university system, within which higher ability students receive more resources.
It highlights the tradeoff inherent in tailoring education quality to student
ability. It also provides a model for understanding the optimal number of
universities in a system, and makes suggestions about how university systems
should vary.

6 Appendix

Proposition 1. If h(x, r) is complementary (supermodular), then the optimal
partition of students is monotonic.

Proof: Fix the number of schools and the resources in each school.17 Suppose

17Clearly, if any two schools provide the same resources per student, there would be
economies of scale gains to merging the schools. Thus, we can proceed as if the resources
per student differs at each school.
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the optimal partition is not monotonic. Call the two schools that violate
monotonicity 1 and 2, and, without loss of generality, assume 1 has the higher
resources per student. If monotonicity fails, then ∃ y ∈ 1 < z ∈ 2. The
proposed solution produces h(y, r1) + h(z, r2). Switching the two students
yields h(y, r2) + h(z, r1). And,

h(y, r2) + h(z, r1) > h(y, r1) + h(z, r2)⇔

h(z, r1)− h(z, r2) > h(y, r1)− h(y, r2)

which is a definition of supermodularity, since z > y and r1 > r2. QED.

Corollary 1. In any optimal monotonic partition, any school that has higher
ability students than another school will also have higher resources per student.

Proof: Suppose that the optimal partition is monotonic, with students in 1
being higher ability than students in 2, but with r2 > r1. By supermodularity,
swapping any two students between schools raises output. QED.

Proposition 2. If there are no fixed costs (θ = 0), the optimal solution fea-
tures a unique level of funding (a unique school) for each student ability that is
funded at a positive level. The optimal amount of resources per student, r(x),

is an increasing function with r′(x) = −h21(x,r(x))
h22(x,r(x))

> 0.

Proof: Part I: Suppose that there is a school with positive resources and
two or more distinct ability types. Then there exists some school with both y
and z with z > y. Let s denote the total measure of students at the school.
Without loss of generality, suppose that the measure of each type is the same,
s/2. Then, the output of the proposed optimum can be written:

V =
1

s
h

(
y,
ρR− ε
s

)
+

1

s
h

(
z,
ρR + ε

s

)
(4)

where ε = 0 and total funding at the school is ρR. We show that it is optimal
to set ε > 0, which is equivalent to separating y and z into two different
schools:

∂V

∂ε
= −h2

(
y,
ρR− ε
s

)
+ h2

(
z,
ρR + ε

s

)
> 0

The last inequality follows directly from supermodularity and contradicts the
optimality of the proposed solution.
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Part II: The infinite school problem may be written as a control problem:

max
r(x)

∫ 1

0

h(x, r(x))dx

s.t.

∫ 1

0

r(x)dx = T

It can easily be shown that the Hamiltonian leads to a degenerate solution
with h2(x, r(x)) = β ∈ R. This is an implicit function, and the conditions of
the implicit function theorem are satisfied because h22(·) 6= 0. The implicit
function theorem yields the final result, which we sign from our assumption of
concavity and complementarity:

r′(x) =
−h21(x, r(x))

h22(x, r(x))
> 0.

QED.

Proposition 3. The average product of resources, V
T

, of the optimal system is
rising in the measure of students when resources per student is held constant
and falling in the fixed cost per school.

Proof: Fix T and S. Lowering θ relaxes the resource constraint for any value
of K. V (T, S, θ) must therefore rise. Since T is fixed, V

T
must rise.

A rise in the measure of students when resources per student is held con-
stant means that S rises but T

S
is fixed. We can write this as a γ proportional

change, with γ > 1. Denote the value function as W (T, S, θ,K). For any value
of K, output per dollar of total resources can be written:

W (γT, γS, θ,K)

γT
= max

ρk,a

γS

γT

K∑
k=1

∫ ak

ak−1

h

(
x,
ρk(γT − θK)

γsk

)
f(x)dx

= max
ρk,a

S

T

K∑
k=1

∫ ak

ak−1

h

(
x,
ρk(γT − θK)

γsk

)
f(x)dx

> max
ρk,a

S

T

K∑
k=1

∫ ak

ak−1

h

(
x,
ρk(T − θK)

sk

)
f(x)dx

=
W (T, S, θ,K)

T

The second equality uses the envelope theorem, which tells us that the optimal
cut-points will not change when the parameters are varied in small amounts.
The inequality uses the fact that ∂

∂γ
ρk(γT−θK)

γsk
= ρkθK

γsk
> 0. Since this is true of

any K, it must be true for the optimal K. QED.
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Proposition 4. If h(x, r) = xαrβ, with 0 < α, β < 1, then the optimal number
of schools, K∗, is weakly rising in total resources, T .

Proof: Define W (T, S, θ,K) to be the constrained solution, when the number
of universities is fixed at K, and denote the derivative of W (·) with respect to
T by WT . In the Cobb-Douglas case, we can relate W and WT :

W (T, S, θ,K) = max
ρk,a

S

K∑
k=1

∫ ak

ak−1

xα
(

ρkR

(ak − ak−1)S

)β
dx

= max
ρk,a

S

(
R

S

)β K∑
k=1

∫ ak

ak−1

xα
(

ρk
ak − ak−1

)β
dx

= max
ρk,a

S1−β(T − θK)β
K∑
k=1

∫ ak

ak−1

xα
(

ρk
ak − ak−1

)β
dx

WT (T, S, θ,K) = max
ρk,a

βS1−β(T − θK)β−1

K∑
k=1

∫ ak

ak−1

xα
(

ρk
ak − ak−1

)β
dx

The vector of ρ and a values that maximize the objective function will also
maximize the marginal value of resources, WT , since WT is an affine transfor-
mation of W : WT (T, S, θ,K) = β

T−θKW (T, S, θ,K). Now, consider any two

numbers of universities, with K > K̂:

WT (T, S, θ,K) =
β

T − θK
W (T, S, θ,K)

>
β

T − θK
W (T, S, θ, K̂)

>
β

T − θK̂
W (T, S, θ, K̂)

= WT (T, S, θ, K̂)

Since the derivative of W with respect to T is higher the higher is K, the family
of W functions will satisfy the single crossing property in the T−W plane. For
each K > K̂ and T > T̂ , W (T̂ , S, θ,K) > W (T̂ , S, θ, K̂) ⇒ W (T, S, θ,K) >
W (T, S, θ, K̂). As is illustrated in figure 2, W will be zero up until T = θK.
So, W functions with higher K values start rising at a later point.

V (T, S, θ), the optimum when K is a choice variable, is the upper envelope
of the family of W functions in figure 2. Because of the single crossing property,
this upper envelope must lie on a W for a weakly higher K as T rises. Thus,
K∗ is rising in T . QED.
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Proposition 5. If h(x, r) = xαrβ, then the optimal number of schools, K∗, is
rising in the measure of students when resources per student is held constant
and falling in the fixed cost per school.

Proof: Define T ∗(i, j) as the T that solves W (T ∗(i, j), S, θ, i) =
W (T ∗(i, j), S, θ, j), as in figure 2. Define Q(K) =

maxρk,a

∑K
k=1

∫ ak

ak−1
xα
(

ρk

ak−ak−1

)β
dx. For the Cobb-Douglas case, as is

shown in the proof of proposition 4, W (T, S, θ,K) = S1−β(T − θK)βQ(K).
Therefore, T ∗(i, j), which will be unique if it exists by the single-crossing
property from proposition 4, solves

S1−β(T ∗(i, j)− θi)βQ(i) = S1−β(T ∗(i, j)− θj)βQ(j) (5)

Without loss of generality, assume i < j. Totally differentiate equation 5 with
respect to T and θ:

(dT ∗(i, j)− idθ)βS1−β(T ∗(i, j)− θi)β−1Q(i)

= (dT ∗(i, j)− jdθ)S1−β(T ∗(i, j)− θj)βQ(j)

Rearrange:

dT ∗(i, j)

dθ
=
jβS1−β(T ∗(i, j)− θj)βQ(j)− iβS1−β(T ∗(i, j)− θi)β−1Q(i)

βS1−β(T ∗(i, j)− θj)βQ(j)− βS1−β(T ∗(i, j)− θi)β−1Q(i)

=
jWT (T ∗(i, j), S, θ, j)− iWT (T ∗(i, j), S, θ, i)

WT (T ∗(i, j), S, θ, j)−WT (T ∗(i, j), S, θ, i)

> 0

The last two steps follow directly from the analysis in the proof of proposition
4. This shows that all cut-off points rise when θ rises. This implies that, when
T is held constant, a rise in θ must weakly decrease the number of cut-off
points passed with total resources T , which is equivalent to a weakly falling
K∗.

For the size result, note that W (γT, γS, θ,K) = (γS)1−β(γT −
γ θ
γ
K)βQ(K) = γW (T, S, θ

γ
, K). Since γ does not depend on any of the param-

eters, the cut-off points for the γW (T, S, θ
γ
, K) system are equivalent to the

cut-off points for the W (T, S, θ
γ
, K) system. Thus, an increase in the measure

of students, holding constant total resources per student, which is equivalent
to choosing γ > 1, is equivalent in its effect on K∗ to a reduction of θ to θ

γ
.

Since K∗ was proved above to be weakly falling in θ, it must be weakly rising
in the measure of students. QED.
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