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target of the regulation. We develop a theoretical model of the welfare consequences

of attribute basing, including its distortionary costs and potential benefits. We then

quantify these welfare consequences using quasi-experimental evidence from weight-

based fuel-economy regulations. We use bunching analysis to show that vehicle weight

increased in response to regulation. We also leverage a policy change and develop a

new method for analyzing “double-notched” policies to compare the costs and benefits

of a specific attribute-based policy.

Keywords: fuel-economy standards, energy efficiency, corrective taxation, notches,

bunching analysis
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1 Introduction

Many important economic policies feature “attribute basing”. An attribute-based regu-

lation aims to change one characteristic or behavior of a product, firm, or individual (the

“targeted characteristic”), but it takes some other characteristic or behavior (the “secondary

attribute”) into consideration when determining compliance. For example, Corporate Av-

erage Fuel Economy (CAFE) standards in the United States are designed to increase the

fuel economy of cars (targeted characteristic), but they take the size of each car (secondary

attribute) into consideration. Firms making larger cars are allowed to have lower average

fuel economy. Fuel-economy regulations are attribute-based in the world’s four largest car

markets—China, Europe, Japan and the United States. Nearly every wealthy country reg-

ulates the energy efficiency of household appliances, and these regulations are universally

attribute-based. Consumer-facing product labels, like Energy Star or other eco-labels, are

often attribute-based. Regulations ranging from the Clean Air Act to the Family Medical

Leave Act, the Affordable Care Act, securities regulations and agricultural regulations are

attribute-based because they exempt some firms based on size.

The goal of this paper is to investigate the welfare consequences of attribute-based regu-

lations (ABR), as opposed to regulations based only on the targeted characteristic. Despite

the ubiquity of attribute-based policies, the economics literature has not established theo-

retical and empirical frameworks for the analysis of this important class of policies. In this

paper, we first develop a theoretical model that identifies the key parameters that determine

the costs and benefits of attribute basing. We then explore two empirical methods that en-

able us to estimate those key parameters. Our empirical analysis exploits quasi-experiments

in attribute-based Japanese fuel-economy regulations, the features of which provide several

empirical advantages for estimating the welfare effects of ABR.

In brief, we conclude that it is unlikely that attribute basing is justified on efficiency

grounds. We identify conditions under which attribute basing has efficiency benefits, but

these same benefits could be achieved through compliance trading schemes without incurring
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distortions associated with attribute basing. Attribute basing is an imperfect substitute for

compliance trading, and it is justified only if there is some constraint that prevents trading.

Instead, we suspect that many ABR are motivated by distributional considerations. In this

case, the distortions induced represent the cost of achieving redistribution.

We begin by establishing a simple theoretical model that facilitates the analysis of

attribute-based regulations. The key cost of an ABR is that it creates an implicit incentive

for market participants to manipulate the secondary attribute. We argue that this cost,

and a variety of possible benefits, can be understood by thinking of the targeted charac-

teristic and the secondary attribute as two distinct goods, the former of which causes an

externality. In this framework, the insights and tools of traditional public finance immedi-

ately apply. Specifically, our first proposition establishes sufficient conditions under which

attribute basing is purely distortionary, because a policy based only on the targeted char-

acteristic can emulate a first-best Pigouvian tax. The resulting welfare loss from attribute

basing in this situation is a Harberger triangle in the “market” for the secondary attribute,

and thus the elasticity of the attribute with respect to implicit regulatory incentives is the

pivotal parameter that determines the magnitude of welfare losses from ABR.

We then investigate a variety of possible benefits of ABR that might rationalize its use

despite this cost. We focus on two possibilities, though we discuss several others. First,

ABR can enhance efficiency by equalizing marginal costs of regulatory compliance across

sources, in certain settings. Some policies (including CAFE) have a compliance trading

system, which means that the market as a whole must meet the standard on average, and

the market for compliance credits will equalize marginal costs of compliance. Other policies

(like energy efficiency mandates for appliances) require each product to comply with a given

standard. When each product must comply, marginal costs of compliance will vary across

products. When the secondary attribute is correlated with compliance costs, an ABR can

reduce the dispersion in marginal costs. This creates an efficiency benefit that must be

weighed against the costs induced by distortions in the choice of the attribute. Our second
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proposition characterizes this trade-off. Taken together, our results imply that whether an

ABR is preferable to a standard based only on the targeted characteristic will depend upon

the elasticity of the attribute with respect to regulatory incentives and the degree of marginal

cost equalization that the ABR is able to achieve.

A second possibility is distribution. Attribute basing can achieve distributional goals

when the planner wishes to shift welfare across consumers or producers based on the sec-

ondary attribute. In this case, the efficiency costs of ABR that are our focus represent the

cost of achieving distributional goals. For example, size-based fuel-economy regulations can

be rationalized as a way of shifting welfare between firms that sell small vehicles and those

that sell large vehicles (perhaps in order to favor domestic producers and their consumers).

Our final proposition demonstrates conditions under which second-best policies will include

attribute basing to achieve redistribution.

In the second part of our paper, we develop two complementary empirical methods that

use quasi-experimental policy variation to identify key parameters necessary for assessing

the costs and benefits of attribute basing. To do so, we analyze Japanese fuel-economy regu-

lations, under which firms making heavier cars are allowed to have lower fuel economy. The

Japanese regulation offers two empirical advantages over data from other markets, including

automobile markets in the E.U. and U.S. First, the Japanese regulations have existed for

more than three decades and have experienced several policy reforms. Second, the Japanese

ABR is notched—the fuel economy required for a given vehicle is a decreasing step function

of its weight. Automakers therefore have a large incentive to increase vehicle weight only up

to key thresholds where the mandated fuel economy drops discretely. These notches do not

change the fundamental economic incentives at play, but they aid empirical identification.

Our panel analysis differs from existing work in this area by considering a double notch (i.e.,

a notch in two coordinates), which is, to the best of our knowledge, new to the literature.1

Our first empirical strategy is to test for “bunching” (excess mass) in the distribution of

1See Slemrod (2010) for a review.
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vehicle weight around regulatory thresholds, which belie a distortion in vehicle weight (the

secondary attribute). We find stark evidence of weight manipulation. Qualitatively, this

implies that vehicle weight is responsive to policy incentives, which, according to our theory,

implies significant deadweight loss. To quantify this bunching, we use methods recently

developed in the public finance literature. We estimate that 10% of Japanese vehicles have

had their weight increased in response to the policy. Among the affected vehicles, we estimate

that weight rose by 110 kilograms on average. This not only works against the goal of

petroleum conservation (because heavier cars are less fuel efficient), but it also exacerbates

accident-related externalities (because heavier cars are more dangerous to non-occupants).

Our back-of-the-envelope estimate based on the value of a statistical life and estimates of the

relationship between fatalities and vehicle weight suggests that this weight increase creates

around $1 billion of deadweight loss per year in the Japanese car market. This should spark

concern about the use of ABR not only in the substantial automobile market in Japan, which

includes roughly five million units sold per year, but also for China (the world’s largest car

market), the European Union and India, all of which feature weight-based fuel-economy

regulations.

Our second empirical strategy involves estimating a model that enables us to study coun-

terfactual policies and to directly compare the costs and benefits of attribute basing. Our

theory emphasizes that ABR can be beneficial in equalizing marginal costs of compliance,

in particular for policies that require each individual product to comply with a standard. In

such cases, the benefits of marginal cost equalization may outweigh costs from distorting the

attribute. Such benefits are likely muted in the Japanese fuel-economy regulations because

they allow fleet averaging, but in 2009, the Japanese government introduced a model-specific

(rather than corporate average) subsidy for vehicles that exceeded a more aggressive weight-

based fuel-economy threshold. This provides an ideal opportunity to use quasi-experimental

variation and revealed preference data to estimate parameters necessary for directly com-

paring the efficiency benefits and distortionary costs of an ABR. Vehicles that are modified
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in order to become eligible for the subsidy reveal information about the relative costs of

changing weight versus fuel economy. We construct panel data spanning the introduction

of the subsidy, and use it to estimate the compliance costs of modifying fuel economy and

weight.

We use these estimates to evaluate three counterfactual policy scenarios—attribute-based

fuel-economy standards, a flat standard without compliance trading, and a flat standard

with compliance trading. Consistent with the results of our model, when compliance trading

is disallowed, attribute-based standards improve efficiency as compared to a flat standard

because attribute basing helps equalize marginal compliance costs. However, this benefit is

partially offset by distortions in the attributes created by the regulatory incentive; the ABR

results in weight increases, whereas a flat policy leads to weight reductions. Also consistent

with our theory, we find that attribute basing is an imperfect substitute for compliance

trading because marginal compliance costs are not perfectly correlated with the attribute,

which results in only partial equalization of the marginal compliance costs. In our case, the

ABR recovers only about half of the welfare gain that would be achieved by a flat standard

with compliance trading.

Our paper contributes to several literatures. First, we contribute to the environmental

economics literature on differentiated standards, of which attribute basing is an example.

The prior literature has focused on vintage-differentiated standards (e.g., Gruenspecht 1982;

Nelson, Tietenberg, and Donihue 1993; Stavins 2006) or spatial differentiation (e.g., Mendel-

sohn 1986; Becker and Henderson 2000). Consistent with our findings, the literature on

spatial differentiation finds that such differentiation may be logical from a cost-effective

standpoint, but that it may distort the location of economic activity. Similarly, the litera-

ture on vintage differentiation notes that differentiation can improve efficiency by equalizing

marginal costs of compliance, but that this comes at a cost of distorting the vintage distri-

bution by affecting exit or entry. Parallel to our conclusions, the literature suggests that

tradable permits may be a superior way to achieve these gains (see, for example, Stavins
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2006). Relative to this literature, our model offers a concise way of characterizing benefits

and distortions, as well as optimal policies, in a unified welfare framework. We also extend

the literature to consider differentiation in product characteristics like size.

Second, we contribute to the analysis of fuel-economy policies. There is a substantial

literature in this area, but few studies have considered attribute basing. Whitefoot and

Skerlos (2012) use engineering estimates of design costs and a discrete-choice model to predict

the manipulation of footprint in response to CAFE. Reynaert (2015) studies the roll out of

fuel-economy standards in the E.U., which are weight-based, using a structural model of the

market. Relative to those papers, we provide revealed preference evidence of weight changes

using quasi-experimental variation. Our paper is also the first to develop a full theoretical

model of attribute basing, though Gillingham (2013) notes the potential implicit incentive

for the expansion of footprint in a broader discussion of CAFE policies. Finally, Jacobsen

(2013b) addresses the safety impacts of footprint-based standards in the United State, which

we discuss below.

In sum, our paper demonstrates how ABR, which may at first appear quite different from

a tax, can be analyzed with the tools of public economics—i.e., Pigouvian taxes, Harberger

triangles, and the theory of the second best—to evaluate an important class of policies. For

the policy we study, we find large unintended consequences, and we quantify the benefits of

policy reform. Our paper has important implications for future research and policy because

a growing number of countries are adopting attribute-based regulations in durable goods

markets, including automobiles, electric appliances, solar panels and buildings.

2 Theory

Our model setup is as follows. A consumer has unit demand for a durable good with two

continuously varying characteristics a and e, the levels of which they choose. The present

discounted benefit of services from the durable is Fn(an, en), where n = 1, ..., N indexes a type
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of consumer whose tastes may vary. Consumers have exogenous income In, which they spend

on the durable and a quasi-linear numeraire x. The characteristic e generates an externality

that is linear in the aggregate e consumed over all types, with marginal social benefit φ.

The total externality is φ
∑

n en. In our terminology, e is the targeted characteristic; a is the

secondary attribute.

We model an attribute-based regulation as a mandate that requires en ≥ σ(an). This

mandate acts as a constraint on the consumer’s optimization problem. When compliance

trading is allowed, the mandate must be met by the market on average, but individual

products can make up a compliance gap by purchasing credits. We generally work with

a linear attribute-based regulation, which has en ≥ σ̂an + κ, where σ̂ and κ are constants.

Where we work with a more general function σ(a), we assume it is differentiable and includes

a constant term κ. We call σ′(an), which equals σ̂ for linear policies, the “attribute slope.”

We assume a perfectly competitive supply side with no fixed costs per variety. This

means that consumers can choose any bundle of a and e and pay a price P (a, e) that is equal

to the marginal cost of production C(a, e), which we assume is increasing and convex in

both arguments. Our supply assumptions simplify the analysis and allow us to focus on the

unique implications of attribute basing. There are no firm profits, and there is no distinction

between changing the attributes of an existing product versus introducing a new variety. In

our empirical application, we observe products made by firms, and to apply our model we

interpret changes in product characteristics as reflecting policy-induced shifts in consumer

choices. The benefit is tractability and transparency, but the cost is that we do not account

for the welfare consequences of policy-induced changes in firm market power.

Under marginal cost pricing, having substituted in the budget constraint, consumer n’s

Lagrangean is:

max
an,en

Un = Fn(an, en)− C(an, en) + In + λn(en − σ(an)), (1)
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where λn is the shadow price of the regulation. The consumer ignores the externality when

making choices.

The planner puts welfare weight θn on the utility of type n, which includes the externality,

where the mean of θn is normalized to 1. The planner maximizes social welfare W by choosing

the policy function σ(an):

max
σ(an)

W =
∑
n

θn (Fn(an, en)− C(an, en) + In) + φ
∑
n

en. (2)

At times, we make use of notation that writes the consumer’s welfare loss from deviating

from their private optimum as Ln(en − e0
n, an − a0

n) ≡ Un(an, en)− Un(a0
n, e

0
n), where a0

n and

e0
n are the characteristics that type n would choose in the absence of any policy (i.e., their

privately optimal bundle). We denote deviations from these private optima as ∆an ≡ an−a0
n

and ∆en ≡ en − e0
n.

In some cases, we will assume a quadratic functional form of Ln for illustration:

Ln(∆an,∆en) = α(∆an)2 + β(∆en)2 + γ∆an∆en. (3)

Our model makes several assumptions in the interest of simplicity, including perfect

competition, perfect targeting of the externality, and unit demand for the durable. We

discuss these issues further in section 2.4.

2.1 ABR is an imperfect substitute for compliance trading

Some attribute-based regulations (including CAFE since 2012) have a compliance trading

system through which firms that exceed the standard are given a credit for excess compliance

that can be sold to another firm. Buyers can use credits to achieve compliance. If the market

for permits is competitive, a trading system ensures that the marginal compliance cost,

which will equal the equilibrium price of a compliance credit, is uniform across all firms and

products. We first consider the implications of ABR in the presence of such a competitive

8



compliance trading system.

When there is compliance trading, the potential benefit that ABR provides by equalizing

marginal costs of compliance is obviated. Proposition 1 shows that optimal policy involves

no attribute basing in this case.

Proposition 1. Assume that there is competitive compliance trading. If welfare weights are
uniform (θn = 1 ∀n), the optimal policy involves no attribute basing. The optimal attribute
slope is:

σ′(an)∗ = 0 ∀an.

The proof of Proposition 1 shows that the first-best allocation is achieved by a flat standard

that is set at a level that implies that the market shadow price is equal to φ, the externality.

(All proofs are in the appendix.) This is intuitive. The crux of our argument is that the

bundling of a and e in a single durable good is largely irrelevant; the consumer’s problem

can be understood as a microeconomic choice problem over two related goods, a and e. The

only difference is that the price of a and e can be nonlinearly related. As can be seen by

the first-order conditions of the consumer’s problem (equation 1), attribute-based regulation

creates a pair of wedges, equal to λ and −λσ′(an), in the “markets” for e and a, respectively.

The conditions of Proposition 1 imply that the planner has no distributional concerns,

marginal costs are equalized across types by compliance trading, and the only market failure

is the externality from e. As a result, the planner can achieve the first-best allocation by

creating a wedge in the choice of e equal to the externality. There is no benefit to creating

a wedge in the choice of a, which requires that σ′(an) = 0. Where there are other market

failures, this result will change, which we discuss in section 2.4.

This is consistent with standard principles of Pigouvian taxation, which we emphasize

by restating the result for a tax policy instead of a regulation in the appendix. There, we

show that a zero attribute slope is also optimal for a subsidy instead of a regulation, which

accords with the broadly-applicable additivity property of Pigouvian taxation.
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When there is not a compliance trading system, each product must individually comply

with the mandate. For a flat standard, this will give rise to dispersion in the marginal costs of

compliance across products, which violates the equimarginal principle and belies inefficiency.

When the attribute is correlated with compliance costs, ABR can have efficiency benefits by

reducing this variation. This is shown in Proposition 2.

Proposition 2. Assume that there is no compliance trading. Then, even if welfare weights
are uniform (θn = 1 ∀n), the optimal linear regulation generally involves attribute basing. If
the constraint binds for all n, the optimal attribute slope satisfies:

σ̂∗ =
cov(λn, an)

φ
(
∂ā
∂σ̂
− ā ∂ā

∂κ

) ,
which is not zero unless λn is uncorrelated with an.

Proposition 2 shows that, absent a compliance trading system, some attribute basing is

optimal, even when there are no distributional considerations. The exception is when the

attribute is perfectly uncorrelated with marginal compliance costs under a flat standard, in

which case the numerator is zero, and attribute basing, which cannot equalize compliance

costs, is undesirable. An ABR is a differentiated standard; so long as the dimension along

with the standard can be differentiated is correlated with marginal cost, there is a potential

efficiency gain.

Attribute basing is a substitute for compliance trading, but it is an imperfect substitute

for two reasons. First, whereas compliance trading can generate first-best outcomes in our

framework, attribute basing can improve marginal cost equalization, but only partially, unless

compliance costs are perfectly predicted by the choice of a. Second, attribute basing achieves

marginal cost equalization by inducing distortions in the choice of the attribute for all types,

which has an efficiency cost. In our empirical analysis below, we estimate a model that allows

us to directly compare the distortionary costs and the marginal cost equalization benefits.

We focus our attention on the possibility of using ABR to equalize marginal compliance

because this motivation is consistent with the design of several real policies. Where this
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equalization is the goal, optimal policy must trade-off greater equalization against larger

distortions to the attribute, which we illustrate via an example in Corollary 1.

Corollary 1. Assume that there is no compliance trading, that welfare weights are uniform
(θn = 1 ∀n), that the constraint binds for all n, and that there is a perfect correlation between
attributes (e0

n = b + ma0
n with m 6= 0). With a uniform quadratic loss function for all n,

the optimal linear regulation involves attribute basing but it does not fully equalize marginal
costs, even though this is possible. The optimal attribute slope satisfies σ̂∗ 6= 0 and σ̂∗ 6= m.

The corollary adds two assumptions to Proposition 2—a uniform quadratic loss function and

a perfect correlation between the privately optimal bundles, e0
n and a0

n—that together imply

perfect marginal cost equalization is possible. But, even when full marginal cost equalization

is feasible, it is not optimal. Beginning from a flat standard, a steeper attribute slope will

increase marginal cost harmonization, but it also exacerbates distortions in a (for all types).

The second-best attribute slope strikes a balance between the costs of distorting a and the

benefits of marginal cost harmonization.

Real world ABRs seem to have been designed to maximize marginal compliance cost

harmonization, without considering the distortions. For example, U.S. regulators chose the

slope of the footprint-based standard in CAFE by fitting a line to data on fuel economy

and footprint. Fuel-economy standards in the E.U. were similarly designed by estimating

the relationship between fuel economy and weight. Japanese fuel-economy standards do

something similar, though the slope is chosen to fit only a subset of vehicles deemed to be

high performing. Fitting a line to the data in this way is consistent with an attempt to

harmonize marginal costs; indeed, in the quadratic case, this is exactly the way to minimize

variance in marginal costs.

But, the example here shows that this is not optimal. Instead, greater harmonization

should be balanced against increases in the distortion to a created by a steeper attribute

slope. An ABR is a differentiated standard, and this balancing of costs and benefits will be

true in other types of differentiated standards, so long as (a) marginal costs are correlated

with the variable that determines differentiation, and (b) economic agents can strategically
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alter the variable that determines differentiation.

Graphical illustration

We provide a brief graphical illustration of these conclusions in Figure 1, where each dot

represents the privately optimal bundle for a type, (a0
n, e

0
n). The three panels of the figure

represent three different policies. Vectors depict privately optimal compliance choices; that

is, the end point of the vector is the new attribute bundle chosen by that type in order to

comply at the lowest possible cost.

By definition, any movement away from the private optimum causes a private welfare

loss. For quadratic losses, the level sets of L will be ellipses around the private optimum.

Figure 1 depicts level sets for one data point. In the absence of compliance trading, the

cost-minimizing way to achieve compliance for each type will be to relocate to a point where

the lowest possible level set of the loss function is tangent to the regulation.

Given the quadratic loss function, the length of a compliance vector will be directly

proportional to marginal cost. Marginal cost equalization is thus signified when vectors are

all the same length. The slope of the privately optimal compliance vector is determined by

the attribute slope. Specifically, compliance vectors will have slope (4αβ − γ2)/(2βσ̂2 + γ)2,

which is a function of σ̂. When σ̂ is zero, the compliance vector has slope (4αβ − γ2)/γ2,

which may be negative or positive; that is, a might rise or fall in response to a flat standard,

depending on the curvature of the loss function.

The three panels of Figure 1 depict the response to a flat standard, an attribute-based

standard, and a flat standard with compliance trading. In Figure 1a, a flat standard generates

no response (no vector depicted) among some types, because their private optimum is above

the standard. For products with non-zero marginal costs, the marginal cost varies, which is

indicated by the differences in vector lengths.

Figure 1b depicts an attribute-based regulation. It partially equalizes marginal costs

(equalizes vector length). If the correlation between a0
n and e0

n was perfect, the equalization
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Figure 1: Graphical illustration of ABR

(a) Flat standard

eo

ao

(b) Attribute-based standard

eo

ao

(c) Flat standard with trading

eo

ao

Points represent privately optimal choice for a type. Ellipses (drawn for one point only) are level sets of loss

function. Optimal compliance path, which depends on policy, drawn as vector. With uniform quadratic loss

function, vectors are parallel across points of a given policy, and vectors are parallel in (a) and (c).

could be perfect.

But, attribute basing also induces a change in the slope of the compliance vector. When

σ̂ is larger (in absolute value), the slope of the compliance vector will become flatter. That

is, the proportion of the response to the ABR that comes from changes in a rather than

changes in e will rise. This change in slope is inefficient, which can be seen by comparison

with Figure 1c, which depicts a fully efficient flat standard with compliance trading. The

slopes of the vectors are the same in Figures 1a and 1c; both are flat policies and induce a

slope of (4αβ − γ2)/γ2. But, the compliance trading system equalizes shadow prices so that

all products have the same vector length.

Thus, the limitations of attribute basing are twofold. First, an ABR will only partially

equalize marginal costs. Second, the ABR achieves marginal cost equalization by distorting

the choice of a. As a result, as indicated by Corollary 1, the second-best attribute slope will

not be the one that maximizes marginal cost equalization. Instead, it will be less steep; it will

trade-off mitigation in the distortion to a for more dispersion in marginal cost. Of course,

in reality, the loss function may differ across products, which creates another advantage for
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the efficient policy relative to a flat standard or an ABR.

The graphs also help illustrate a common misunderstanding in the non-academic liter-

ature, which implies that it is desirable for an attribute-based standard to not distort the

distribution of the secondary attribute relative to the no-policy baseline. An efficient policy

will induce a change in the attribute (the compliance vectors in Figure 1c are not perfectly

vertical), and an attribute-based policy that preserves the distribution of the attribute from

a no-policy baseline is preserving a market inefficiency.

We do not formally analyze the optimal choice of which attribute to use in this paper.

But it is clear that attributes that are (a) more closely related to compliance costs and

(b) less elastic will be better. The former characteristic maximizes the ability of an ABR

to harmonize compliance costs; and the latter characteristic minimizes the welfare cost of

distortions to the attribute. The challenge for policymakers in finding the right attribute is

twofold. First, knowledge of marginal costs will be required to estimate correlations. Second,

the correlation between the attribute and marginal cost may be endogenous to the policy

regime. Further exploration is a promising topic for future research.

Some real world policies represent an intermediate case by allowing fleet averaging. A

firm must comply on average across its products, but there is no trading allowed between

firms. Fleet-averaging will harmonize the marginal costs within a firm, but not across firms.

Fleet averaging may achieve a substantial fraction of welfare gains. It can be thought of as

a constrained form of trading in our model.

In sum, for policies that require each individual product to meet a standard rather than

for the market as a whole, an ABR can increase efficiency. Minimum efficiency standards for

appliances are an example of this type of policy. The first two phases of Chinese fuel-economy

standards were also designed this way, as is the tax subsidy for automobiles in Japan that we

analyze in section 4. ABR can increase efficiency for such policies by harmonizing marginal

costs, but it will do so imperfectly unless the attribute is perfectly correlated with marginal

costs, and it can only do so by creating a distortion in the choice of the attribute, unless that
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attribute is completely unresponsive to policy incentives. To the degree that the conditions

are not met, ABR will be less efficient than a flat standard with compliance trading, but it

may still improve over a flat standard without compliance trading. In the final section of

this paper, we quantify these trade-offs for a Japanese fuel-economy subsidy.

2.2 The deadweight loss of ABR

If attribute basing is employed in a policy with compliance trading (perhaps due to political

constraints or simply by mistake), it will create a welfare distortion without any resulting

benefit. Specifically, Proposition 3 shows that, for a subsidy, when the subsidy on e is set

to the Pigouvian benchmark, deadweight loss is approximated by the Harberger triangle in

the “market” for a, summed across types.

Proposition 3. Assume welfare weights are uniform (θn = 1 ∀n) and s = φ. The deadweight
loss from a subsidy with σ′(an) 6= 0 is approximated as:

DWL ≈
∑
n

1/2 · ∂an
∂(sσ′(an))

(sσ′(an))2.

The wedge in the choice of a is sσ′(an), so this is directly analogous to a Harberger triangle.

Just as in a standard setting, the magnitude of the welfare loss from using attribute basing is

determined by the size of the wedge (sσ′(an)) and the derivative of the good (a) with respect

to that wedge. As a is more elastic, distortions from ABR will be larger. The central object

of our empirical analysis is to determine whether, for the ABR we study, this derivative is

large or small, as that will determine the size of any distortion.

In the appendix, we show also that, if a policy is constrained to include attribute basing,

this leads to an attenuation of the second-best tax away from the Pigouvian benchmark of

marginal damages, because the distortionary wedge imposed on a is mechanically related to

the wedge in e.

When the attribute a is fixed and does not respond to policy, there will be no cost from
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a distortion in a. Even in this case, compliance trading offers an information advantage over

attribute basing: the design of efficient attribute-based policies requires information about

marginal costs and their correlation with the attribute.

2.3 Distributional justifications for ABR

The preceding analysis assumes away distributional considerations so that the planner cares

only about efficiency. A change in the attribute slope will affect a transfer of welfare across

types according to their demand for the attribute. Thus, when welfare weights are correlated

with demand for the attribute across types, distributional considerations will give rise to

attribute basing. Proposition 4 demonstrates this for the linear subsidy.

Proposition 4. Assume that welfare weights θn vary. Then, the optimal linear subsidy
involves attribute basing unless θn is uncorrelated with an. The optimal attribute slope is:

σ̂∗ =

[(
φ− s
s

)
∂ē

∂σ̂
− cov(θn, an)

]/
∂ā

∂σ̂
.

The optimal attribute slope has two terms. The first is zero when the subsidy is set equal

to marginal damages (s = φ). In that case, the optimal slope is the ratio of the covariance

between the attribute and the welfare weight and the average derivative of an with respect to

the attribute slope. When the correlation between θ and a is positive, the optimal attribute

slope is negative (because ∂a/∂σ̂ is negative). As that correlation gets stronger, the slope

becomes steeper. However, as the attribute is more elastic with respect to the policy wedge

(∂a/∂σ̂ is larger in magnitude), the optimal slope is flatter. This is because any distributional

gains are achieved at the cost of distorting the choice of a for all types. When the attribute

is more elastic, the efficiency costs of distribution are higher. Less redistribution is therefore

optimal, and the optimal slope is flatter. When s 6= φ, the first term will be non-zero.

This term shrinks as the elasticity of the attribute, relative to the elasticity of the targeted

characteristic, rises.
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We suspect that distributional concerns are a key explanation for the use of attribute

basing in real policies. For example, it is widely held that footprint-based CAFE standards

were designed in part to shift welfare towards the Detroit Three, who make larger cars than

their main competitors. Similarly, French and Italian automakers (who make relatively light

cars) argued in favor of a flat standard, while German automakers (whose cars are relatively

heavy) argued for a weight-based standard in the E.U. Any distributional gains come at an

efficiency cost of distorting footprint or weight, more so as the attribute is more responsive

to policy.

2.4 Additional implications of attribute basing

Our model is focused on what we believe to be the core economic implications of attribute

basing: it creates an incentive to distort the secondary attribute, which might be justified

by distributional considerations or marginal cost equalization. We modeled those two justi-

fications because we think they are the most likely explanations for actual policies. Under

certain circumstances, there could be other benefits to attribute basing. These include is-

sues related to imperfect competition, market size effects, technological change, uncertainty,

consumer undervaluation of energy efficiency, and imperfect targeting of the externality. We

discuss these issues, including why we think they are likely less important, in the appendix.

3 Identifying Attribute Distortions via Bunching

Our theory indicates that the pivotal determinant of the costs of attribute basing is the

elasticity of the secondary attribute with respect to policy incentives. If the attribute does

not change at all in response to a policy, then attribute basing will create no efficiency

costs. But, a large response of the attribute signifies greater deadweight loss, as described

in Proposition 3. The first phase of our empirical analysis is to establish whether attribute

basing does indeed distort the choice of the attribute.
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Figure 2: Fuel-Economy Standards in Japan
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Note: The dashed line shows the fuel-economy standard in Japan until 2010. The solid line shows the new

fuel-economy standards whose target year is 2015.

We do so by analyzing the distribution of the secondary attribute for the case of Japanese

fuel-economy standards. The Japanese regulation has several advantages from the point of

view of identification. First, the regulation features “notches”; the fuel-economy target

function in Japan is a downward-sloping step function in vehicle weight. These notches

provide substantial variation in regulatory incentives and allow us to use empirical methods

developed for the study of nonlinear taxation (Saez 2010; Chetty, Friedman, Olsen, and

Pistaferri 2011; Kleven and Waseem 2013). Second, the Japanese government has been using

attribute-based regulation for decades, and we have more than ten years of data available

for analysis.

3.1 Data and Policy Background

Japanese fuel-economy standards, which were first introduced in 1979 and have changed

four times since, are weight-based. Our data, which begin in 2001, span the two most recent

policy regimes. The target functions for these policies are shown in Figure 2. To be in
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compliance with the regulation, firms must have a sales-weighted average fuel economy that

exceeds the sales-weighted average target of their vehicles, given their weights, and there

is no trading of compliance credits across firms although it is one of the key issues in the

ongoing policy debate. In Japan, firms are required to meet this standard only in the “target

year” of a policy.

When introducing a new standard, the Japanese government selects a set of weight cat-

egories (the widths of the steps in Figure 2). The height of the standard is then determined

by what is called the “front-runner” system. For each weight category, the new standard is

set as a percentage improvement over the highest fuel-economy vehicle (excluding vehicles

with alternative power trains) currently sold in that segment. When the newest standard

was introduced in 2009, the government also introduced a separate tax incentive that applies

to each specific car model, rather than for a corporate fleet average. We make use of this

policy in our panel analysis in section 4. For our bunching analysis, we simply note that

both incentives are present in the latter period, and either could be motivating strategic

bunching of vehicle weight at the regulatory thresholds (which are common across the two

policies).

Our data, which cover all new vehicles sold in Japan from 2001 through 2013, come

from the Japanese Ministry of Land, Infrastructure, Transportation, and Tourism (MLIT).

The data include each vehicle’s model year, model name, manufacturer, engine type, dis-

placement, transmission type, weight, fuel economy, fuel-economy target, estimated carbon

dioxide emissions, number of passengers, wheel drive type, and devices used for improving

fuel economy. In the appendix, Table ?? presents summary statistics. There are between

1,100 and 1,700 different vehicle configurations sold in the Japanese automobile market each

year. This includes both domestic and imported cars. The data are not sales-weighted; we

use the vehicle model as our unit of analysis throughout the paper.
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3.2 Excess Bunching at Weight Notches

The notched attribute-based standards in Japan create incentives for automakers to increase

vehicle weight, but only up to specific values. Increasing weight offers no regulatory benefit,

unless the increase passes a vehicle over a threshold. Excess mass (“bunching”) in the

weight distribution at exactly (or slightly beyond) these thresholds is thus evidence of weight

manipulation. Moreover, if automakers are able to choose vehicle weight with precision, then

all manipulated vehicles will have a weight exactly at a threshold. In turn, this implies that

all vehicles with weights not at a regulatory threshold have not had their weight manipulated

in response to the policy.

We begin by presenting histograms of vehicle weight in Figure 3. Panel A shows the

histogram of cars sold between 2001 and 2008. In this period, all vehicles were subject to

the old fuel-economy standards, which is overlaid in the same figure. The figure reveals

strong evidence of weight manipulation in response to the policy; there is visible excess

mass at the notch points. The magnitude of this bunching is substantial. There are more

than double the number of cars at each notch point, as compared to the surrounding weight

segments. The histogram bins have a width of only 10 kilograms (which is the finest measure

available in our data), and yet the bunching appears to be isolated to the weight categories

immediately at each threshold. This suggests that automakers can manipulate weight very

finely.

Panel B shows the corresponding figure for data taken from years when the new standard

was in effect. Between Panel A and B, the mass points shifted precisely in accordance with

the change in the locations of the notch points. This shift in the location of the distributional

anomalies provides further compelling evidence that firms respond to the attributed-based

regulation. In the appendix, we present analogous results for “kei-cars”, which are micro-cars

with engine displacements below 0.66 liters. The weight distribution of kei-cars also exhibits

bunching at notch points, and the bunching moves over time in accordance with the policy

change.
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Figure 3: Fuel-Economy Standard and Histogram of Vehicles

Panel A. Years 2001 to 2008 (Old Fuel-Economy Standard Schedule)
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Panel B. Years 2009 to 2013 (New Fuel-Economy Standard Schedule)
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Note: Panel A shows the histogram of vehicles from 2001 to 2008, where all vehicles

had the old fuel-economy standard. Panel B shows the histogram of vehicles from 2009

to 2013, in which the new fuel-economy standard was introduced.

In sum, the raw data provide strong evidence that market actors responded to attribute-

based fuel-economy policies in Japan by manipulating vehicle weight, as predicted by theory.

Next, we use econometric methods to estimate the magnitude of this excess bunching.
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3.3 Estimation of Excess Bunching at Notches

Econometric estimation of excess bunching in kinked or notched schedules is relatively new

in the economics literature. Saez (2010) estimates the income elasticity of taxpayers in the

United States with respect to income tax rates and EITC schedules by examining excess

bunching around kinks in the U.S. personal income tax schedule. Similarly, Chetty, Fried-

man, Olsen, and Pistaferri (2011) estimate the income elasticity of taxpayers in Denmark

with respect to income tax rates by examining the excess bunching in the kinked tax sched-

ules there. In Pakistan, the income tax schedule has notches instead of kinks. That is, the

average income tax rate is piecewise linear. Kleven and Waseem (2013) use a method similar

to Chetty, Friedman, Olsen, and Pistaferri (2011) to estimate the elasticity of income with

respect to income tax rates using bunching around these notches. Our approach is closely

related to these papers, although our application is a fuel-economy regulation, not an income

tax.

To estimate the magnitude of the excess bunching, our first step is to estimate the

counterfactual distribution as if there were no bunching at the notch points, which parallels

the procedure in Chetty, Friedman, Olsen, and Pistaferri (2011). We start by grouping

cars into small weight bins (10 kg bins in the application below). For bin j, we denote the

number of cars in that bin by cj and the car weight by wj. For notches k = 1, ..., K, we

create dummy variables dk that equal one if j is at notch k. (Note that there are several

bins on each “step” between notches, which we can denote as j ∈ (k − 1, k).) We then fit a

polynomial of order S to the bin counts in the empirical distribution, excluding the data at

the notches, by estimating a regression:2

cj =
S∑
s=0

β0
s · (wj)s +

K∑
k=1

γ0
k · dk + εj, (4)

2We use S = 7 for our empirical estimation below. Our estimates are not sensitive to the choice of S for

the range in S ∈ [3, 11].
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where β0
s is an initial estimate for the polynomial fit, and γ0

k is an initial estimate for a bin

fixed effect for notch k. (We refer to these as initial estimates because we will adjust them

in a subsequent step.) By including a dummy for each notch, the polynomial is estimated

without considering the data at the notches, defined as the 10 kg category starting at the

notch. We define an initial estimate of the counterfactual distribution as the predicted values

from this regression omitting the contribution of the notch dummies: ĉ0
j =

q∑
s=0

β̂0
s · (wj)s. The

excess number of cars that locate at the notch relative to this counterfactual density is

B̂0
k = ck − ĉ0

k = d̂0
k.

This simple calculation overestimates Bk because it does not account for the fact that the

additional cars at the notch come from elsewhere in the distribution. That is, this measure

does not satisfy the constraint that the area under the counterfactual distribution must equal

the area under the empirical distribution. To account for this problem, we must shift the

counterfactual distribution upward until it satisfies this integration constraint.

The appropriate way to shift the counterfactual distribution depends on where the excess

bunching comes from. Our theory indicates that attribute-based fuel-economy regulation

provides incentives to increase car weight—that is, excess bunching should come from the

“left”. We assume that this is the case. We also make the conservative assumption that

the bunching observed at a given notch comes only from the adjacent step in the regulatory

schedule, which limits the maximum increase in weight. That is, the bunching at notch

k comes from bins j ∈ (k − 1, k). In practice, automakers may increase the weight of

a car so that it moves more than one weight category. In that case, our procedure will

underestimate weight distortions. In this sense, our procedure provides a lower bound on

weight manipulation.

In addition, estimation requires that we make some parametric assumption about the

distribution of bunching. We make two such assumptions, the first of which follows Chetty,

Friedman, Olsen, and Pistaferri (2011), who shift the affected part of the counterfactual

distribution uniformly to satisfy the integration constraint. In this approach, we assume that
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the bunching comes uniformly from the range of j ∈ (k− 1, k). We define the counterfactual

distribution ĉj =
q∑
s=0

β̂s · (wj)s as the fitted values from the regression:

cj +
K∑
k=1

αkj · B̂k =
S∑
s=0

βs · (wj)s +
K∑
k=1

γk · dk + εj, (5)

where B̂k = ck − ĉk = d̂k is the excess number of cars at the notch implied by this coun-

terfactual. The left hand side of this equation implies that we shift cj by
K∑
k=1

αkj · B̂k to

satisfy the integration constraint. The uniform assumption implies that we assign αkj =

cj∑
j∈(k−1,k)

cj
for j ∈ (k − 1, k) and = 0 for j /∈ (k − 1, k). Because B̂k is a function of β̃s, the

dependent variable in this regression depends on the estimates of β̃s. We therefore estimate

this regression by iteration, recomputing B̂k using the estimated β̃s until we reach a fixed

point. The bootstrapped standard errors that we describe below adjust for this iterative

estimation procedure.

The uniform assumption may underestimate or overestimate ∆w if the bunching comes

disproportionately from the “left” or the “right” portion of j ∈ (k − 1, k). For example, if

most of the excess mass comes from the bins near k, rather than the bins near k − 1, the

uniform assumption will overestimate ∆w. In practice, this appears to be a minor concern,

because the empirical distribution in Figure 3 shows that there are no obvious holes in the

distribution, which suggests that the uniform assumption is reasonable. However, we prefer

an approach that does not impose the uniform assumption. We propose instead an approach

that defines αj based on the empirical distribution of cars relative to the counterfactual

distribution. We define the ratio between the counterfactual and observed distributions by

θj = ĉj/cj for j ∈ (k−1, k) and = 0 for j /∈ (k−1, k). Then, we define αkj =
θj∑

j∈(k−1,k)

θj
. In this

approach, αkj is obtained from the relative ratio between the counterfactual and observed

distributions. We use this approach for our main estimate and also report estimates from

the uniform assumption approach as well.

In addition to B̂k (the excess number of cars at notch k), we provide two more estimates
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that are relevant to our welfare calculations. The first is the excess bunching as a proportion,

which is defined as b̂ = ck/ĉk. This is the number of vehicles at a weight notch divided by

the counterfactual estimate for that weight. The second estimate is the average changes in

weight for cars at notch k, which is the quantity-weighted average of the estimated change

in weight: E[∆wk] =

∑
j∈(k−1,k)

(wk−wj)·(ĉj−cj)∑
j∈(k−1,k)

(ĉj−cj)
.

We calculate standard errors using a parametric bootstrap procedure, which follows

Chetty, Friedman, Olsen, and Pistaferri (2011) and Kleven and Waseem (2013). We draw

from the estimated vector of errors εj in equation (5) with replacement to generate a new set

of vehicle counts and follow the steps outlined above to calculate our estimates. We repeat

this procedure and define our standard errors as the standard deviation of the distribution

of these estimates.

Figure 4 depicts our procedure graphically for two notch points. In Panel A, we plot the

actual distribution and estimated counterfactual distribution at the 1520 kg notch point.

Graphically, our estimate of excess bunching is the difference in height between the actual

and counterfactual distribution at the notch point. The estimate and standard error of the

excess number of cars B is 290.0 (19.4). That is, there are 290 excess cars at this notch

compared to the counterfactual distribution. Bunching as a proportion b is 3.9 (0.2), which

means that the observed distribution has 3.9 times more observations than the counterfactual

distribution at this notch. Finally, the average weight increase E[∆w] is 144.7 (7.2) kg for

affected cars. Similarly, we illustrate the result at the 2020 kg notch point in Panel B.

Table 1 presents our estimates for all notches for the data between 2001 and 2008 (the

old fuel-economy standard). To see the automakers’ incentives at each notch, column 2

shows the stringency of the fuel-economy standard (km/liter) below and above the notch

(higher km/liter numbers imply more stringent standards). Columns 3 to 5 report our main

estimates based on the approach described above.

First, we find statistically significant excess bunching at all notches. Second, we find sub-

stantial heterogeneity in the estimates across the notches. The proportional excess bunching
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Figure 4: Graphical Illustration of Estimation of Excess Bunching at Each Notch Point

Panel A. Notch at 1520 kg
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Panel B. Notch at 2020 kg

B = 127.9 (12.2), b = 8.9 (0.8), E[∆w] =156.3 (9.4)
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Note: This figure graphically shows the estimation in equation (5). The figure also lists

the estimates of B (excess bunching), b (proportional excess bunching), and E[∆w] (the

average weight increase). See the main text for details on these estimates.

b ranges from 1.8 to 8.9. The estimated weight increases E[∆w] range between 57 kg to 103

kg for kei-cars and 59 kg to 156 kg for other cars. For most cars, this amounts to around

a 10% increase in weight, which is substantial. Third, our two different approaches for ap-
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Table 1: Excess Bunching and Weight Increases at Notches: Old Fuel-Economy Standard

Notches Fuel economy Main estimates Uniform Assumption
standard below Excess Excess E[∆weight] Excess Excess E[∆weight]
and above notch bunching bunching (kg) bunching bunching (kg)

(km/liter) (# of cars) (ratio) (# of cars) (ratio)

Panel A: Regular passenger cars

830 kg 18.8 16.6 2.1 58.6 15.8 2.0 65.0
17.9 (5.4) (0.4) (8.3) (5.5) (0.3) —

1020 kg 17.9 89.3 2.5 84.0 88.9 2.5 95.0
16.0 (12.3) (0.2) (4.9) (12.4) (0.2) —

1270 kg 16.0 169.1 2.6 81.9 169.6 2.6 125.0
13.0 (16.5) (0.2) (5.8) (16.6) (0.2) —

1520 kg 13.0 290.0 3.9 144.7 290.6 4.0 125.0
10.5 (19.4) (0.2) (7.2) (19.4) (0.2) —

1770 kg 10.5 145.4 3.6 101.2 145.6 3.6 125.0
8.9 (14.1) (0.2) (4.9) (14.1) (0.2) —

2020 kg 8.9 127.9 8.9 156.3 127.7 8.8 125.0
7.8 (12.2) (0.8) (9.4) (12.2) (0.8) —

2270 kg 7.8 18.8 3.6 122.1 18.7 3.6 125.0
6.4 (5.0) (0.7) (19.0) (5.0) (0.7) —

Panel B: Kei cars (smaller passenger cars)

710 kg 21.2 58.8 2.2 56.7 61.2 2.4 75.0
18.8 (9.6) (0.2) (12.3) (9.5) (0.2) —

830 kg 18.8 120.7 2.1 81.8 119.7 2.1 60.0
17.9 (13.2) (0.1) (2.2) (13.0) (0.1) —

1020 kg 17.9 16.9 1.8 102.9 18.2 2.0 95.0
16.0 (7.2) (0.4) (3.5) (6.9) (0.4) —

Note: This table shows the regression result in equation 5. Bootstrapped standard errors are in parentheses.

proximating the counterfactual distribution (uniform or not) produce broadly similar results.

Our estimates for B and b are not sensitive to the uniform assumption because the excess

bunching is very large compared to the counterfactual distribution, so that the way that we

reach the integration constraint matters little. We find slightly larger differences in E[∆w]

between our two methods. With the uniform assumption, E[∆w] equals half the width of

the regulatory weight step immediately below the notch by assumption, and therefore we

have no standard errors for them. Our main estimates do not impose this assumption, but
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Table 2: Excess Bunching and Weight Increases at Notches: New Fuel-Economy Standard

Notches Fuel economy Main estimates Uniform Assumption
standard below Excess Excess E[∆weight] Excess Excess E[∆weight]
and above notch bunching bunching (kg) bunching bunching (kg)

(km/liter) (# of cars) (ratio) (# of cars) (ratio)

Panel A: Regular passenger cars

980 kg 20.8 5.6 1.6 43.4 5.4 1.6 60.0
20.5 (5.4) (0.5) (6.8) (5.4) (0.5) —

1090 kg 20.5 15.4 2.2 57.5 15.3 2.2 55.0
18.7 (5.2) (0.4) (6.6) (5.2) (0.4) —

1200 kg 18.7 29.0 2.8 32.7 28.9 2.8 55.0
17.2 (7.1) (0.4) (4.8) (7.1) (0.4) —

1320 kg 17.2 23.9 2.3 48.3 23.9 2.2 60.0
15.8 (6.4) (0.3) (7.5) (6.4) (0.3) —

1430 kg 15.8 32.9 2.6 58.5 32.9 2.6 55.0
14.4 (7.8) (0.4) (4.6) (7.8) (0.4) —

1540 kg 14.4 48.8 3.2 38.4 48.9 3.2 55.0
13.2 (8.8) (0.4) (5.4) (8.8) (0.4) —

1660 kg 13.2 84.9 4.8 54.1 84.9 4.8 60.0
12.2 (11.2) (0.5) (4.2) (11.2) (0.5) —

1770 kg 12.2 46.1 3.2 54.7 46.1 3.2 55.0
11.1 (8.1) (0.4) (3.2) (8.1) (0.4) —

1880 kg 11.1 38.3 3.0 56.0 38.4 3.1 55.0
10.2 (7.0) (0.4) (5.3) (7.0) (0.4) —

2000 kg 10.2 33.7 3.2 54.0 33.8 3.2 60.0
9.4 (7.5) (0.5) (4.2) (7.5) (0.5) —

2110 kg 9.4 20.4 2.8 45.2 20.5 2.8 55.0
8.7 (4.9) (0.4) (6.8) (4.9) (0.4) —

2280 kg 8.7 6.2 2.1 88.3 6.1 2.1 85.0
7.4 (3.5) (0.6) (10.6) (3.5) (0.6) —

Panel B: Kei cars (smaller passenger cars)

860 kg 21.0 20.0 1.7 70.7 19.7 1.7 75.0
20.8 (6.9) (0.3) (6.8) (6.8) (0.3) —

980 kg 20.8 45.2 3.5 56.3 45.3 3.6 60.0
20.5 (6.9) (0.5) (4.5) (6.9) (0.5) —

Note: This table shows the regression result in equation 5. Bootstrapped standard errors are in parentheses.

nevertheless yield similar results.

Note that the counterfactual distribution we estimate represents the distribution of vehi-
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cle weights that would exist if there was a flat (not attribute-based) fuel-economy standard

with the same shadow price.3 To see this, consider a policy with compliance trading and

two weight categories, and thus one notch, at weight ã. The shadow price term in the con-

sumer’s optimization problem is equal to λ · (en − κ1) for a < ã and λ · (en − κ2) for a ≥ ã,

where κ1 > κ2. Thus, for any a, the shadow price term is equal to λ times en minus some

constant. The marginal regulatory incentive affecting the choice of e is thus the shadow

price λ, regardless of the weight category. The marginal incentive affecting the choice of a

is zero because a small change in a does not affect the shadow price term, unless a = ã, in

which case there is a discrete jump in the regulatory incentive. Thus, the distortions in a

under the notched policy comes only from the vehicles that bunch at a weight threshold,

and the marginal incentives for e (=λ) and a (=0 away from the notches) match those in a

flat standard with the same shadow price λ.

Table 2 presents corresponding estimates for all notches for the data between 2009 and

2013 (the new fuel-economy standard period). Note that the new fuel-economy standard has

more, and narrower, notches. This mechanically lowers our estimates for E[∆w], because

our conservative approach assumes that automakers do not increase weight to move more

than one step. Results from the second policy follow the same pattern. First, we find

statistical significant excess bunching at all notches. Second, similar to the estimates in the

old standard, we find substantial heterogeneity in the estimates between the notches. The

proportional excess bunching b ranges between 1.6 and 4.8 for normal cars and 1.7 and 3.6

for kei-cars, depending on the notches. The estimated weight increases E[∆w] range between

33 kg to 88 kg for normal cars and 56 kg to 70 kg for kei-cars. Finally, similar to our results

for the old standard, the method with the uniform assumption provides similar estimates to

our main estimates.

Overall, the results in this section provide evidence that automakers respond to the

3This is not the same counterfactual as one with no policy at all. Firms may respond to a flat policy by

downsizing vehicles (lowering weight) as part of a strategy to boost fuel economy.
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attribute-based fuel-economy regulation by changing the weight of vehicles. We find that

about 10 percent of vehicles in the Japanese car market manipulated their weight to bunch

at regulatory notch points. For these vehicles, the average weight increase induced by the

regulation is 110 kg, which is about a 10 percent increase in vehicle weight. This weight in-

crease has welfare implications, as described in our theory above, but it also has implications

for safety-related externalities. Heavier vehicles are more dangerous to non-occupants, and

when this unpriced, the weight distortions we document here exacerbate safety externalities.

We briefly discuss this issue in the next subsection before moving on to our panel analysis.

3.4 Safety-related welfare implications of weight manipulation

In the event of a traffic accident, heavier automobiles are safer for the occupants of the

vehicle (this is a private benefit) but more dangerous for pedestrians or the occupants of

other vehicles (this is an externality). Thus, the optimal attribute-based policy should tax

vehicle size rather than subsidize it. The implicit subsidy on vehicle weight in the Japanese

fuel-economy standards therefore exacerbate accident-related externalities.

We obtain a back-of-the-envelope estimate of the magnitude of this distortion by mul-

tiplying our estimate of the average change in car weight by an estimate of the increased

probability that a heavier vehicle causes a fatality during its lifetime, times an estimate of

the value of a statistical life. Specifically, the weighted average increase across all cars that

bunch at the notches in Table 1 is 110.20 kg. Anderson and Auffhammer (2014) estimate

that an increase in vehicle weight of 1000 pounds (454 kg) is associated with a 0.09 percent-

age point increase in the probability that the vehicle is associated with a fatality, compared

to a mean probability of 0.19 percent. For the value of a statistical life, we use $9.3 million,

which comes from a study in Japan (Kniesner and Leeth 1991), and is within the range of

standard estimates from the United States.

Multiplying through, we calculate the welfare loss, per car sold, for a 110 kg weight

increase as: 110 · 0.0009 · (2.2/1, 000)· $9.3 million = $2026 per car that changes weight in
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response to the policy. In our data, about 10 percent of cars in the market are bunched. The

Japanese car market sells around 5 million new cars per year, so we estimate our aggregate

annual welfare distortion to be 10 percent of 5,000,000 times $2026, which is $1.0 billion.

Equivalently, our calculation implies that each new cohort of 5 million cars sold in Japan

will be associated with an extra 103 deaths over the lifetime of those cars, which compares

to an annual fatality rate of roughly 6,000. Our calculations are meant only as back-of-the-

envelope estimates, but they make clear that the welfare distortions induced by the Japanese

policy are economically significant.

4 Comparing Costs and Benefits of Attribute Basing

Our theory emphasizes that attribute basing creates welfare costs by distorting the choice

of the secondary attribute. The bunching analysis in section 3 provides empirical evidence

for this prediction. But, our theory also shows that, when each product must individually

comply with a standard (i.e., when there is no compliance trading), an ABR may have

efficiency benefits stemming from marginal cost equalization. However, even when an ABR

is superior to a flat standard, it is likely to be inferior to a flat standard with trading.

The relative efficiency of the three policies (an ABR, a flat standard, and a flat standard

with trading) is an empirical question because it depends on the elasticity of the attribute as

well as the degree of marginal cost equalization achieved by the ABR. Moreover, our theory

suggests that ABR might provide distributional benefits even if it is inefficient. To provide

empirical evidence for these predictions from our theory, we develop an empirical strategy

that exploits quasi-experimental variation created by a subsidy policy in Japan.

4.1 A Subsidy Policy and Descriptive Evidence from Panel Data

In 2009, the Japanese government introduced a new subsidy that applied to each car model

rather than the corporate average. In Figure 5, we visualize this subsidy policy. If a car had
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Figure 5: The Subsidy’s Eligibility Cutoffs and the Revealed Responses to the Incentive
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Note: The solid lines are three step functions that correspond to the three tiers of the new subsidy’s

eligibility cutoffs in 2012. A car had to be above the eligibility cutoff line to obtain the subsidy. The

scatterplot shows each car’s fuel economy and weight in 2008—the year before the introduction of the

subsidy. For the cars that qualified for the subsidy in 2012, we also show “arrows” connecting each

car’s starting values in 2008 with its values in 2012.

fuel economy higher than the subsidy cutoff—the lowest step-function in the figure, which is

equivalent to the new fuel-economy standard presented in Figure 2—consumers purchasing

that car received a direct subsidy of approximately $700 for kei-cars and $1,000 for other

cars.4 In addition, cars with fuel economy 10% and 20% higher than the subsidy cutoff

received more generous subsidies in the form of tax exemptions. This creates what we call

a “double notched” policy—a car had to be above a step-function in the two-dimensional

space of fuel economy and weight.

This policy provides two advantages in studying the costs and benefits of attribute basing.

4This policy was called the “eco-car subsidy.” The government introduced the policy in April, 2009.

The policy was effective in 2009, parts of 2010 and 2011, and 2012. In 2012, the subsidy was 100,000 JPY

(approximately 1,000 USD using the exchange rate in 2012) for all passenger cars except for kei-cars, which

received 70,000 JPY (approximately 700 USD).
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First, it created quasi-experimental variation in incentives to change weight (a) and fuel

economy (e). Even though all products faced the same subsidy cutoff, each had a different

set of changes in a and e that would be required to get the subsidy. This variation comes

from differences in starting points, from the introduction of new weight notches, and from

the fact that the changes in the standards are different across the weight categories. As a

result, some vehicles are able to make modest improvements in fuel economy to gain the

subsidy, whereas others require large changes. And, some vehicles can take advantage of

a weight notch with small increases in weight, but others require a large increase. These

differences create a rich source of identification for our estimation.

Second, our theory suggests that when compliance trading is not available, attribute

basing creates a trade-off between distortionary costs and efficiency benefits. The model-

specific subsidy indeed creates such an environment because each individual car must comply

to gain the subsidy. That is, attribute basing may play a role in improving efficiency in this

subsidy policy, while such benefits are likely be minimal for the fleet-average regulation.

We begin by describing raw data that reveal how products changed in response to the

subsidy. We construct panel data of 439 domestic cars by linking cars sold in 2008 (before

the policy change) and 2012 (the last year of our data) based on a unique product identifier

(ID) in the regulatory data.5 Each dot in Figure 5 shows a car’s starting values of fuel

economy and weight in 2008. For the cars that qualified for the new subsidy in 2012, we

also show vectors connecting each car’s starting position in 2008 to its final position in 2012.

This figure is an empirical analog to Figure 1 in our theory section.

The raw data reveal several useful results. First, many of the cars that gained the subsidy

were redesigned so that they were just above the subsidy cutoff. Second, we see that some

cars had large weight increases, which is consistent with our findings in the bunching analysis.

Third, most cars except for kei-cars increased both weight and fuel economy in order to gain

5This approach ensures exact matching of products across years. A downside of this approach is that we

have to drop imported cars because the regulatory data do not provide consistent product IDs for them.
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the subsidy—that is, they moved “northeast” in the figure. Fourth, the attribute schedule is

nearly flat in the weight distribution inhabited by kei-cars, so they are subject to a nearly-

flat (not attribute-based) policy. Most kei-cars that obtained the subsidy increased fuel

economy, while slightly reducing weight. This notable difference between kei-cars and other

cars accords with our theory: the steeper sloped portion of the standard induced substantial

weight manipulation, while the flatter sloped part of the standard did not. Finally, cars

that started off closer to the new standard were more likely to get the subsidy; that is, the

“distance” to the subsidy cutoff explains most of the variation in which cars obtained the

subsidy.6

4.2 A Discrete Choice Model of Vehicle Redesign

To interpret these descriptive data, we develop a discrete choice model based on the the-

oretical framework in section 2. Suppose that we observe data from a competitive market

in two time periods, the first of which has no policy, and the second of which features the

model-specific subsidy. We consider a consumer type n who purchases a car with weight (an)

and fuel economy (en). Suppose that (a0
n, e

0
n) is the pair of fuel economy and weight chosen

in the first period. This pair should be welfare maximizing given the firm’s production func-

tion and the tastes of its consumers. Any deviation from this bundle would generate private

welfare loss L(∆an,∆en) as presented in Figure 1 above.

When the subsidy policy is introduced, this product either stays at the initial optimal

pair (a0
n, e

0
n) or moves to a new pair of (an, en) that makes the product eligible for the

subsidy at the lowest possible loss. Figure 5 provides two pieces of information relevant

to this optimization problem. First, the loss L(∆an,∆en) was likely to be larger than the

subsidy’s value for the cars that did not move to the subsidy cutoff. Second, for the cars

6In the appendix, we also show the corresponding arrows for vehicles that did not receive a subsidy.

Most of these vehicles had much smaller changes in fuel economy and weight, which suggests that secular

trends were modest during this period.
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that moved above the subsidy cutoff, the arrows reveal their optimal paths to comply with

the requirement, which provides information about the loss function.

Based on this logic, we develop a discrete choice vehicle redesign problem. Faced with a

subsidy, each product n chooses the new optimum pair of (an, en). Following our notation in

the theory section, we use ∆an = an−aon and ∆en = en− eon to denote product n’s deviation

from its initial optimum, which generates the private welfare loss L(∆an,∆en).

We make two important notes on the interpretation of L(∆an,∆en). First, this private

welfare loss is generated by a regulation. For this reason, we can interpret L(∆an,∆en) as

a regulatory compliance cost. Second, we emphasize that L(∆an,∆en) does not identify

primitives of either the utility function or the cost function, but instead provides a reduced

form statistic that reveals the change in welfare due to the introduction of the subsidy.

Note that if consumer types match perfectly to a unique vehicle and the market is perfectly

competitive, then L(∆an,∆en) can be interpreted directly as a change in consumer surplus.

Allowing for firms to price above marginal cost does not necessarily alter this interpretation.

If a markup for n does not change before and after the introduction of the subsidy, the

loss function still represents changes in consumer surplus.7 When markups change, then

L(∆an,∆en) may over or understate the impact on consumers.

We describe the choice of the new optimum (an, en) for product n as the outcome of a

discrete choice over all of the possible (discretized) grid points in a by e space. We denote

each grid point as a unique value of z. The second-period optimization problem for product

n is to choose (an, en) that maximizes Wnz, which is the compliance cost plus the subsidy:

Wnz = L(∆an,∆en) + τ · 1
(
en ≥ σ(an)

)
+ εnz. (6)

We assume that the loss function is quadratic. However, we allow the parameters to flexi-

bly vary by n through random-coefficients so that L(∆an,∆en) = αn(∆an)2 + βn(∆en)2 +

7In the appendix we argue that it is likely that markups changed little between the years of our analysis.
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γn∆an∆en. τ is also a parameter to be estimated, which represents the value of receiving the

subsidy, and εnz is a Type-I extreme value error term specific to each vehicle n and each grid

point z. First, we estimate equation 6 via a logit. Second, we relax the logit assumptions by

allowing parameters to vary by product n via a random-coefficients logit. When we interpret

the parameters in terms of dollars, we rescale them by the dollar value of the subsidy by

dividing by τ̂ (Train 2009). We can accommodate a homogeneous trend in preferences by

adding linear terms. Doing so does not change our results significantly.

Table 3 presents estimates from the logit model. ∆Weight is a change in weight in 100

kilogram units and ∆(Fuel consumption) is a change in liters per 100km (l/100km). The

coefficient on the interaction term is positive, which implies that the optimal path of reducing

fuel consumption should involve a reduction in weight. The first two coefficients (−0.97 and

−1.16) are roughly the same, indicating that a change in weight by 100 kg and a change in

fuel consumption by one l/100km result in approximately the same loss.

Accounting for fleet-average regulation—The simple specification in equation (6) provides

transparent interpretations on the estimates of the loss function. However, it considers only

the product-specific subsidy and ignores the fleet-average regulation. In the appendix, we

show that the following estimating equation provides estimates of the parameters necessary

to identify the loss function, taking into account the effects of the regulations:

Vnz = L(∆an,∆en) + τ · 1
(
en ≥ σ(an)

)
+ λ[en − σ(an)]− λo[en − σo(an)] + εnz, (7)

where L(∆an,∆en) = αn(∆an)2 + βn(∆en)2 + γn∆an∆en. Compared to equation (6), this

equation includes two control variables: en−σ(an) is the position of the vehicle vis-à-vis the

new policy and en−σo(an) is the position of the vehicle vis-à-vis the old policy evaluated at

the new choice of a and e. In the appendix, we show that i) λ and λo represent the shadow

prices of the original and new flee-average regulations, and ii) the loss function excluding the

effect of the fleet-average regulation effects is L̂(∆an,∆en) = L(∆an,∆en)+λo[eon−σo(aon)−
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Table 3: Estimates of the Loss Function

Logit Random-coefficient logit
(1) (2) (3) (4) (5)

α : (∆Weight)2 -0.97 -0.99 -2.11 -2.16 -2.27
(0.08) (0.08) (0.27) (0.27) (0.26)

β : (∆Fuel consumption)2 -1.16 -1.20 -1.49 -1.54 -2.25
(0.08) (0.08) (0.14) (0.14) (0.29)

γ : ∆Weight×∆Fuel consumption 0.35 0.40 0.31 0.38 0.86
(0.11) (0.12) (0.13) (0.14) (0.21)

τ : 1{Subsidy} 0.71 0.43 0.82 0.52 0.51
(0.15) (0.18) (0.16) (0.19) (0.21)

λ: Shadow price of new fuel-econ. standard 0.43 0.48 0.82
(0.15) (0.15) (0.21)

λ̇: Shadow price of old fuel-econ. standard -0.19 -0.21 -0.23
(0.12) (0.13) (0.14)

Standard deviation of random-coefficients:
α : (∆Weight)2 0.90 0.90 0.82

(0.18) (0.17) (0.16)

β : (∆Fuel consumption)2 0.35 0.33 0.51
(0.15) (0.16) (0.22)

γ : ∆Weight×∆Fuel consumption 1.09 1.12 1.30
(0.18) (0.18) (0.20)

λ: Shadow price of new fuel-econ. standard 1.44
(0.31)

λ̇: Shadow price of old fuel-econ. standard 0.47
(0.32)

Note: This table shows the estimation results of the discrete choice models in equation (6). We define
∆Weight as each vehicle’s change in weight in 100 kilogram units and ∆(Fuel consumption) as its change in
liters per 100km (l/100km). The estimation is based on the panel data of 439 matched vehicle models.

(en − σo(an))].

Columns 1 and 2 of Table 3 show that the addition of the regulatory control variables

have little impact on the coefficients on the loss function. The subsidy coefficient, however,

becomes smaller in this specification. This is because we are likely to overestimate the

subsidy effect in columns 1 and 2 since we do not control for the fleet-average regulation.

Importantly, while the coefficient on the subsidy affects the dollar values of the loss, it does

not have major impacts on the relative costs of changing e versus a because the estimates

on (∆a)2 and (∆e)2 are robust between the two approaches.
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Random-coefficients models—In columns 3 to 5 of Table 3, we relax the logit assumptions

by allowing random coefficients. In the bottom of the table, we report the standard deviations

of normally distributed random coefficients. The mean coefficients are similar to those in

the logit estimation except that the coefficients for (∆a)2 and (∆e)2 are slightly larger in

absolute value in the random-coefficients model. The standard deviations for the random-

coefficients are statistically significant and economically meaningful, suggesting that there

is substantial heterogeneity in the parameters for the loss function. In our counterfactual

policy analysis, we report results based on both the logit and the random-coefficients logit

to examine the policy implication of this heterogeneity.

Predicting bunching from the model—In the appendix, we demonstrate the ability of our

model to predict the excess mass of vehicles located around weight thresholds in our data.

Overall, we find that our parameters do a reasonable job at predicting bunching.

4.3 Counterfactual Policy Simulations

Using the estimated loss function, we simulate three counterfactual policies:

• ABR: This is the actual new attribute-based fuel-economy standards in Japan (Figure

2). We use ē to denote the average improvement in fuel economy induced by this policy.

• Flat: A flat fuel-economy standard that improves the average fuel economy by ē.

• Efficient: We construct a flat fuel-economy standard with compliance trading that

improves the average fuel economy by ē. Compliance trading equalizes the marginal

compliance cost across cars, which makes this policy the most efficient to achieve ē.

Letting each policy achieve the same level of an improvement in the average fuel economy

(ē) makes the three policies comparable. For these counterfactual policies, we consider an

energy-efficiency mandate—each product is required to comply with the standard. Our

theory shows that when a policy is implemented as a mandate, attribute basing might be
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justified by efficiency considerations, but its efficiency depends on how large are attribute

distortions and how well ABR can harmonize costs. We quantify these predictions using

the loss functions in Table 3. To obtain standard errors for the simulations, we create one

hundred bootstrapped samples, estimate the loss function for each sample, and apply that

loss function to simulate counterfactuals for each sample. The standard deviation of the

simulation results provides bootstrapped standard errors.

Attribute-based policy—This policy requires all vehicles in Figure 5 to move above the

lowest line. Given each vehicle’s initial point and our estimates of the loss function L, we find

a bundle of a and e that achieves compliance at the lowest possible cost. We then calculate

the resulting ∆a, ∆e, and ∆L for each car’s new optimal point.

Panel A of Table 4 reports results based on the loss function with logit specification.

The counterfactual ABR lowers fuel consumption e by 0.84 l/100km on average, which is

approximately a 10 percent improvement in fuel economy. Consistent with our theoretical

prediction, the ABR induces a 36.8 kilogram (81 lb) average weight increase, which is about

a 3 percent increase in weight. This policy’s private compliance cost L(∆a,∆e) is $2132

per unit sold, averaged across all model types. An important statistic for measuring the

efficiency of regulation is the standard deviation in the marginal cost of increasing e at the

optimal choice across products. In the most efficient policy, this statistic is zero because

the marginal compliance cost is equalized across products. Therefore, the dispersion of the

marginal compliance cost provides a measurement of inefficiency. For the ABR, this standard

deviation is $1812. Finally, we calculate the external cost from safety externalities in the

last column. In addition to the private compliance cost, the ABR creates a loss from safety

externalities of $677 because the policy induces an increase in weight.

Flat policy—The flat standard has the benefit of not distorting weight. The estimated γ

in Table 3 implies that when firms need to reduce fuel consumption e, it is helpful to reduce

weight a. Consistent with this result, we observe that the flat policy reduces the average

weight by 34 kg in Table 4, which is an efficient change in weight rather than a distortion.
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Table 4: Counterfactual Policy Simulations

∆e: ∆a: L(∆a,∆e): Cost S.D. of External cost
Fuel consumption Weight Compliance relative to marginal from safety

(liter/100km) (kg) cost efficient compliance cost externality
($/car) ($/car) ($/car)

Panel A: Based on logit estimates

Efficient -0.84 -14.96 965 1.00 0 -276
(0.00) (5.81) (277) (0.00) (0) (107)

Flat -0.84 -34.05 3605 3.73 3804 -627
(0.00) (12.86) (1029) (0.10) (1098) (237)

ABR -0.84 36.76 2132 2.21 1812 677
(0.00) (6.43) (638) (0.12) (545) (118)

Panel B: Based on random-coefficient logit estimates

Efficient -0.84 -5.06 1128 1.00 0 -93
(0.00) (3.81) (328) (0.00) (0) (70)

Flat -0.84 -26.40 4719 4.18 4130 -486
(0.00) (12.77) (2189) (1.30) (1033) (235)

ABR -0.84 22.52 2062 1.83 2155 415
(0.00) (7.74) (622) (0.39) (598) (142)

Note: The three policies are an attribute-based fuel-economy standard (ABR), a flat fuel-economy standard

with no compliance trading (Flat), and a fully efficient policy, which is a flat standard with compliance

trading (Efficient). Bootstrapped standard errors are in parentheses.

The flat standard, however, creates many infra-marginal vehicles; that is, vehicles that are

in compliance with the standard without any change in fuel economy. These infra-marginal

vehicles have a zero marginal cost of increasing e, but do not change e at all, because there is

no regulatory incentive. Other vehicles have very large marginal costs of increasing e because

they have to improve fuel economy by a large amount in order to comply with the policy.

This dispersion in marginal costs is inefficient, and it results in compliance costs that are,

on average, 3.73 times larger than the compliance costs of the efficient policy. To visualize

this inefficiency, Figure 6 plots the distribution of marginal compliance costs across products

under the ABR and the flat policy. Under the flat policy, there are many more infra-marginal
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Figure 6: Efficiency of Regulation: Dispersions in Marginal Compliance Cost
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Note: This figure shows the distributions of the marginal cost of compliance for the three simulated policies:

1) the attribute-based regulation (left), 2) the counterfactual flat policy (right), and 3) the counterfactual

efficient policy (dashed line). The distribution for the efficient policy is a vertical line because the standard

deviation is zero.

(zero marginal cost) observations, and the remaining distribution is also more diffuse. The

benefit of attribute basing is the (partial) harmonization of these marginal costs.

Efficient policy—The ABR’s harmonization in marginal compliance cost is incomplete

and that makes attribute basing an inefficient substitute for a compliance trading system.

In the efficient policy, firms face a flat standard but are allowed to trade, which is equivalent

to providing the efficient Pigouvian marginal subsidy for an improvement in e. This policy

completely harmonizes marginal costs, no products are infra-marginal, and therefore the total

compliance cost is minimized. Because the standard deviation of the marginal compliance

cost is zero, its distribution collapses to a constant, which we label in Figure 6. Table 4

confirms that this policy achieves the policy goal by the lowest compliance cost.

Heterogeneity in compliance cost—Panel B of Table 4 shows the same statistics using
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the loss function that allows random-coefficients. To make the results comparable to Panel

A, we let each policy produce the same level of ē as in Panel A. The results in Panel B are

qualitatively the same as in Panel A.

Distributional considerations—Proposition 4 in our theory suggests that attribute basing

may exist in real-world policies because of its distributional implications. Attribute basing

alters the incidence of compliance costs across firms and consumers, which may be desirable

to policy makers. In Figure 4.3, we show the average compliance cost per car by firm,

as estimated by our simulation. A flat standard induces uneven compliance costs across

firms partly because some firms produce more heavy and fuel-inefficient cars than others.

Attribute basing mitigates this dispersion by allowing heavier cars to improve less. As a

result, the average compliance cost is more evenly distributed in the ABR. Finally, in the

efficient policy, some firms have negative compliance costs because compliance trading allows

them to sell excess compliance to others. Although the efficient policy produces the lowest

compliance cost for the society by equalizing marginal compliance cost, the ABR might be

preferred by policymakers if they wish to prioritize distributional considerations.

Summary—Our counterfactual analysis highlights points consistent with our theoretical

predictions. First, ABR creates substantial distortions in the attribute. An efficient policy

leads to a reduction in weight, whereas the ABR causes a noticeable increase in weight.

Second, a benefit of ABR is the partial harmonization of the marginal costs of compliance.

Relative to a counterfactual non-ABR flat policy, ABR produces smaller dispersions of the

marginal compliance costs between products, which lowers costs. Third, ABR is nevertheless

an inefficient substitute for a fully efficient policy such as a non-ABR policy with compliance

trading because the efficient policy does not create attribute distortions and fully equalizes

the marginal costs of compliance. Fourth, ABR changes the distributional impacts of policy,

so that ABR could be used as a way to favor one set of products over others.
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Figure 7: Distributional Consideration: Compliance Cost ($ per Car) by Firm
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Note: This figure shows each firm’s average compliance cost ($ per car) for the three counterfactual policies.

The cost can be negative under trading because firms can sell credits.

5 Conclusion

This paper shows that attribute-based regulation is an imperfect substitute for flat policies

with compliance trading. The key drawback to attribute basing is that it creates distor-

tions in the attribute, and we show that those distortions are greater when the attribute is

more responsive to policy. Empirically we demonstrate that those distortions are substan-

tial for the case of weight-based fuel-economy regulations in Japan. Attribute basing may

have appeal when it is used to achieve distributional goals, or when compliance trading is

unavailable. Regarding the latter, for the Japanese tax policy we consider, attribute basing

is significantly more efficient than a flat standard without trading, but it is twice as costly

as a flat standard with compliance trading.
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Online Appendices: Not for Publication

Appendix A Proofs of propositions

Proposition 1. Assume that there is competitive compliance trading. If welfare weights are
uniform (θn = 1 ∀n), the optimal policy involves no attribute basing. The optimal attribute
slope is:

σ′(an)∗ = 0 ∀an.

Under compliance trading, a single shadow price, denoted λ will prevail. Consumer n’s

problem can be written:

max
an,en

Un =Fn(an, en) + In − P (an, en) + λ× (en − σ(an)− κ).

The first-order conditions are:

∂Un
∂an

=
∂Fn
∂an
− ∂P

∂an
− λσ′(an) = 0 (8)

∂Un
∂en

=
∂Fn
∂en
− ∂P

∂en
+ λ = 0. (9)

When θn = 1 ∀n, the planner’s direct allocation problem is:

max
an,en

W =
N∑
n=1

{Fn(an, en)− C(an, en) + In}+ φ

N∑
n=1

en.

The first-best optimization conditions are found by differentiation:

∂W

∂an
=
∂Fn
∂an
− ∂C

∂an
= 0 (10)

∂W

∂en
=
∂Fn
∂en
− ∂C

∂en
+ φ = 0. (11)

Under perfect competition, prices equal marginal costs. Then, it is apparent that the plan-
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ner’s and consumers’ first-order conditions are identical if and only if σ′(an) = 0 for all n

and λ = φ. The endogenous λ will be an increasing function of κ because of the convexity

of the cost function. Thus, some value of κ exists for which λ = φ. Choosing that value of κ

and σ′ = 0 makes the consumers’ first-order conditions identical to the planner’s first-best.

�

Proposition 2. Assume that there is no compliance trading. Then, even if welfare weights
are uniform (θn = 1 ∀n), the optimal linear regulation generally involves attribute basing. If
the constraint binds for all n, the optimal attribute slope satisfies:

σ̂∗ =
cov(λn, an)

φ
(
∂ā
∂σ̂
− ā ∂ā

∂κ

) ,
which is not zero unless λn is uncorrelated with an.

The planner solves:

max
σ̂,κ

W =
N∑
n=1

{Fn(an, en)− C(an, en) + In}+ φ
N∑
n=1

en.

The first-order condition with respect to κ is:

∑
n

(
∂Fn
∂an
− ∂C

∂an

)
∂an
∂κ

+

(
∂Fn
∂en
− ∂C

∂en
+ φ

)
∂en
∂κ

= 0.

Using the optimality conditions from the consumer’s problem, this can be rewritten as:

∑
n

λnσ̂
∂an
∂κ

+ (φ− λn)
∂en
∂κ

= 0. (12)

When the constraint is binding, en = σ̂an + κ. Total differentiation of this constraint yields

a relationship between ∂an/∂κ and ∂en/∂κ, namely that ∂en/∂κ = σ̂ · ∂an/∂κ + 1. Using
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this substitution and rearranging equation 12 yields:

λ̄ = φ

1 + σ̂
∂ā

∂κ︸︷︷︸
+

 , (13)

The first-order condition for σ̂ is:

∑
n

(
∂Fn
∂an
− ∂C

∂an

)
∂an
∂σ̂

+

(
∂Fn
∂en
− ∂C

∂en
+ φ

)
∂en
∂σ̂

= 0.

Substituting the consumer’s optimality conditions yields:

∑
n

(σ̂λn)
∂an
∂σ̂

+ (φ− λn)
∂en
∂σ̂

= 0.

Total differentiation of the constraint yields ∂e/∂σ̂ = σ̂∂a/∂σ̂ + a. Substitution yields:

∑
n

(σ̂λn)
∂an
∂σ̂

+ (−λn + φ)

(
σ̂
∂an
∂σ̂

+ an

)
= 0.

Canceling terms yields:

∑
n

−λnan + φσ̂
∂an
∂σ̂

+ φan = 0.

We then use the definition of the sample covariance of λn and an to rewrite
∑

n λnan

as
∑

n(λn − λ̄)(an − ā) + n−1
∑

n an
∑

n λn = n(cov(λn, an) + āλ̄), substitute equation 13 to

rewrite the average shadow price, and rearrange. This yields the result.

It is apparent that σ̂ must be non-zero, unless the covariance between the shadow price

and the attribute is zero under a flat standard. Otherwise, there is a contradiction. �

Corollary 1. Assume that there is no compliance trading, that welfare weights are uniform
(θn = 1 ∀n), that the constraint binds for all n, and that there is a perfect correlation between
attributes (e0

n = b + ma0
n with m 6= 0). With a uniform quadratic loss function for all n,

the optimal linear regulation involves attribute basing but it does not fully equalize marginal
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costs, even though this is possible. The optimal attribute slope satisfies σ̂∗ 6= 0 and σ̂∗ 6= m.

The uniform quadratic loss function is important because it implies that marginal cost scales

proportionally to the distance between the privately optimal bundle and the standard. Any

other loss function with that property will produce the result. With a uniform quadratic loss

function, the shadow price is ξ(σ̂a0
n+κ−e0

n) (This is equation 18).) Substitute e0
n = b+ma0

n.

Then λn = ξ((σ̂ −m)a0
n + κ− b).

Suppose σ̂ = m. Then, λn = ξ(κ− b) for all n. This demonstrates that it is possible to

fully equalize marginal costs. When σ̂ = m, the covariance of an and λn (which does not

vary) is zero. Plugging this into the result from Proposition 2 implies that m = 0, which is

a contradiction.

For the other half of the result, suppose that σ̂ = 0. Then, cov(λn, an) = cov(ξ(−ma0
n +

κ − b), an) = −mξcov(a0
n, an). Plugging this into the result from Proposition 2, and multi-

plying out the denominator against zero and dividing by −mξ implies that 0 = cov(a0
n, an),

which is a contradiction because the starting and ending values of an are correlated.

To see the correlation, in the quadratic case, the consumer’s optimization problem implies

that the optimal change in an is ∆a∗n = 2βσ̂+γ
2βσ̂2+2γσ̂+2α

(e0 − σ̂a0 + κ). When σ̂ = 0 and

e0
n = ma0

n+b, this reduces to ∆a∗n = mγ
2α
a0
n+ γ

2α
(b−κ). Thus, cov(a0

n, an) = cov(a0
n, a

0
n+∆an) =

cov(a0
n, (mγ/(2α)+1)a0

n) = (mγ/(2α)+1)var(a0
n) 6= 0 unless there is no variation in a0

n (that

is, all products are identical).�

Proposition 3. Assume welfare weights are uniform (θn = 1 ∀n) and s = φ. The deadweight
loss from a subsidy with σ′(an) 6= 0 is approximated as:

DWL ≈
∑
n

1/2 · ∂an
∂(sσ′(an))

(sσ′(an))2.

Differentiating the planner’s problem (equation 2) with respect to sσ′(an) yields the

first-order condition:

∂W

∂sσ′(an)
=
∑
n

(
∂Fn
∂en
− ∂C

∂en
+ φ

)
∂en

∂sσ′(an)
+

(
∂Fn
∂an
− ∂C

∂an

)
∂an

∂sσ′(an)
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Substituting the consumer’s optimality conditions yields, using s = φ:

∂W

∂sσ′(an)
=
∑
n

(−φ+ φ)
∂en

∂φσ′(an)
+ (φσ′(an))

∂an
∂φσ′(an)

.

The first term cancels.

Deadweight loss for a particular value of the slope σ′(an), given s(= φ), is the integral

of this derivative from 0 to sσ′(an) = φσ′(an). We approximate the integral by assuming a

constant derivative. Integration then yields the result.

DWL =
∑
n

∫ φσ′(an)

0

∂W

∂φσ̂′(a)
d(φσ̂′(a)) ≈

∑
n

1/2
∂an

∂(φσ′(an))
(φσ′(an))2.

We write the result using s in place of φ to make the connection to tax wedges most clear.

�

Proposition 4. Assume that welfare weights θn vary. Then, the optimal linear subsidy
involves attribute basing unless θn is uncorrelated with an. The optimal attribute slope is:

σ̂∗ =

[(
φ− s
s

)
∂ē

∂σ̂
− cov(θn, an)

]/
∂ā

∂σ̂
.

Under lump-sum revenue recycling, each type will receive a tax equal to the opposite of

the average subsidy. This tax is τ = s(ēn − σ̂ān). The planner’s problem is thus:

max
σ̂,s

W =
∑
n

θn {Fn(an, en)− C(an, en) + In − τ + s(en − σ̂an)}+ φ
∑
n

en

=
∑
n

θn {Fn(an, en)− C(an, en) + In + s(en − ēn)− sσ̂(an − ān)}+ φ
∑
n

en.

Differentiating with respect to σ̂ and substituting in the consumer’s optimality conditions
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yields this first-order condition:

∂W

∂σ̂
=
∑
n

θn

{
−s∂en

∂σ̂
+ sσ̂

∂an
∂σ̂

+ s

(
∂en
∂σ̂
−

¯∂en
∂σ̂

)
− sσ̂

(
∂an
∂σ̂
−

¯∂an
∂σ̂

)
− s(an − ān)

}
+ φ

∑
n

∂en
∂σ̂

= 0.

The terms involving n-specific derivatives cancel. Dividing through by s and pulling the

average derivative terms, which do not vary by n, out of the summation yields:

0 = − ∂ē
∂σ̂

∑
n

θn + σ̂
∂ā

∂σ̂

∑
n

θn −
∑
n

θn(an − ā) +
φ

s

∑
n

∂en
∂σ̂

By construction, the mean of θ is 1, so
∑

n θn = N . Using that substitution, dividing through

by N , and rewriting
∑

n
∂en
∂σ̂

in terms of the mean derivative yields:

0 =
s− φ
s

∂ē

∂σ̂
+ σ̂

∂ā

∂σ̂
− 1

n

∑
n

θn(an − ā).

Substitute using the definition of covariance (note that cov(θn, an) =
∑

n(θn − θ̄)(an − ā) =∑
n θn(an − ā)). Solving for σ̂ yields the result. �

Appendix B Additional theoretical results

Suppose that instead of a regulation with compliance trading there is a subsidy for the

durable equal to s × (en − σ(an)), which is made revenue neutral through a lump-sum

uniform tax collected from all types. Corollary 2 restates Proposition 1 for this case.

Corollary 2. Assume welfare weights are uniform (θn = 1 ∀n). The optimal subsidy involves
no attribute basing. The optimal attribute slope is:

σ′(an)∗ = 0 ∀an.
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The literature on Pigouvian taxes has long contemplated an “additivity property”, which

states that (a) the optimal tax on a commodity that produces an externality is equal to

the optimal tax on that good if there were no externality, plus marginal external damages;

and (b) the externality does not change the optimal tax on other goods, even if they are

substitutes or complements to the externality-generating good. This property holds broadly

(Kopczuk 2003). Our result is a manifestation of the additivity property, and will thus hold

in a wide range of second-best settings.

If a policy is constrained to include attribute basing, this influences the optimal stringency

of policy because the wedge for a (and hence deadweight loss) is mechanically related to

the wedge for e. Thus, if there is attribute basing, the second-best policy stringency will

be attenuated away from the Pigouvian benchmark. This is demonstrated for the case of a

linear subsidy in Proposition 5. Note that we use bars to denote sample averages of variables

or derivatives (e.g., N−1
∑

n ∂en/∂s ≡ ∂ē/∂s).

Proposition 5. Assume that σ̂ is fixed and that welfare weights are uniform (θn = 1 ∀n).
For a linear subsidy, the second-best subsidy rate is:

s∗ =
φ

1− σ̂
(
∂ā/∂s
∂ē/∂s

) ≤ φ

The denominator of the expression for the optimal subsidy will be greater than one because

the wedges in a and e will have the same sign when σ̂ is negative (and vice-versa).8 Thus,

the use of attribute basing in a policy implies that the second-best price on the externality-

generating characteristic e is less than marginal benefits.

This attenuation grows as the market response to a policy tilts towards gaming the

attribute and away from improving the targeted characteristic (that is, as ∂a/∂s gets large

relative to ∂e/∂s). In the limit, when actors respond to policy exclusively by manipulating

the attribute, the optimal subsidy goes to zero. Thus, when the attribute responds more

8The wedge in e is s and the wedge in a is −sσ̂.
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elastically to policy, deadweight loss will be larger (Proposition 3) and policy should be

scaled back and made less stringent (Proposition 5). Related to these results, in our empirical

analysis, we detect a large response in the attribute to policy and we estimate the proportion

of compliance behavior that comes from changing the targeted characteristic versus the

secondary attribute. Note that the optimal stringency λ of a regulation with trading will

equal the same expression for s∗ derived in the proposition.

Proof: Taking σ̂ as fixed, the planner’s second-best choice of s solves:

max
s
W =

N∑
n=1

{Fn(an, en)− C(an, en) + In}+ φ
N∑
n=1

en.

The first-order condition is:

∑
n

(
∂Fn
∂en
− ∂C

∂en
+ φ

)
∂en
∂s

+

(
∂Fn
∂an
− ∂C

∂an

)
∂an
∂s

= 0.

Substituting the optimality conditions from the consumer’s problem and pulling constants

in front of the summation signs yields:

(−s+ φ)
∑
n

∂en
∂s

+ (σ̂s)
∑
n

∂an
∂s

= 0.

Use bars denote average derivatives (e.g., N−1
∑

n ∂en/∂s ≡ ∂ē/∂s), and divide through by

N . Rearranging yields the result.

The inequality follows because denominator is greater than 1 because the second term is

negative. (We assume that φ is positive. The sign is flipped if φ is negative.) If σ̂ is negative,

then the wedges in a and e will have opposite signs, so that the ratio of derivatives will be

negative. If σ̂ is positive, then the wedges in a and e will have the same sign, so that the

ratio of derivatives will be positive. �
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B.1 Attribute-basing and second-best targeting

In our baseline model, the first-best Pigouvian tax is feasible. Might second-best consider-

ations justify attribute-basing? In a second-best setting, we would not expect σ′ = 0, in

general. Distorting the choice of the attribute might help alleviate distortions on other mar-

gins, or attribute-basing might function as a tag in the spirit of Akerlof (1978). In practice,

however, we believe that such considerations cannot justify existing attribute-based energy

efficiency policies.

An energy-efficiency tax or subsidy scheme cannot truly be first-best because it will fail to

correct the consumer’s incentives regarding the intensity of use of the durable good. In fact,

such policies tend to exacerbate the intensive use margin by lowering the cost of utilization.

This is known in the literature as the rebound effect.9 We modify our model to capture this

additional margin for the case of a representative consumer. The consumer’s maximization

problem is:

max
a,e,m

U = µ(a)θ(m)− P (a, e) + I + se− sσ′a− gm

e
,

where m is intensity of use, µ(a)θ(m) is the utility derived from quality-adjusted usage, g is

the cost of energy per unit, and gm
e

is therefore the cost of usage. We assume that µ′ > 0,

µ′′ < 0, θ′ > 0 and θ′′ < 0. The assumption that µ′ > 0 is key; it says that when a is

higher, utilization is more valuable. This is the sign that we expect for energy-efficiency

policies, where a represents some attribute of the product that makes it more desirable to

use (e.g., conditional on cost, one will drive a larger car more because it is of higher quality).

The planner’s welfare function is W = µ(a)θ(m) − P (a, e) + I − gm
e
− φm

e
, where φ is the

externality per unit of energy used.

The consumer’s first-order condition for utilization equates the cost of use with the benefit

9See Borenstein (Forthcoming) and Gillingham, Rapson, and Wagner (Forthcoming) for

recent discussions.
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of use: µ(a)θ′(m) = g/e. This differs from the planner’s condition, which is µ(a)θ′(m) =

g/e + φ/e, so that φ/e represents the marginal externality from raising m, given a value of

e. The consumer’s choice problem is illustrated in Figure A-1. Conditional on e, the socially

optimal m is below what the consumer will choose. The planner wishes to decrease m.

Can an attribute-based policy that raises a help alleviate this distortion? The first

effect of inducing an increase in a is to shift the marginal benefit curve upward, which will

unambiguously raise m. The second effect is that a change in a can induce a change in e,

which would shift the marginal cost curve. This effect can go in either direction. Thus, to

lower m, a subsidy to a must induce a sufficiently large fall in efficiency e so that the cost

of utilization rises. But, this is working against the goal of raising efficiency, and a lower e

could be created by altering s without inducing a distortion to a. Instead, as long as µ′ > 0,

the most likely outcome is that the second-best attribute slope is positive (σ′SB > 0); that

is, there should be a tax on the attribute, instead of a subsidy, whenever the attribute is

a quality that raises the value of using the good. We derive the second-best values of s

and σ′ in the appendix. The analysis shows that second-best targeting considerations can

rationalize attribute-basing (σ′ 6= 0), but the empirically relevant cases imply that σ′ > 0,

which is the opposite of observed policy (σ′ < 0).

The representative consumer setup here abstracts from the possible benefits of the at-

tribute as an Akerlof tag, but it is easy to see that actual attribute-based policies are poor

tags. An attribute will be a useful tag to the extent that it is correlated with a prod-

uct’s externality, conditional on e. But, Jacobsen, Knittel, Sallee, and van Benthem (2015)

show that vehicle characteristics like size have a very weak correlation with lifetime mileage.

Moreover, actual policies have explicitly selected attributes that are tightly correlated with

e, which limits the usefulness of the tag.10

10For example, U.S. regulators state that footprint’s primary drawback is that it is less

strongly correlated with fuel economy than is weight. See the Federal Register, volume 77,

number 199, page 62687.
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As a result, we conclude that, while attribute-basing could play a role in second-best

policies generally, second-best logic is unlikely to justify the real-world energy-efficiency

regulations that we analyze in this paper.

Some additional algebraic detail is provided next. The first-order condition for s is:

∂W

∂s
= (µ′θ − P ′a)

∂a

∂s
+

(
−P ′e +

(g + φ)m

e2

)
∂e

∂s
+

(
µθ′ − g + φ

e

)
∂m

∂s
= 0.

Substituting in the consumer’s optimality conditions yields:

∂W

∂s
= sσ′

∂a

∂s
+

(
−s+

φm

e2

)
∂e

∂s
+
−φ
e

∂m

∂s
= 0. (14)

Parallel steps yield the analogous first-order condition for σ′:

∂W

∂σ′
= sσ′

∂a

∂σ′
+

(
−s+

φm

e2

)
∂e

∂σ′
+
−φ
e

∂m

∂σ′
= 0. (15)

Equations 14 and 15 have two unknowns (s and σ′). Solving them involves rearrangement,

substitution and simplification. Solving for the second-best subsidy rate (sSB) in those steps

yields:

sSB =
mφ

e2
− φ

e
d, (16)

where d ≡

( ∂m/∂σ′

∂a/∂σ′
− ∂m/∂s

∂a/∂s

∂e/∂σ′

∂a/∂σ′
− ∂e/∂s

∂a/∂s

)
.

Equation 16 is the sum of two terms. The first is the marginal externality from increasing s,

mφ/e2, which is the first-best subsidy to s when m is fixed or there is a first-best tax on m.

The second term is the marginal externality from m (φ/e) times a function of a collection of

derivatives denoted d. This term captures the degree to which σ′ versus s are effective tools

for changing m versus a and e.
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In turn, solving equation 15 for σ′ yields:

σ′SB =

(
1− mφ

e2sSB

)
∂e/∂σ′

∂a/∂σ′
+

φ

esSB
∂m/∂σ′

∂a/∂σ′
. (17)

Substituting in equation 16 yields a closed form result.

Even without the final substitution, we can see what is required to make σ′SB negative,

which is our primary concern. The second-best attribute slope has two terms. Each multiplies

a factor that represents the distortion in one of the two margins involving the externality (s

and m) with a factor that is a ratio of derivatives indicating how much a change in σ′ affects

that variable versus a.

In our empirical results, we find estimates that imply that ∂e/∂σ′ is close to zero.11 In

that case, the first term of equation 17 will be close to zero, and the sign of the second term

will determine the sign of σ′SB.

As long as s is positive, then φ/es > 0, so the sign of the second term depends solely on

whether ∂m/∂σ′ and ∂a/∂σ′ have the same sign. If m and a are gross complements, so that

increasing a subsidy to a increases the value of m, then this term will be positive. As argued

in the main text, the direct effect of changing a on m is that it shifts the marginal benefits of

utilization by, on the margin, µ′(a)θ(m)da. As long as µ′(a) > 0 (that is, products with more

a are more desirable to use), this direct effect will be positive, which implies that ∂m/∂σ′

and ∂a/∂σ′ will have the same sign. Thus, the only way that m and a could be substitutes

is if subsidizing a causes e to fall (thereby raising the cost of utilization on the margin) by a

large enough amount to offset the direct effect of an increase in marginal benefits. (For the

example of cars, a subsidy to weight would have to decrease fuel economy by a large enough

amount to offset the increased marginal benefits of driving a larger car.)

11That is, subsidizing weight has a minimal net effect on fuel economy. This comes from

our estimates showing that the interaction term on changes in e and a is approximately zero,

which implies that the cross-partial in the utility and cost functions closely offset.
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As a result, the second term can be negative only when ∂e/∂σ′ is negative. But, our

empirical estimates imply that this derivative is close to zero, which implies that ∂m/∂σ′ > 0.

That is, in the empirically relevant case, the second-best policy will tax size. This is intuitive.

The second-best policy will feature a subsidy to energy efficiency, and a tax on desirable

attributes is used to mitigate the rebound effect.

Appendix C Additional commentary (removed for space)

A considerable amount of material was cut in order to meet the journal’s page limits for print

publication. This includes theoretical results, empirical results, references to the literature

and commentary on our analysis. Subsequent appendices include additional figures and

tables. Here we include the forms of commentary that we were forced to omit from the main

text.

C.1 Attribute-based policies in the real world

There are many examples of attribute-based regulation that we did not have space to discuss.

For example, a refrigerator in the United States must meet a minimum efficiency that depends

on its fresh food capacity and frozen food capacity, as well as its door type (French or not),

the location of its freezer (top or bottom), and whether or not it has through-the-door

ice. In terms of consumer-facing labels, in Europe, automobiles and appliances are given

attribute-based letter grades. In Japan, appliances are given one through five stars, based

on an attribute-based criterion. In the United States, energy labels for both automobiles and

appliances (including Energy Star certification) include figures that compare the product’s

energy consumption relative to products in the same “class”.
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C.2 Literature

There is a literature on regulations that exempt firms based on size. Methodologically, our

paper is quite distinct from this literature, but it is relevant to mention as it pertains to

studies of an attribute-based regulation. Empirical results from this literature have been

mixed in their search for distortion in firm size (Becker and Henderson 2000; Gao, Wu,

and Zimmerman 2009; Sneeringer and Key 2011). The theoretical literature has focused on

models of imperfect targeting of the externality (Brock and Evans 1985; Kaplow 2013) or

per-firm administrative costs (Dharmapala, Slemrod, and Wilson 2011). In contrast, we find

stark empirical evidence of bunching, and we consider efficiency benefits due to potential

marginal cost equalization, as well as redistribution.

In studying notched policies aimed at externalities, our work also relates to the literature

on notched corrective taxation, which began with Blinder and Rosen (1985), includes prior

analysis of automobile fuel economy in Sallee and Slemrod (2012), and is surveyed in Slemrod

(2010). Our panel analysis differs from existing work in this area by considering a double

notch (i.e., a notch in two coordinates), which is, to the best of our knowledge, new to the

literature.

In the main text, we mention only the most closely related studies that use bunching

methods, but this is a rapidly growing literature, with significant contributions made also by

Kleven, Landais, Saez, and Schultz (2014); Decarolis (2015); Fack and Landais (2015) and

Gelber, Jones, and Sacks (2015).

C.3 Comments on our model

In the model we introduce the constant κ implies that a linear policy can correct average

prices, which distinguishes our policy from some performance standards. In second-best

cases, a nonlinear tax may offer some efficiency gains, but the linear assumption helps simplify

the analysis.

Our theory focuses on differentiable (smooth) policies, but our empirical analysis con-
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siders a case where σ(an) is a step function. The welfare implications of attribute basing

are quite similar for such policies, which we discuss in an additional appendix below. In

the main text, we present the smooth policy version believing it to be more intuitive and

general.

Some attribute-based regulations feature fleet averaging, where all of the products sold

by a particular firm must comply on average. In terms of welfare impacts, fleet averaging

is an “in between” case. We explicitly model the two extremes of product-specific rules and

market-wide averaging. Fleet averaging will achieve some of the marginal cost equilization.

The more it does, the weaker is the efficiency case for attribute-basing.

Where we model trading, one might be concerned about efficiency in such a market with

a small number of firms, but Leard and McConell (2015) discuss evidence that trades have

taken place in the early years of CAFE trading.

C.4 Caveats to our model

First, our model assumes perfect competition. Imperfect competition implies that the pri-

vate market is not welfare maximizing, even when the externality is corrected. It is thus

conceivable that attribute-based regulation could be used to mitigate distortions due to mar-

ket power, but we are aware of no evidence that policy makers have ever actually considered

this.12

Second, we assume unit demand for the durable. A general problem with performance

standards is that they may fail to induce the right shrinkage (or expansion) in the overall

market. For example, because all cars emit carbon, an efficient carbon tax would shrink the

12In general, whether an ABR based on other motivations will mitigate or exacerbate

market power distortions will depend on the nature of competition and the distribution of

preferences. Specifically, based on the logic of Spence (1975), we conjecture that the key

issue is whether the marginal consumer for each product values the attribute more or less

than average.
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aggregate car market, as all cars would face a positive tax. In contrast, a flat fuel-economy

regulation will (implicitly) tax some products while subsidizing others. A flat regulation

has only one choice parameter, and it will generally be unable to correct both relative

prices (across cars) and average prices simultaneously.13 An attribute-based regulation can

potentially ensure that the price of all products rises, thereby correcting average prices, but

an ABR does this by inducing distortions in the choice of the attribute. The same benefits

could be achieved without introducing a distortion in the attribute by combining a flat

standard with a sales tax or registration fee that shifts all prices equally.

Third, advocates of attribute basing in car markets have argued that it promotes tech-

nology adoption.14 Roughly speaking, automakers can comply with a flat standard by down-

sizing their fleet or by adopting new technologies. Attribute-based policies can be designed

to limit opportunities for downsizing, which forces compliance to come from technology. If

there are spillovers between companies from adopting new technologies, there might be some

justification for attribute basing. We are, however, skeptical that technological spillovers are

large in the auto market, as there is extensive patenting and licensing.

Fourth, attribute-based regulation may actually have some efficiency advantages when

uncertainty is introduced. For example, to a first-order approximation, the optimal gasoline

13Holland, Hughes, and Knittel (2009) treat this issue in detail for the case of a low-carbon

fuel standard. Jacobsen and van Benthem (2013) suggest that, for the case of automobiles,

the benefits resulting from higher new car prices will be partly offset by changes in vehicle

scrappage.

14Advocates have also argued that attribute basing promotes safety by promoting larger

cars. This appears to be based on a misunderstanding of safety-related externalities. Larger

cars are safer for the car’s occupants (which is a private benefit and should be priced into the

car), but they are more dangerous to those outside the car (which is an externality). If ABR

changes the distribution of sizes of cars, this could affect net safety. See Jacobsen (2013b)

for a related model that concludes that footprint-based CAFE is roughly safety neutral.
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tax does not change when the market price of petroleum moves up or down. But, under a flat

standard, gasoline price fluctuations will move the shadow price of fuel economy regulation as

consumers shift demand between smaller and larger vehicles. The shadow price of a footprint

(or weight) based standard will fluctuate less, because it does not depend (or depends less)

on the market demand for small versus large vehicles.15

Fifth, our model assumes that the externality is produced by e, which can be targeted

directly by policy. In reality, energy-efficiency ratings do not directly cause externalities,

and energy-efficiency policies are always therefore second-best instruments, which have well

known limitations compared to Pigouvian taxes. Most often discussed in the literature is the

fact that energy efficiency policies fail to provide incentives on the intensive use margin (e.g.,

fuel economy standards induce additional miles traveled, instead of reducing them as would

a gasoline tax, by lowering the cost of driving per mile). This is an important limitation of

energy efficiency policies, but we believe it is largely orthogonal to attribute basing, which

provides no direct way of influencing the utilization margin. An extended explanation of

this conclusion is provided in the appendix section.

A related second problem is that energy efficiency is necessarily a noisy proxy for the

externality. To see the implications of this for attribute basing, suppose that the externality

is a function of e and some other factor ω upon which policy cannot be based. Then, it might

be useful to base policy on a secondary attribute a. Akerlof (1978) coined the term “tags”

in a related model of income taxation; the planner wishes to tax ability, but makes taxes

contingent on other observable characteristics because they are correlated with income. The

secondary attribute can be a tag in this setting. In this case, the welfare improvement from

tagging will depend on the correlation between φ(e, ω) and a, conditional on e. But, actual

15We are especially grateful to Ryan Kellogg for suggesting this line of reasoning. Con-

sistent with this, Leard, Linn, and McConell (2016) suggest that fleet fuel economy appears

to be less responsive to gasoline price fluctuations since the introduction of attribute-based

standards.

A-17



policies seem to have selected attributes that are tightly correlated with e, which limits the

usefulness of the tag. For example, when discussing the decision to use footprint instead

of weight as the attribute, U.S. regulators state that footprint’s primary drawback is that

it is less strongly correlated with fuel economy than is weight.16 Thus, attribute basing,

deployed optimally, may offer significant improvements over a flat standard via tagging, but

we see little reason to believe this has motivated real policies or that actual policies create

significant benefits related to tagging.17

We reach a similar conclusion regarding the energy efficiency gap, which is the theory

that markets underprovide energy efficiency due to consumer undervaluation or some other

market failure (see Jaffe and Stavins (1994)). The energy efficiency gap is frequently cited as

a reason for policy intervention, but we are skeptical that it could rationalize attribute basing

as it is practiced. If all consumers undervalued energy efficiency by the same amount, then a

flat standard with compliance trading can still achieve the first best. If undervaluation was

heterogeneous and correlated with a, then, just as in the second-best targeting case described

above, a policy that made s vary as a function of a would be very beneficial. But, linear

ABR are poorly designed for this purpose. In addition, we are aware of no evidence that this

has been considered a rationale for attribute basing in existing policies, and recent evidence

has suggested that there is not substantial undervaluation in the automobile market.18

16See the Federal Register, volume 77, number 199, page 62687. They (sensibly) cite the

fact that footprint might be harder to manipulate as its principal benefit.

17Jacobsen et al. (2015) demonstrate that a fuel economy policy that could regulate based

on both fuel economy (e) and product durability (a) could improve greatly over a policy

based only on fuel economy. The structure of such a policy would differ fundamentally from

the linear attribute-based policies observed in reality. This is an example of how an optimally

designed ABR might have significant welfare implications, but such a policy would not at

all resemble the policies we observe.

18See Allcott and Greenstone (2012) for a review and Busse, Knittel, and Zettelmeyer

A-18



C.5 Comments on our graphical representation of theory

In the graphical subsection of our theory, we discuss the quadratic example. A quadratic

loss function implies that the shadow price of a policy for type n can be written in closed

form as:

λn = ξ × (σ̂a0
n + κ− e0

n) (18)

where ξ =
4αβ − γ2

βσ̂2 + γσ̂ + α
.

Marginal cost is a function of parameters of the adjustment cost function (equation 3) and the

compliance gap at the private optimum. When there is perfect correlation (e0
n = a + ma0

n)

and σ̂ = m, marginal cost is equal to ξ × (κ − b) for all n. This leads to our graphical

depictions.

C.6 Comments on Japanese policy

Note that we do find that some of cars increased weight to be at the weight notch underneath

the subsidy cutoff lines. This is because, in addition to the model-specific subsidy incentive,

vehicles were still influenced by the corporate average fuel-economy standards, which gave

them an incentive to increase weight. Our estimation method in the panel section controls

for the effects of the corporate average fuel-economy standards.

Technically, the fuel-economy obligation extends to each weight segment separately in

Japan. However, firms were allowed to apply excess credits from one weight category to

offset a deficit in another. Thus, in the end, the policy is functionally equivalent to the older

version of the U.S. CAFE program, where there is one firm-wide requirement (but no trading

across firms).

(2013); Allcott and Wozny (2014); Sallee, West, and Fan (2016) and Grigolon, Reynaert,

and Verboven (2014) for evidence.
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Also, the fuel-economy regulations are technically only binding in particular compliance

years. This is different from the U.S. CAFE program, which requires compliance annually.

This does not mean, however, that firms have no incentive to comply before the target year.

Consumers see a car’s fuel economy relative to the standard when buying a car, so compliance

may affect sales. Compliance may also be a part of long-run interactions between firms and

the government. Our data show clearly that firms react to the standards even before the

target year. Also, to be precise, under CAFE firms may do some limited banking and

borrowing, so they must meet the standard every year, on average.

The weight notches in the Japanese regulations figure prominently in our empirical strat-

egy. One might be concerned about some endogenous choice of where to put the thresholds.

It is not transparent how these weight categories are chosen, but note that they are almost

all of regular width, either 250 kilograms in the old standard or 120 kilograms in the new.

The Japanese system operates through the front-runner system mentioned in the main

text. The front-runner system creates strategic incentives for firms to potentially push up

the standard further if this might benefit their product line relative to their competitors.

We believe that these concerns are unlikely to have an important impact on our analysis, as

it affects only a handful of products that are potentially front runners, and in that most of

our analysis is focused on weight, not fuel consumption.

C.7 Comments on data

We treat each type of vehicle as one observation in our analysis. Sales-weighting might be

a useful extension for some of our results, but Japanese automobile sales data suffer from

a problem common to automotive sales data sets in general, which is that sales data are

generally recorded at a notably higher unit of analysis and a different calendar. For example,

there will be several different versions of the Toyota Camry recorded in our regulatory data,

but industry sources typically record sales only for all versions of the Camry together. In

addition, the relevant sales are model year totals, not calendar totals, whereas industry data
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typically cover calendar time and do not distinguish between, for example, a 2013 Camry

and a 2014 Camry that are sold in the same month. In contrast, the dataset used in our

analysis provides disaggregated data for each vehicle configuration. For example, our dataset

provides information about each version of the 2013 Camry as well as each version of the

2014 Camry.

We omit kei-cars from most of our main results because we believe this is functionally a

different product market. For comparison, no car sold in the United States in 2010 would

qualify as a kei-car. The two-seat Smart Car has the smallest displacement of any car in the

United States that year, at 1.0 liters. Although kei-cars must comply with the same fuel-

economy regulations as all other cars, we present our results for them separately because

they occupy a unique market segment, have different tax and insurance regulations, and are

generally viewed as a distinct product category by Japanese consumers.

In figures we show an approximate dividing line between kei-cars and other cars. Kei-cars

are not regulated by weight, but rather by engine displacement, so this division is not strict.

While weight and fuel economy are in principle continuous measures, the regulatory data

are measured in discrete units (10 kilograms for weight and tenths of a kilometer-per-liter

for fuel economy), and all regulations are based on these discrete units.

We use fuel consumption (l/100km) rather than fuel economy (km/liter) in our panel

analysis because when regulators calculate the corporate average fuel economy, they average

each model’s fuel consumption rather than fuel economy (equivalently, they harmonically

average fuel economy).

We construct panel data of 439 cars by linking cars sold in 2008 (before the policy

change) and 2012 (the last year of our data) based on a unique product identifier (ID) in

the regulatory data. Product ID is narrower than model name. For example, a Honda

Civic may have several product IDs in the same year because there are Civics with different

transmissions, displacements and drive types, each of which will have a unique ID.

We first match on product ID across years, which is often, but not always, constant over
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time. If automakers change the product ID between years, we match by using model name,

displacement, drive type (e.g., four-wheel drive), and transmission (manual or automatic).

That is, we consider two cars sold in two different years to be the same if they have matching

IDs, or if they have exactly the same model name, displacement, drive type, and transmission.

Entry and exit imply that not all data points are matched, and we end with 439 matched

records. Our matching procedure guarantees that we match the same model name, which

avoids mismatching the panel structure of the data. We take this approach because it

provides transparent matching criteria.

A potential drawback of this approach is that firms may change some of their model names

over time, yet they are targeting similar customer segments. To address this concern, we also

conduct our analysis by including unmatched cars from the first matching criteria whenever

we can match them using displacement, drive type, and transmission, while ignoring model

names. This procedure produces a slightly different set of matched data, but our final

estimation results are very similar regardless of which matching procedure is used.

C.8 Comments on bunching analysis

The regulation we study creates an incentive to increase car weight in order to bunch at

a weight notch because it provides a lower fuel-economy target. The regulation may also

create an incentive to decrease weight if, for example, decreasing weight mechanically helps

improving fuel economy. However, such an incentive is “smooth” over any weight levels

in the sense that vehicles at anywhere in the weight distribution have this incentive, and

therefore, the incentive does not create bunching at the notches.

In defining weight, for notch k = 1 (the first notch point), we use the lowest weight in

the data as the minimum weight for this range. Note that this approach may underestimate

the change in weight, because the minimum weight in the counterfactual distribution can be

lower than the minimum weight in the observed distribution if the attribute-based regulation

shifted the minimum weight upward. We want to use this approach to keep our estimate of
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the change in weight biased towards zero.

We discuss the counterfactual interpretation of our bunching estimates. To elaborate, the

Japanese policy does not have full compliance trading across firms, so the precise statement

is that the counterfactual represents the distribution of weight under a flat subsidy in which

each firm faces the same shadow price as in the actual policy. If there were optimization

frictions, as in Chetty et al. (2011), then we might expect that some of the vehicles located

discretely above the thresholds are also bunching. Our raw data suggest that automakers

are able to manipulate weight precisely, because we see excess mass right at each threshold,

which suggests that this is not an important issue in our context.

In our main estimates, we assume that weight manipulation is limited to a single step

in the regulation, which is a conservative assumption. Our panel data do suggest that some

weight changes are large enough to cover two steps, but we have no grounds for asserting

what fraction of vehicles have been thus altered in our cross-sectional analysis, leading us to

prefer providing a reliable lower bound on weight changes.

As mentioned above, the new fuel-economy standards were introduced with a separate

subsidy incentive that applied to each specific car model. Therefore, the bunching in the new

fuel-economy schedule may come from the incentives created by either policy. The bunching

in the old fuel-economy schedule comes only from the incentives created by the fuel-economy

standards because there was no separate subsidy incentive. We analyze the new policy’s

subsidy incentive in section 4.

In discussing safety externalities, we introduce a second externality. Note that it is

straightforward to incorporate a second externality into our framework. In the simplest case

when a causes a separate externality, the optimal attribute slope will be designed to create

a Pigouvian tax on a. Attribute basing simply provides a second policy instrument, which

is necessary for dealing with a second market failure.

Our safety analysis assumes that the accident risk is unpriced by the market. In prin-

ciple, the externality risk may be partly priced through insurance or legal liability. White
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(2004), however, argues that neither tort liability nor mandatory liability insurance prices

safety externalities. In brief, tort liability requires negligence, not just that one be driving a

dangerous vehicle. Liability insurance generally coves the cost of damages to a vehicle, but

it is but a small fraction of the value of a life. In addition, rate differences across vehicles

are very coarse and reflect average driver characteristics in concert with vehicle attributes.

C.9 Comments on our panel analysis

The interpretation of our loss function is especially clear when consumer types are each

matched to a specific vehicle. If we maintain the assumption that consumer types are

matched to a vehicle, then firms will invest in a and e up until the marginal cost of doing so

meets the marginal benefit of the consumer, as this will allow them to raise prices accordingly

(see Reynaert and Sallee (2016) for a closely related model).

We do not estimate changes in markups in our empirical analysis. It is plausible that

markups did not change much between the two years in our setting. The logic of differentiated

product market equilibrium under Bertrand competition, as exemplified in Berry, Levinsohn,

and Pakes (1995), says that the markup for a vehicle, in equilibrium, is determined by its

market share, the price elasticity of demand, and the first order condition from the Bertrand

competition. We calculate each vehicle’s market share in 2008 and 2012 using sales data.

We find that changes in market share are very small. The 25th, 50th, and 75th percentiles of

the change in market share are −0.0004, −0.0001, and 0.0002. For the range of reasonable

price elasticities, including estimates from the literature on the Japanese and U.S. automobile

markets, these small changes in market shares would imply economically insignificant changes

in optimal markups.

Though it is not our focus, our discrete choice model estimates do deliver an estimate of

the shadow price of fuel-economy regulations, which are of much interest to the literature.

Our procedure differs from the existing literature in leveraging panel data around a policy

change to identify the shadow price, whereas existing work either examines a specific pol-
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icy loophole (Anderson and Sallee 2011) or uses static structural models (Goldberg 1998;

Gramlich 2009; Jacobsen 2013a). The estimate in column 3 implies a shadow price of $1,162

(= .45/.37 ∗ $1000) per unit of l/100km car per. This translates into $258 per mpg per

car at the average fuel economy in our sample. Our simple approach does not account for

imperfect competition, so we do not stress these results, but simply note that they are the

same order of magnitude as results found in Gramlich (2009) and Jacobsen (2013a) for the

United Sates.

In our simulation, we assume that all vehicles stay in the market after the introduction

of this simulated policy, although in reality there can be entry and exit.

In the case of a quadratic loss function that we analyze, the variance of the shadow price

is var(σ̂a0
n − e0

n)× ξ2. This means that the R2 from a regression of e0
n on a0

n is proportional

to the fraction of this variation that can be reduced by a linear ABR.

Our method provides a simple and transparent framework to translate the revealed pref-

erence information from the raw data to key empirical parameters for our policy simulation.

It establishes an approach for analyzing double notches that may prove useful in other con-

texts. The price of this simplicity and transparency is that we must make several substantive

assumptions. It assumes that the functions determining taste and price are unchanged be-

tween the two periods. It is based on only our matched observations, and does not model

entry and exit. It interprets the loss function as social cost. This is correct if, as in our

exposition, the market is perfectly competitive. Our results would still represent net social

cost if the market were imperfectly competitive but markups did not change between the

two periods. If markups do change significantly, then our loss function, which should then be

interpreted as lost profit, would include a mixture of net social costs and transfers between

producers and consumers.
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C.10 Validation of our discrete choice model estimates

In this subsection, we ask whether our discrete choice model is able to predict the excess mass

of vehicles located around weight thresholds observed in the data we estimated in section 3.

This serves as a check on the loss function estimates; it asks whether our panel estimates

can predict the excess mass observed in our cross-sectional analysis.

We use the estimated loss function in Table 3 and data from 2008 to predict the amount

of bunching in weight in 2012. Using the functional form assumption for L(∆an,∆en), the

estimated coefficients, and data from 2008 (aon, e
o
n), we calculate the predicted value for the

value function Vnz and let each n choose the optimal pair of (an, en) in 2012. We then

compare the predicted bunching from this procedure to the actual bunching in the 2012

data.

Results are in Table A.5 for the random-coefficients model and Appendix Table A.6 for

the logit model. In the data, we observe that 27.6% of cars in 2012 are located at one of the

weight notches in the fuel economy standard. With the logit specification, our model predict

that 32.73% of cars bunch at the notches, which suggests that the logit specification does

a reasonable job at predicting the bunching. The random-coefficients model predicts that

26.14% of cars bunch at the notches, indicating that allowing heterogeneity helps improve

the degree to which the discrete choice model can predict the actual movement of the data.

Appendix D Welfare implications of notched attribute-

based policies

Our theory models smooth attribute-based functions, that is, cases where the target func-

tion σ(an) is everywhere differentiable in a. The Japanese policy that we analyze empirically

has notches, so that σ(an) is a step-function. Here, we briefly argue that the welfare impli-

cations from our theory carry over to notched policies. We first consider “single notched”

systems, like the Japanese corporate average fuel-economy standard, and then discuss “dou-
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ble notched” systems like the model-specific subsidy in Japan. In both cases, we discuss a

subsidy policy rather than a regulation for notational ease.

How does a single notched policy, where σ(an) is a step function but the marginal incentive

for e is smooth, affect choice? We provide initial intuition graphically. Figure A-2 shows an

isocost curve, that is, the set of values of a and e for which a consumer spends a constant

amount on the durable net of the subsidy, P (an, en)− s× (en − σ(an)). The figure is drawn

with several notches, at a′, a′′ and a′′′. The solid blue line (drawn to be linear for the sake

of illustration) shows the isocost curve before any policy intervention; and the dashed red

line shows the modified isocost curve for the same expenditure on the good when there is a

Pigouvian subsidy on e that has no attribute slope.

Next, the dashed grey line represents the isocost curve that would exist under a smooth

attribute policy. In the diagram, the grey line is drawn parallel to the original blue line,

which represents the case when policy makers draw the attribute slope to match existing

isocost curves, thereby preserving the original relative prices of a and e. This grey dashed

line is not the final isocost curve, however, when σ(an) is notched. In that case, the solid

black lines represent the isocost curve for the consumer.

Importantly, the line segments on the final isocost curve are parallel to the red dashed

line representing the Pigouvian subsidy (i.e, if S(a, e) = se). As in the smooth case, the

existence of the attribute function does not distort the price of a relative to x, which means

that the distortion in the choice of e will be only the indirect change due to a—it will be

driven only by the utility and cost interactions of the optimal choice of e and the distorted

choice of a. Furthermore, because the line segments are parallel in slope to the original

Pigouvian line (and because we assume quasi-linearity) the choice of a will not be changed

at all by the attribute basing if the consumer is choosing an interior point along one of the

line segments. All of the distortion is due to cases where a consumer chooses a′, a′′ or a′′′.

That is, all of the distortion is evident from those who “bunch” at the notch points.

We now provide algebraic analysis to flesh out the graphical intuition. For notational
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ease, we focus on the case with only one notch, at a′, above which the subsidy subsidy jumps

by amount τ > 0. Then, the tax function can be written as:

S(a, e) =


s · e if a < a′

s · e+ τ if a ≥ a′.

(19)

Denote by (a∗, e∗) the bundle chosen by a consumer facing a Pigouvian tax of s · e. If the

consumer’s choice under the smooth attribute policy had a∗ > a′, then the addition of the

notch τ is purely an income effect. It has not changed the marginal price of a or e relative

to each other or relative to x. Given quasi-linearity, this means that the durable choice of a

consumer with a∗ > a′ is unaffected by the introduction of a notched attribute policy.

When a∗ < a′, the consumer will face a discrete choice of maintaining their original

allocation or switching to a′ exactly. They will not choose a > a′. To see why, suppose that

they chose a value under the notched policy, call it ã strictly greater than a′. Then their

optimization problem can be written L = F (a, e)−P (a, e)+ I−G+se+ τ +µ[a−a′], where

there is a budget constraint as well as an inequality constraint that a ≥ a′. If ã > a′, then

the shadow price on the latter constraint, µ, is zero. In that case, the first-order conditions

of the problem will be exactly the same as in the benchmark case with no attribute notch,

which by construction featured an optimal choice of a∗ < a′.

Thus, the consumer with a∗ < a′ will either choose ã = a∗ (and not receive τ) or

will choose ã = a′ exactly. This has the empirical implication that all bunching should

come “from the left”—changes in a in response to the notched incentives should always be

increases in a.

If a consumer chooses a′, then their choice of e will solve:

max
e

= F (a′, e)− P (a′, e) + I −G+ se+ τ, (20)

which has the same first order condition for e as the case without τ . Just as in the smooth
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case, any distortion to the choice of e comes through “general equilibrium” effects, through

which a distortion in a shifts the marginal costs and benefits of e, which might result in a

change in e.

The distortion in a will be analogous to a traditional Harberger triangle and thus rising

in τ 2. The consumer will choose ã = a′ if and only if:

−τ > P (a′, ẽ)− P (a∗, e∗)− (F (a′, ẽ)− F (a∗, e∗)), (21)

that is, whenever the tax benefit is larger than the cost increase from moving from (a∗, e∗)

to (a′, ẽ) minus the increase in utility from that change. The welfare loss can be written as

a Taylor expansion, which has the same intuition as a traditional Harberger triangle, just as

in the smooth case.

For our purposes, the point of this analysis is that, even when the attribute function

is notched, the focus of welfare analysis should be on how the policy distorts the choice of

a relative to the Pigouvian baseline, and that we should expect the distortion to result in

bunching at exactly the notch points in a. For empirical purposes, notched policies are useful

in revealing the distortion because it is generally easier to detect bunching at specific notch

points than shifts over time in an entire schedule.

D.1 Double notched policies

We next briefly describe the incentives created by a double notched policy, where the subsidy

is not everywhere differentiable in e or a. The simplest version of this policy is one with a

single cutoff for a, call it a′ and a pair of cutoffs for e, call them e′ and e′′. The subsidy for
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such a system can be described algebraically as:

S(a, e) =


s1 if e > e′′

s2 if e′′ > e > e′ and a > a′

0 otherwise.

(22)

An isocost curve for this case is shown in Figure A-3. The unsubsidized budget constraint

is drawn as a faint line. The final budget constraint is represented by the bold black line

segments, which overlap in parts with the unsubsidized line. Allocations in the yellow shaded

area receive some subsidy. The subsidy is equal to s1 for any allocation above e′′. Note that

there are large regions of dominance in this diagram, where a subsidized point that has more

of a and more of e has the same cost to the consumer as an unsubsidized bundle.

In the diagram, the red dashed line represents the simple Pigouvian tax. The values of

s1 and s2 are chosen in this case to match the average Pigouvian subsidy for the relevant

line segments, but this need not be the case. Note that, if it is the case, then s1 6= s2. In

many policy examples, s1 = s2, which may be suboptimal.

When there are notches in both dimensions, there can be bunching in the distribution of

e, at e′ and e′′. Above we argued that any change in a caused by attribute basing relative to

the Pigouvian optimum would come from increases in a. But, in cases with notches in both

dimensions, it is possible that responses to the policy will lower a by inducing bunching at e′

or e′′. This would occur for cases like those represented by the sample utility curve in Figure

A-3, where a consumer’s response to the notched subsidy is to bunch at e′′. In that example,

the indifference curve that is tangent to the unsubsidized budget constraint features a higher

initial choice of a than at the bunch point.
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Appendix E Derivations of the Loss Functions in Sec-

tion 4

This section provides a detailed description of how we derive the loss functions in Section 4.

We analyze data before and after the policy change. For vehicle n, we denote an and en as

the second-period characteristics and aon and eon as the first-period characteristics. We make

the assumption of perfect competition. Then, using the notation in Section 2, the welfare

for vehicle n, omitting regulatory incentives and dropping the numeraire, can be written as

Fn(an, en)− C(an, en).

First, consider a simple case, in which there is no fleet-average compliance regulation.

Before the policy change, there is no regulation. After the policy change, there is a car-

specific subsidy for cars that meet the standard (en ≥ σ(an)). Because the first-period

characteristics aon and eon are at the private optimum, any deviation from that point creates

a loss, which is Ln = Fn(an, en) − C(an, en) − [Fn(aon, e
o
n) − C(aon, e

o
n)]. The second-period

optimization problem for product n is then to choose the an and en values that maximize

the loss plus the subsidy:

Wn = Fn(an, en)− C(an, en)− [Fn(aon, e
o
n)− C(aon, e

o
n)] + τ · 1(en ≥ σ(an)) + εnz,

where Ln = Fn(an, en)−C(an, en)−[Fn(aon, e
o
n)−C(aon, e

o
n)] ≤ 0 and Ln is peaked at (an, en) =

(aon, e
o
n). In another words, because the first-period characteristics aon and eon are at the private

optimum, the loss function Ln would be the lowest and zero at (aon, eon). This motivates us to

begin with a quadratic functional form for Ln in our estimation. In the first specification in

Section 4, we use a quadratic loss function: Ln = α(an−aon)2+β(en−eon)2+γ(an−aon)(en−eon)

and estimate:

Wn = α(an − aon)2 + β(en − eon)2 + γ(an − aon)(en − eon) + τ · 1(en ≥ σ(an)) + εnz,
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which is equation 6 in Section 4.

Second, consider the case with the presence of fleet-average compliance regulation. We

denote λ and λo as the shadow prices of the fleet-average regulation at the second period

and first period. Then, the payoff to first period choices is Fn(aon, e
o
n)−C(aon, e

o
n)+λo× (eon−

σo(aon)). In the second period, there is a new fleet-average regulation and vehicle-specific

subsidy policy. Then, the payoff to second-period choices is Fn(an, en) − C(an, en) + λ ×

(en − σ(an)) + τ · 1(en ≥ σ(an)). The second-period optimization problem for product n is

then to choose the an and en values that maximize the objective function:

Vn =Fn(an, en)− C(an, en)− [Fn(aon, e
o
n)− C(aon, e

o
n)]

+ λ(en − σ(an))− λo(eon − σo(aon)) + τ · 1(en ≥ σ(an)) + εnz

=fn + λ(en − σ(an))− λon(eon − σo(aon)) + τ · 1(en ≥ σ(an)) + εnz,

where fn ≡ Fn(an, en)−C(an, en)− [Fn(aon, e
o
n)−C(aon, e

o
n)]. The problem with this equation

is that fn is not peaked at (an, en) = (aon, e
o
n). (aon, e

o
n) is not the simple private optimum

but rather the optimal bundle in the presence of the first-period fleet-average regulation.

Therefore, it is problematic to use a quadratic function with a peak at (aon, e
o
n) to approximate

fn.

We can address this problem by adding and subtracting λo(en − σo(an)) from Vn. Note

that this is a mixed object—it is the second-period choice of a and e put into the first-period
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policy function and shadow price:

Vn =Fn(an, en)− C(an, en)− [Fn(aon, e
o
n)− C(aon, e

o
n)]

+ λ(en − σ(an))− λo(eon − σo(aon)) + τ · 1(en ≥ σ(an)) + εnz

+ λo(en − σo(an))− λo(en − σo(an))

=[Fn(an, en)− C(an, en) + λo(en − σo(an))− Fn(aon, e
o
n) + C(aon, e

o
n)− λo(eon − σo(aon))]

+ τ · 1(en ≥ σ(an)) + λ(en − σ(an))− λo(en − σo(an)) + εnz

=gn + τ · 1(en ≥ σ(an)) + λ(en − σ(an))− λo(en − σo(an)) + εnz

where gn ≡ [Fn(an, en)−C(an, en)+λo(en−σo(an))−Fn(aon, e
o
n)+C(aon, e

o
n)−λo(eon−σo(aon))].

Importantly, gn is peaked at (an, en) = (aon, e
o
n) because (aon, e

o
n) is the optimum in the

presence of the old policy. That is, gn ≤ 0 is zero at (aon, e
o
n). That is, no changes in a and

e would produce the lowest possible loss. This justifies us to have a quadratic functional

form for gn in our second specification in Section 4. We use a quadratic function: gn =

α(an − aon)2 + β(en − eon)2 + γ(an − aon)(en − eon) and estimate:

Vn =α(an − aon)2 + β(en − eon)2 + γ(an − aon)(en − eon)

+ τ · 1(en ≥ σ(an)) + λ(en − σ(an))− λo(en − σo(an)) + εnz,

which is equation (7) in Section 4.

Finally, we can recover fn from gn. Note that gn = fn−[λo(eon−σo(aon))−λo(en−σo(an))].

Therefore, once we have parameter estimates for gn and λo, we can recover fn = gn+[λo(eon−

σo(aon)) − λo(en − σo(an))]. This fn provides the loss function for an and en excluding the

effects of the old regulation.
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Figure A-1: Graph of consumer’s first-order condition for m
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The socially optimal m is achieved with a tax equal to φ/e, which lowers m from

m′ to m∗. A policy that increases a will raise marginal benefits, raising m from m′

to m′′. Marginal cost may shift as well.
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Figure A-2: Isocost Curve with a Notched Attribute-Based Subsidy
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Figure A-3: Isocost curve with notches for both a and e
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Appendix F Additional Figures and Tables

Figure A.1: Example of an Attribute-Based Regulation: U.S. CAFE standard 2012
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Solid line depicts the target function, which is a downward-sloping function of

vehicle size, as measured by footprint (the square area trapped by the vehicle’s

tires). Firms must comply with the target function on average across their fleet.

Example vehicles labeled on x-axis.
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Figure A.2: Fuel-Economy Standard and Histogram of Vehicles: Kei-Cars (small cars)

Panel A. Years 2001 to 2008 (Old Fuel-Economy Standard Schedule)
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Panel B. Years 2009 to 2013 (New Fuel-Economy Standard Schedule)
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Note: “Kei-car” is is a Japanese category of small vehicles; the displace-

ment of kei-cars have to be less than 660 cc. Most kei-cars are not ex-

ported to other countries. Panel A shows the histogram of vehicles from

2001 to 2008, where all vehicles had the old fuel-economy standard. Panel

B shows the histogram of vehicles from 2009 to 2013, in which the new

fuel-economy standard was introduced.
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Figure A.3: Fuel Economy and Weight before and after the Policy Change for Vehicles
that Did Not Receive a Subsidy

Panel A. Vehicles that did not receive a subsidy but bunched at weight notches
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Panel B. Vehicles that did not receive a subsidy and did not bunch at weight notches
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Note: This figure shows each vehicle’s fuel economy and weight before and after the

introduction of the new subsidy that was applied to each vehicle individually. The

scatterplot shows each car’s starting values of fuel economy and weight in 2008—the

year before the policy change. We also show “arrows” connecting each car’s starting

values in 2008 with its values in 2012. The figure also includes three step functions that

correspond to the three tiers of the new incentive’s eligibility cutoffs.
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Table A.1: Summary Statistics

Year N

2001 1441 13.53 (4.58) 1241.15 (356.63) 1.84 (0.98) 195.40 (66.72)
2002 1375 13.35 (4.33) 1263.52 (347.00) 1.86 (0.97) 196.72 (66.26)
2003 1178 13.78 (4.53) 1257.15 (356.28) 1.85 (1.03) 191.88 (68.08)
2004 1558 14.20 (4.78) 1255.37 (364.69) 1.82 (1.03) 184.33 (66.67)
2005 1224 13.30 (4.66) 1324.81 (380.62) 2.00 (1.13) 198.14 (71.62)
2006 1286 13.08 (4.59) 1356.56 (391.13) 2.08 (1.17) 201.78 (72.67)
2007 1298 13.24 (4.78) 1369.41 (399.45) 2.09 (1.22) 200.35 (75.07)
2008 1169 13.38 (4.82) 1390.09 (405.77) 2.14 (1.29) 198.58 (76.27)
2009 1264 13.49 (4.93) 1396.40 (413.76) 2.15 (1.30) 197.73 (76.67)
2010 1300 13.50 (5.04) 1428.27 (438.06) 2.21 (1.30) 198.32 (77.34)
2011 1391 13.95 (5.06) 1437.21 (426.23) 2.19 (1.28) 190.15 (71.60)
2012 1541 14.50 (5.21) 1446.50 (411.87) 2.16 (1.24) 182.05 (67.26)
2013 1706 14.43 (5.40) 1476.79 (400.31) 2.24 (1.24) 183.67 (67.37)

 (km/liter)  (kg) (liter) (g-CO2/km)
Fuel Economy Vehicle weight Displacement CO2

Note: This table shows the number of observations, means and standard deviations of vari-

ables by year. Data are not sales-weighted.
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Table A.2: Estimates of the Loss Function (Excluding Kei-cars)

Logit Random-coefficient logit

(1) (2)

α : (∆Weight)2 -0.71 -1.10

(0.07) (0.15)

β : (∆Fuel consumption)2 -1.00 -1.30

(0.08) (0.13)

γ : ∆Weight×∆Fuel consumption 0.19 0.26

(0.11) (0.11)

τ : 1{Subsidy} 0.48 0.62

(0.17) (0.17)

Stadard deviation of random-coefficient

α : (∆Weight)2 0.42

(0.05)

β : (∆Fuel consumption)2 0.39

(0.05)

γ : ∆Weight×∆Fuel consumption 0.75

(0.12)

Note: As a robustness check for the results in Table 3, we estimate the logit and random-

coefficients logit models by excluding kei-cars. There are small changes in the coefficients,

but it does not significantly change our main findings.
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Table A.3: Counterfactual Policy Simulations (Excluding Kei-cars)

∆e: ∆a: ∆L ∆L S.D. Additional loss from

Fuel consumption Weight Welfare loss relative of MC safety externality

(liter/100km) (kg) ($/car) to efficient ($/car) ($/car)

Panel A: Based on logit estimates

Efficient -0.71 -9.50 893 1.00 0 -175

Flat -0.71 -12.81 3613 4.05 4397 -236

ABR -0.71 39.42 2277 2.55 2215 726

Panel B: Based on random-coefficient logit estimates

Efficient -0.71 -10.48 821 1.00 0 -193

Flat -0.71 -10.04 3477 4.23 4311 -185

ABR -0.71 45.94 2460 3.00 2417 846

Note: As a robustness check for the results in Table 4, we provide the same policy simulations

by excluding kei-cars. There are small changes in the coefficients, but it does not significantly

change our main findings.
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Table A.4: Counterfactual Policy Simulations (With Firm Dummy Variables Interacted
with Cost Variables)

∆e: ∆a: ∆L ∆L S.D. Additional loss from

Fuel consumption Weight Welfare loss relative of MC safety externality

(liter/100km) (kg) ($/car) to efficient ($/car) ($/car)

Efficient -0.79 -9.29 951 1.00 0 -171

Flat -0.79 -40.94 6894 7.25 4457 -754

ABR -0.79 26.07 2280 2.40 2467 480

Note: As a robustness check for the results in Table 4, we provide the same policy simulations

based on a random-coefficients model in which all cost variables are interacted with firm

dummy variables. There are small changes in the coefficients, but it does not significantly

change our main findings.
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Table A.5: Actual Bunching vs. Predicted Bunching Based on the Estimated Loss Function

All 860 kg 980 kg 1090 kg 1200 kg 1320 kg 1430 kg

Actual (%) 27.60 1.58 3.17 1.81 0.90 1.58 1.81

Predicted (%) 26.14 1.14 2.27 3.86 2.27 1.36 4.32

1540 kg 1660 kg 1770 kg 1880 kg 2000 kg 2110 kg 2280 kg

Actual (%) 4.52 5.66 2.71 1.36 1.36 1.13 0.00

Predicted (%) 5.23 1.82 0.91 1.36 0.68 0.91 0.00

Note: We use the estimated loss function obtained by the random-coefficients model and

data in 2008 to predict bunching in 2012. The table shows actual and predicted bunching

(% of the data at each notch).
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Table A.6: Percent of Bunched Observations: Actual v.s. Predicted by the Loss Function
(Logit)

All 860 kg 980 kg 1090 kg 1200 kg 1320 kg 1430 kg

Actual (%) 27.60 1.58 3.17 1.81 0.90 1.58 1.81

Predicted (%) 32.73 1.82 2.50 4.32 2.27 2.50 5.68

1540 kg 1660 kg 1770 kg 1880 kg 2000 kg 2110 kg 2280 kg

Actual (%) 4.52 5.66 2.71 1.36 1.36 1.13 0.00

Predicted (%) 7.27 0.91 0.91 2.27 1.14 0.68 0.00

Note: We use the estimated loss function in Table 3 and data from 2008 to predict bunching

in 2012. Using the functional form assumption for L(∆an,∆en), the estimated coefficients,

and data from 2008 (aon, e
o
n), we calculate the predicted value for the value function Vnz and

let each n to choose its optimal pair of (an, en) in 2012. We then compare the predicted

bunching from this procedure to the actual bunching in the 2012 data.
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