Stochastic Models and Option Values
D. Lund and B. @ksendal (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1991

Estimating Structural Resource Models
When Stock Is Uncertain: Theory and
Its Application to Pacific Halibut

Peter Berck! and Grace Johns®

"Undversity of California at Berkeley, CA 94720
“Spectrum Economics, Inc., San Francisco, California

Economists and policymakers frequently face the problem of making deci-
sions about stochastic systems but oftentimes do not directly observe the
most important elements. Common examples include managing fisheries
when one does not directly observe the stock of fish, making energy policy
when unproved reserves are not known, restricting immigration without
a clear knowledge of the number of undocumented aliens, and designing
a policy to fight drug addiction when the supply of drugs is not observ-
able. All of these policy problems have an unobservable component which
is critical to understanding the behavior of the system being studied. A
combination of the methods of maximum likelihood and the Kalman filter
provides a way to estimate the parameters of the stochastic difference equa-
tions that govern the evolution of resource stocks. Much of the problem
of regulating fisheries stems from the great variance in the fish stock from
season to season. Environmental factors (such as water temperature and
fishing) explain some of the apparent changes in vear-to-year fish stocks,
but a good deal of the variance cannot be explained by deterministic means
and is, therefore, taken as stochastic.

In the next section of this paper, we set out the theory of the Kalman
filter/maximum likelihood method of estimation in a simple fishery setting.
We contrast our view with the more common estimation practice. Section 3
of the paper applies these ideas to a real fishery problemn, the Pacific Halibut
fishery. The model in section 3 is a good deal more complex than that in
the second section. The final section includes some conclusions about the
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halibut example and some suggestions for other areas in agricultural and
resource economics where application of the filter idea can enhance stock
estimates and thus policy decisions.

The maximum likelihood Kalman filter

Since one cannot observe the actual stock of fish in the sea, it is natural to
use a statistic one can observe as a proxy. The proxy that should be chosen
depends upon the regulation of the fishery. We will begin this section with
a presentation of a simple, dynamic fishery model. The production function
in the model is chosen so that yield-per-unit effort is an indicator of the
fish stock. That model is then expanded to include a quota on total fishery
harvest. When the quota is harvested, the season is over and the season
length is measured in days. In this regulated model, it is catch-per-day-
per-unit effort that proxies the unobserved stock. Since most fisheries are
regulated, these changes are not trivial.

The simplest model of an unregulated, open access fishery determines
the (stochastic) time path of fishing effort, E; catch, h; and fish, z, as
functions of (exogenously) given prices for fish, p, and costs of maintaining
one unit of effort, ¢.!' The simplest model, which is to say a too simple
model, begins with a law, F(), governing the growth of the fish stock. The
model ignores age classes, predators, etc., to achieve this simplicity.

Tiy1 = F(xy — he, B) + wy, (1)

where w is a normally distributed mean zero variate with variance W,
is a parameter vector, and ¢ is time in years. All the additive error terms
in this paper are assumed uncorrelated with each other and are assumed
to be serially uncorrelated.
The second equation of this model is a standard equation of yield-effort
models,
ht = kEt.’Et + Etvyt s or
_ (2)

Equation (2) states that yield-per-unit effort, y, is proportional to stock
with constant of proportionality, k. The random error in the first form

! The model generalizes to n-dimensions. In all that follows, one could interpret x as a
vector of state variables and y as a vector of measurement variables. All the arguments
remain the same.
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of equation (2) has variance proportional to effort. In the second form of
the equation, the random error, vyt, 18 distributed normal with mean zero
and variance, V,. Equation (2) is called a measurement equation because
the dependent variables are observable and depend on the unobservable
stock, @. Equation (2) is just a production function giving output, i, as a
function of a single input, £, and an uncontrollable variable, z. that plays
a role formally equivalent to technical progress. Again, an additive normal
error 18 assumed. Any other production function that maintains the role
of @ would also work, assuming one knew the coeflicients. Finally, annual
effort is modeled as

Erpy=E+6(pys — ) By + vy, (3)
where v, is a random error term. This last equation embodies the notion
that positive profits per unit effort (the term inside parentheses) lead to
entry of effort at rate 4. Negative profits lead to a decrease in effort. Tt is
the naive long-run model of the firm: Positive profits mean (slow) entry of
firms and effort. A more elaborate version of the simple model would come
from modeling the components of effort: boats and effort per boat and
allowing the components to vary. One would then amend equation(2) so
that price equals marginal cost. As it stands, an interpretation is that each
firm finds it profitable to fish exactly 1 unit of effort which is presumably
equivalent to the maximnm amount they can fish. Smith (1968) is usually
credited with the three-equation dynamic version of this model. His model
is more elaborate and allows for crowding and for differing production
functions. Obviously, it does not matter whether one uses the primal h(E)
point of view or the dual ¢(h) formalism, though there is certainly fishery
literature that argues this choice is meaningful (Fullenbaum, Carlson, and
Bell, 1971). In short, this is the simplest dynamic model that could be
called a “fishery”.

When a fishery is regulated, a slightly different model is appropriate.
Abstracting quite a bit, Pacific Halibut are regulated by means of a quota
on total catch of the fishery, ¢. The quota is enforced by closing the
fishery when the quota is met. The fraction of the potential fishing season
during which harvesting is allowed is called o. We shall make the extreme
assumption that, as soon as the fishery is closed, the boats just sit in port
earning nothing. Equation (1) is unchanged by this regulation since it is
merely a statement of the biology. Equation (2) needs some work:

¢g=h=kFEvo+uv,Es, or

h (2[)
= ka + vy

Y= o
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modifies equation (2) by taking the effective effort as Eo or effort times
the percent of the season it is used. The adjustment equation for effort
depends upon per boat profits. Regulation leaves costs unaffected, but per
boat revenues are now (opy), so

Eiv1 = Eib(owpy: — ) By + vy . (3r)

Equations (1), (2r), and (3r) are the simple regulated fishery. The entry
equation (3r) is particularly naive. It assumes that firms act in accord
with instantaneous profits and not rational expectations about their present
value of profits (Berck and Perloff, 1984).

Typically, one observes all the variables except stock, z, and wishes to
estimate the parameters, § and k, and whatever parameters are in the
biomass size function, F. Also, one should be estimating a regulated
model, rather than the more popular unregulated one, because fisheries
are regulated.

Estimation with unknown stock

The parameters of the equations representing the simple fishery and the fish
stock can be estimated by a combination of the Kalman filter and maximum
likelihood. In this section, we will explain how this procedure is done in
simplified terms and for the simplified model. We follow the presentation
in Meinhold and Singpurwalla (1983). More standard and more detailed
explications can be found in Harvey (1981) or Gelb (1974). The models
presented in this section differ from the estimated models primarily in
the number of measurement equations, the choice of additive rather than
multiplicative errors, and the need for an extended filter in the empirical
work.

Equation (1) is called a state equation because it describes the evolution
of the unobservable state variable, fish stock. Its value is never known. The
best estimate of stock at time ¢, given all observations (on y and h) up to
and including ¢ — 1, is denoted x,,_;. This is shorthand for a normal
random variate with mean Z,,_; and variance Py;_1. One then observes
y¢. This new information leads to a revised estimate of the fish stock. This
new best estimate, given information through time ¢, is denoted Ty)y; and it
is again a normal random variate with mean Z;; and variance P,;. Given
B, W, and V,,, or estimates of them, the Kalman filter is an algorithm to
determine z,, when one knows x,_1;_; and realizations of the variables,
Y+, which depend on z;. The filter also gives the variance of T4)¢, denoted
Py¢, which is determined from P,_;;;_; and y;.
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For the simplest case, which is all we shall deseribe here, assume that g
and Fyjg are the mean and variance of  at time zero.” To keep the example
simple, also assume that the stock function, £, in equation (1) is linear.
The filter will give an estimate 2}, in terms of wq)o and y;. Similarly, one
gets estimates for time 2 from those of time 1 and so on. Therefore, it
suffices to consider the general case of getting Ty from zyypog.

At time [ — 1, which is to say before 3, is observed, the estimate of z,
alled @y4_q, is F(a;_1;y—1 — hy—1. 3). This estimate is a normal random
variable because it is a linear function of a normal random variable and
some constants. To be explicit, let @y, 1 = F +w = Fo + F1(x—1p-1 —
hi—1) +w. Tts mean is 3o + 1 (#,_1,—1 — hy—1). Its variance is the variance
of w, called W, plus 81 P_1;_10]. The latter term is the contribution of
the randomness of z,_;;,_; to the randomness of 2,,_;. For later use, let
this variance be called

Bi=Py1 = ﬁlpt—l\t—l.ﬁ; + W (4)

Since @y, summarizes the beliefs about x prior to observing y, it is a
prior expectation in the Bayesian sense.

The next piece of the filter is to make use of a measurement equation
which is the equivalent of conducting an experiment. The yield-per-unit
effort is predicted using 2y,_; and is compared to observed yield-per-unit
effort. The yield-per-unit effort in period # is just 4. At £ — 1, one’s beliefs
about y, are a consequence of equation (2),

Yejt—1 = Koy + vy (5)
The point forecast of y; is just the mean of (5),
f’)t|t71 = k:i:t\tfl - (6)
From (5) and (6), the error in predicting v is the normal random variate,
el = Wt = Y- = k(”’z}t—l - 1135r|r.-—1) + vy, (7)

where Eleg,—1] = 0. The variance of the prediction error in catch-per-
unit effort is V, + R E', where V,, is the variance in the error of the yield

= The quantities + and y could equally be interpreted as vectors. Then A is a matrix with

the number of colnmns equal to the dimension of » and the number of rows equal to the
dimension of y. Its transpose is &', Similarly, the Vs, P's, ete.. are conformable matrices.
One could do this equally with equation (2r).
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equation. One other statistic that will be needed is the covariance of e;;_;
and Tt—1-

cov(wyje—1, epe-1) = E[(ere—1 — 0) (zej—1 — £4j—1)] = K'Re,  (8)

where E[ ] is the expectation operator. The variables x,;_; and e,;_; are
correlated normal random variates, so they are jointly normal with the
following distribution:

(i) =n(Go) (o™ W) @

Since observing the error in predicting catch-per-unit effort is the same as
observing catch-per-unit effort, the posterior distribution of - (which is z,;)
is just the same as (z4,_1le:) or the conditional distribution of z,,_1, given
the observed e;. To summarize, equation (9) gives the joint distribution of
the normal variates, e;;.1 and z;_;. We seek the conditional distribution
of T44_1, given e,;_;. The conditional distribution for a joint normal can
be found in a standard text or the article by Meinhold and Singpurwalla
(1983). From the formula for the conditional distribution, z,j; is normally
distributed with mean and variance given by

Foje = bo + b1 (Br_1j0—1 — he1) + RE' (Vy + kRK') ey,

’ n—1 (10)

Py, = Ry — Rk’ (Vy, + kRiEK') kR,
Equation (10) gives the mean of z;, as a function of e; — the observed
observation error. Equation (10) is the Kalman filter for this simple fishery
model. To recapitulate: For any set of parameters, 3, §, k, etc., and any
Tojo and Fyp, one can calculate all x,,’s by use of equation(10). That
calculation is simply the algebra of conditional expectations and nothing
more.

One estimates equations (1) to (3) by the maximum likelihood method.
Equation (3) can be estimated by ordinary least squares, quite apart from
the others. Unless one assumes contemporaneous correlation of the errors
or the inclusion of endogenous variables (such as current price), as we will
do later, the Gauss-Markov theorem assures that ordinary least squares is
best. The other two equations are estimated by Kalman filter/maximum
likelihood.

The maximum likelihood method requires the choice of parameters (3,
k, zo, Py) to maximize the likelihood of what one observes. The only
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observable variable is y;, and the likelihood of the sample is just the product
of the likelihoods of the T observations.

A typical observation consists of y; and &;;_;. The likelihood of ¥ is
the same as kw1 + v, which is a normal variate with mean kz,,_; and
variance V, + ER:k' - Letting u; be the observed residual w, = gy — kdyje—1,
the likelihood of the {-th observation is

L, = ! rd—”'(vu“"kﬂ'k’)_l“‘ . (11)

V2r(kRE +V,)

The likelihood of the sample is just L(xg)o, Pojo,d, 3, k, V,, W) = Ht:l,T L,
which is the likelihood of observing all T' observations of y. In practice, for
any set of parameters, one evaluates L by first using the filter, equation
(10), to find all of the ’s and P’s. The z’s and P’s are used to calculate
R, and u,. Finally, the L,’s are calculated and multiplied together from
t=1,...,T (or the logs of L; are summed) to get the likelihood function.
The maximum likelihood method is to use numerical methods to find the
values of the parameters that maximize the likelihood function. We were
not able to find algebraic expressions for the derivatives of this function
with respect to the parameters, so we have no proof that the function is
concave or that convergence is guaranteed.

The Kalman filter can be easily extended to use sampling information as
well as catch-per-unit information. Halibut stocks are predicted by an age-
cohort analysis. Let ; be the International Pacific Halibut Commission
(IPHC) stock estimates made by this method alone, and assume that v, is
their error with variance V.. Thus,

Y= Ty 4 vy _ (12)

is a second measurement equation. The mechanics of the filter are as before
except that V' is now a matrix of v, and v,, and u; is a vector. One could
enlarge this model to the belief that + is a linear function of the true stock
without undue computational burden. This combination of the filter and
the sampling information gives the minimum mean square error way to use
both cohort and catch-per-unit effort data. The actual series we have from
[PHC already combines both of these methods in a nonoptimal fashion, so
we do not pursue this any further.

In contrast to these methods, the methods in the literature are to either
ignore the dynamic and stochastic nature of the fish stock {e.g., Bell, 1972)
or make a clever substitution to eliminate the fish stock and ignore its
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stochastic nature (e.g., Spence, 1973). There is little to be said in favor
of assuming fish stocks to be in equilibrium over a long sample period,
so there is little to be said for estimations of yield-effort curves based on
that assumption. The problem with Spence’s ingenious method is that he
suppresses the error in the measurement equation.! On the other hand,
dispensing with an error term before one makes felicitous substitutions is
certainly well within the reduced form tradition of econometrics (add your
error terms when it is convenient). Short of the filter techniques proposed
here, Spence’s method is certainly the next best.

In the next section we apply this Kalman filter/maximum likelihood
algorithm to a more realistic model of the Pacific Halibut fishery.

Application to the Pacific Halibut fishery

The IPHC was established in 1923 by a treaty between Canada and the
United States to rehabilitate and maintain Pacific Halibut stocks at or
near maximum sustainable yield. The fishery consists of four separately
managed areas. Since the IPHC cannot directly observe the stock of
halibut, it relies on changes in catch-per-unit effort and age composition
studies to manage the resource. The management tools used by IPHC are
gear restrictions, size limits, the regulation of incidental catch (IC), and an
annual quota on total catch. Although halibut are exploited by a variety
of vessel types that are shared with other fisheries, only one type of gear

longline skate (a setline) -~ has been in use since the early days of the
fishery. The biology of the fishery is such that fishermen exploit a large
number of year classes simultaneously. For this reason, Crutchfield (1981)
states that the halibut fishery is “ideally characterized by the traditional
biomass-fishery model”

The model employs annual data on the halibut fishery from 1936 through
1982 for the two most important arcas numbers 2 and 3. Table 1 gives the

1 Spence writes his state equation as T4 = F( ff)_(( where F'is natural growth, In filter
terms, an observation equation would be Spence’s catch equation, o = F(a, )1 — e A t],
with catch as a function of fishing effort and a prTdIIl(‘.t(!L Ao Let 3 = (1 —¢ A f]_l
then = = F and one estimates 24y = Flze™ Y] £, This appears to successfully
vllmlndtv the unohservable from the equation. Spence reaches this simple result by writing

= F rather than z = I" 4+ v; that is, he ignores the error in measuring stock by catch
per (a function of) unit effort. Including this error in the measurement cquation leads to
a much more complicated result. Put differently. one does not know stock. It is a random
variable derived from a stochastic process, and = provides only an estimate of it. If one
carries through the algebra, ;) = Fl{z — v/ )e™ AEy t]+ wiry + gy Bven if one does
not bother much with the problems caused by nonlinear F, this is still an autocorrelated,
lagged dependent variable problem in need of some attention.
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Table 1: Pacific Halibut Fishery Model.

BIOMASS

Ln(biomassy ;) = s1 + s2 - Ln(biomassg y—1 — catchy_q — ICy,:1) 4+ w:.

CATCH
Ln(catchy /day2,¢) = ¢1 + ¢2 - Ln(biomassg ¢)

+ c3 - Ln(efforta /day2 +) + vet -

EFFORT
Lin(efforty /days 1) = ef1 + efz - Ln(biomassg ;)

+ efs - Ln(halprice;)
+ efs - Lu(sablepr:)
+ efs - Ln(salmonpry ) + ves .

HALIBUT PRICE

Lu(halprice;) = hy + ha - Ln(catchy,¢ + catchs,¢ 4 catcha ;)
+ h3 - Ln(pincome; ) 4 hy - Ln(holdingse) + vp; -

Notes: Subscripts indicate area and year.
IC is incidental catch.

equations of the complete model which is a good deal more complicated
than the simplified model of section 2. Table 2 gives the definitions of all
the variables.

The first equation is the equation for the evolution of the unobservable
fish biomass (thousand metric tons, t.m.t.) Unlike the simple model, the
state equation is not linear in the state variable, biomass. The functional
form chosen for the stock equation allows slower growth when the biomass
is larger (which the linear form does not), but it still does not capture
the backward bending part of the growth curve or allow for a maximum
biomass. Catch is what is caught by boats trying to catch halibut, while
incidental catch, taken as exogenous, is what is caught by boats targeting
other species. The stock equation is a feasible improvement over the linear
form.

The nonlinearity of the biomass equation leads to filters that are based
on the probability density function of biomass. This will likely result in
nonlinear filters that are burdensome to implement. To maintain compu-
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Table 2: Pacific Halibut Data and Source.

Variable

Description

Sourece

Catch

Quantity of halibut caught by the
longline fleet in management
arcas 2, 3, and 4. Expressed in
round weight metric tons.

Myhre, 1977: IPHC Annual
Reports, 1977 to 1982,

Incidental
catch

Quantity caughi by other fishers
in management arcas 2, 3, and 4.

Myhre, 1977; IPHC Annual
Reports, 1977 to 1982.

Effort

Number of longline skates used to
catch halibut in management
areas 2 and 3. Expressed in 100
skates,

Myhre, 1977: IPHC Annual
Reports, 1977 to 1982,

Season length

Nuwmber of days between the
opening and closing of the season
for management areas 2 and 3.

Skud, 1977; IPHC Annual
Reports, 1977 to 1982,

Halibut price

Average exvessel price of Pacific
Halibut for arcas 2, 3, and 4.
Deflated using the Implicit Price
Deflator for GNP (IPD) with base
year = 1972,

IPHC Annunal Report, 1982; 1.8,
President, 1970 and 1984,

Salmon price

Average exvessel price of salmon,
all species, North Pacific Ocean.
Deflated using TPD with base year
= 1972,

United States Department of
Commerce, 1975; Orth, et al.,
1981: Fisheries of the United
States, 1976 to 1982,

Sablefish price

Average exvessel price of sable-
fish, North Pacific Ocean.
Deflated using IPD with base year
= 1972.

NMTI'S-Fishery Statistics of the
United States, 1939 to 1956; U.S.
Department of Commerce, 1974.

Cold storage
holdings

Beginning of scason holding of
frozen Pacific Halibut expressed
in round weight metric tons.

NMFS-Fishery Statistics of the
United States; NMFS-Fishery
Industries of the United States

Per capita
income

U.S. Per Capita personal
disposable income in 1972 dollars.

U.S. President, 1969, 1980, 1984,

Halibut
biomass

IPHC estimates of Pacific Halibut
Biomass from cohort and
catch-age analysis, management
areas 2 and 3.

Deriso and Quinn, 1983; Hoag
and MeNaughton, 1978; Quinn, et
al., 1985.

tational simplicity, the “extended” Kalman filter is derived from the lin-
earized state equation. It maintains filter linearity in the state (biomass)
variable. First, we treat the state variable as the natural log of biomass. Its
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equation is linearized through a first-order Taylor series expansion about
the mean of biomass, #;_14-1-

The size of the error introduced by linearizing the logged biomass equa-
tion depends on the size of catch relative to biomass. As catch increases
relative to biomass, the error increases; and this is compounded by the
degree of nonlinearity of biomass in the true biomass growth equation. In
the case of the Pacific Halibut fishery, direct and incidental catch is a small
proportion of the biomass (roughly 15 percent), so the error in estimating
biomass via the extended Kalman filter is expected to be small. Although
other methods of dealing with nonlinear state equations exist, they are more
complicated and may not reduce error to the extent that would justify the
additional effort needed to implement them. According to Gelb (1974), the
extended Kalman filter “has been found to yield accurate estimates in a
number of important practical applications”.

The catch-per-day equation is just the classic equation of yield-effort
fishery economics generalized to permit arbitrary, but constant, elasticities
of catch per day with respect to stock and effort per day.

Effort per day in the halibut fishery is modeled as dependent upon
current market forces. Current biomass and exvessel price directly affect
current profitability, and sablefish and salmon prices give the opportunity
cost of fishing. The gear used for fishing halibut (skate soaks) is not so
specialized as to preclude the same vessels switching from one fishery to
another. It is believed that this intraseason switching of target species is
the main form of exit and entry in this fishery. Thus, current variables are
expected to have a large effect on effort per day.

In all, there are six measurement equations — three each for manage-
ment areas 2 and 3 of the Pacific Halibut fishery. Each management area
also has a biomass equation. There is also an exvessel price equation to
represent the demand for halibut at dockside. The parameters of these
equations are estimated using the full information-Kalman filter/maximum
likelihood technique. The technique of the previous section is generalized to
include two state variables (log stock in each area), an extended filter, seven
endogenous variables, and six measurement equations. The likelihood for
an observation is just as in full information/maximum likelihood method
except that the term kR, %k’ (the variance induced by the uncertainty about
the stock) is added to the usual variance covariance matrix.

The estimates of stock biomass are constructed from the logged biomass
estimates and their variances, which are obtained from the Kalman filter.
Since the conditional and updated estimates of the log of stock biomass
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in each time period are distributed normal with mean v, and variance Py,
the conditional and updated estimates of stock in each time period, z;, are
distributed log-normal with a mean of

E(z;) = en: (/25 (13)
and a variance of

V(zy) = e P (eP —1). (14)

Results

The parameter estimates of the model obtained from the numerical op-
timization using the Kalman filter and the Davidon-Fletcher-Powell op-
timization method are presented in Table 3. The standard errors were
computed by means of a bootstrap,® but the histograms of the replicated
parameter estimates tell a somewhat different story. The histograms do not
appear to be symmetric and generally indicate that parameter values are
very much less likely to be zero than might be concluded from the # ratios.

A parameter estimate of one associated with the exponent on the
biomass equation is the demarcation between higher stock giving higher
and lower growth. One cannot reject the simple model of linear growth for
area 2, though one can reject it for area 3. The catch-per-day equation in
area 2 is nearly linear in biomass and in effort per day (and they are not
significantly different from unity in area 3) so, again, the very simple model
seems acceptable. Effort per day is increasing in biomass and halibut price,
which is as one would expect, but the effects of competing species are of
uncertain sign (and this is true in both areas). Finally, the demand curve
slopes down and, when one examines the bootstrap replicates, significantly
so. Holdings depress price while per-capita income increases it, which is as
it should be. Neither of these latter two variables are significantly differ-
ent from zero. In summary, the parameter estimates are about what one
should expect and are much closer to the estimates from a naive model
than one would have first thought likely.

5 The 92 percent, bias corrected, centered confidence intervals were also computed this way,
using the method suggested by Efron (1982).
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Table 3: Parameter Estimates of the Pacific Halibut Fisher Model.

Parameter Estimate Standard 92 percent C.1.%
deviation
Area 2 biomass
Intercept — s, 0.304 0.242 0.032 0.309
Bscapement 2 - so 0.956 0.050 0.931 1.08
Area 8 biomass
Intercept — s 1.43 0.726 1.40 5.05
Escapement 3 — sy 0.727 0.100 0.278 0.735
Area 2 catch per day
Intercept — ¢ —4.15 20.35 86.0 -0.397
Biomass 2 — o 1.03 3.75 0.364 2.14
Effort 2 per day o3 0.876 0.428 0.008 0.981
Area 3 catch per day
Intercept — 3 -0.049 3.66 6.42 2.16
Biomass 3 e2 0.643 0.893 0.046 1.06
Effort 3 per day — ¢3 0.751 0.619 0.172 2.14
Area 2 effort per day
Intercept — ef 17.41 20.7 82.8 -2.07
Halibut price efy 1.47 0.779 0.736 3.11
Biomass 2 — efs 2.78 3.60 0.968 14.8
Sablefish price — efy 0.083 0.426 0.388 1.09
Salmon price — ef; 0.981 0.516 0.980 1.14
Area 3 cffort per day
Intercept — ef) -7.30 6.00 25.1 6.0
Halibut price — efs 1.08 1.34 0.614 6.64
Biomass 3 efy 1.23 0.598 0.874 2.84
Sablefish price efy -0.536 0.291 0.832 0.379
Salmon price — ef; 0.156 0.892 -0.930 2.57
FEzxvessel halibut price
Intercept — hy 12.8 12.8 9.17 74.4
Total catch ho —0.831 0.839 5.45 —0.650
Income — hy 0.430 1.04 1.08 0.839
Holdings hy 0.124 0.131 —0.187 0.375

*Bias corrected 92 percent central confidence interval about the point estimate.

The biomass estimates

Estimates of Pacific Halibut biomass (Table 4) for management area 2
and management area 3 are a byproduct of the Kalman filter /maximum
likelihood estimation. This subsection presents the estimates from the
Kalman filter. These estimates are compared to biomass estimates obtained
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from a recent IPHC publication (Quinn, Deriso, and Hoag, 1985). The
IPHC biomass estimates were derived from catch-age analysis.

Figure 1 is a plot of the updated biomass estimates for area 2 against
time in years. Estimates of area 2 of biomass from Quinn, Deriso, and
Hoag are also plotted on this graph. The pattern of biomass estimates from
the Kalman filter methodology strongly resembles the pattern of biomass
estimates given by IPHC. According to IPHC estimates, the peak biomass
oceurs in 1955. The Kalman filter biomass estimates increase dramatically
from 1943 to 1954 and decrease sharply from 1955 to 1960. The IPHC
biomass estimates begin to rise again in 1980 while the Kalman filter
biomass estimates begin to rise in 1977.

IPHC &nd Kalman Filter Estimates
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Figure 1: Halibut Biomass in Area 2.

For area 2, the regression of IPHC estimates (IPHC2) on the Kalman
filter estimates (BIO2) resulted in the following relationship (standard
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deviation in parentheses):

BIOZ2, = 110 + 6.9IPTC2, ,
(24) (.54) (15)
R? = .78; n = 47; residual standard error = 55.3.

Estimation of the model parameters and variance matrix using the Kalman
filter/maximum likelihood technique resulted in biomass estimates that
are 10 times larger than those of the IPHC. This discrepancy becomes
apparent immediately in the Kalman filter recursions by examining the
conditional and updated biomass estimates and variances for 1936. Given
the bioeconomic model, the biomass estimates have very low variances. As
a result, the IPHC estimates do not fall in the confidence intervals of the
Kalman filter biomass estimates.

Table 4, column 3, presents the updated estimates of area 3 biomass.
Figure 2 presents a plot of the Kalman filter biomass estimates and the
IPHC estimates (Quinn, Deriso, and Hoag, 1985) against time in years.
Both patterns exhibit two peaks and two valleys. The IPHC biomass series
peaks in 1946 and 1961 while the Kalman filter series peaks in 1952 and
1960. Both series declined beginning in 1962. The biomass begins to
Increase again in 1976 according to the IPHC series and in 1975 according
to the Kalman filter series. The Kalman filter series predicts a much faster
increase in biomass after 1979 than does the IPHC series.

The regression of IPHC biomass estimates (IPHC 3) on the Kalman filter
biomass estimates (BIO 3) resulted in the following relationship (standard
deviation in parentheses):

BIO3; = 25 + .79 IPHCS3,
(12) (.18) (16)

R? = .29; n = 47T; residual standard error = 27.

The Kalman filter biomass estimates are approximately the same magni-
tude as the IPHC estimates. While the explanatory power of equation (16)
1s not as great as in equation(15), the estimates of biomass in area 3 after
1975, predicted by the Kalman filter model, agree with the increases in
biomass after 1975 that were noted throughout the fishery in 1980 through
1986 (van Amerongen, 1985; Alaska Fisherman’s Journal, 1984 and 1986).

The biomass estimates for both areas follow the pattern of IPHC biomass
estimates. Area 2 biomass estimates from the Kalman filter are about 10
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Table 4: Pacific Halibut Biomass Estimates in Area 2 and Area 3,

1936-1982 (in round weight per 1,000 metric tons).

Biomass (t/t) Biomass (t/t)
Year area 2 area 3
1936 274.83 47.82
1937 301.19 51.07
1938 323.68 53.11
1939 325.85 54.96
1940 327.39 56.86
1941 338.91 65.11
1942 338.63 62.09
1943 345.65 64.56
1944 407.12 58.00
1945 406.73 67.30
1946 465.85 81.84
1947 490.99 82.41
1948 539.13 102.56
1949 521.47 95.14
1950 519.19 95.66
1951 576,91 113.75
1952 569.22 127.99
1953 646.30 121.78
1954 697.27 116.97
1955 655.42 88.57
1956 587.30 78.40
1957 525.63 69.68
1958 499.34 78.29
1959 513.94 103.89
1960 516.30 112.72
1961 431.01 100.47
1962 396.33 97.43
1963 361.30 103.45
1964 352.85 88.74
1965 368.65 73.36
1966 375.76 88.10
1967 363.38 62.39
1968 337.12 52.07
1969 56.77
1970 55.42
1971 43.96
1972 40.63
1973 29.42
1974 23.37
1975 26.37
1976 28.40
1977 38.26
1978 43.07
1979 287.65 53.69
1980 296.53 9H8.89
1981 323.30 131.54
1982 316.73 175.82
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Figure 2: Halibut Biomass in Area 3.

times larger than the IPHC estimates although both series follow the same
trend over time. In area 3, the IPHC and the Kalman Filter biomass
estimates have the same magnitude. The time series of both estimates
show two peaks, two valleys, and a sharp increase in biomass from 1980 to
the present. For area 3, the filter estimates are much closer to the post-1975
fishing experience than are the IPHC estimates.

Mazimum sustainable yield

The IPHC is charged with developing and maintaining halibut stocks at a
level which provides maximum sustainable yield (MSY) to the fishery (Bell,
1978). The IPHC uses estimates of MSY and annual surplus production
(ASP) to set annual quotas for management areas 2, 3, and 4. MSY is
the maximum harvest that can be caught on a sustained basis without
depleting the population. To achieve MSY| the quotas are set equal to 75
percent of ASP. ASDP is the maximun potential change in biomass from the
previous year to the current year. ASDP in the current vear is equivalent to
the catch in the previous year plus the change in biomass from the previous
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year to the current year. When catch is held below (above) ASP, then the
biomass increases (decreases). This method is appropriate when stocks are
below the level necessary to achieve MSY. To ensure that the quotas are
below ASP, the ASP is multiplied by 0.75.

The ASP, MSY, Maximum Sustainable Catch (MSC), and the catch
that maximizes the present value of revenues to the fishery were calculated
using the estimated model. The results for each area along with the actual
quotas set by IPHC are presented in Table 5 for the years 1984, 1985, and
1986. The arca 2 biomass is below MSY. However, it is close to the level
that provides the highest revenues. The 75 percent ASP and the revenue
maximizing catch in area 2 are approximately equal and substantially
greater than the actual quota recommended by IPHC. The area 3 biomass is
above MSY. The allowable catch recommended by the 75 percent ASP and
the revenue maximization of area 3 provides for a reduction in biomass to
levels at and below MSY, respectively. Both catch levels are significantly
above the actual quota.

Revenues in both areas can be increased by raising the quotas without
compromising the productivity of the fishery. In both management areas,
a policy that restricts catch to achieve MSY will not benefit halibut fishers.
This result explains the events of the mid-1980s when unprecedented in-
creases in catch-per-unit effort resulted in record volumes of halibut caught
and a severe depression in halibut prices and income. The current problem
in the Pacific Halibut fishery is the accurate forecasting and control of inci-
dental catch of halibut. The size of the incidental catch has a large impact
on the biomass and the recommended quota. The degree to which [PHC
regulations will benefit fishers in the future will depend on their ability to
recommend quotas consistent with maximum revenue, or income, and their
ability to estimate and control the amount of incidental catch.

Conclusions and extensions

Filter methods were shown to provide a reasonable basis for estimation
of fishery models. They are equally useful for other cconomic cases of
unobserved stocks.

Lxtension: Other eramples

Other examples of lmportant stochastic stock problems in resources and
agriculture include aliens, crop acreage, and undiscovered reserves of an
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Table 5: Comparison of Recommended and Actual Quotas (1,000 metric tons).

Year/ 75 percent Maximum Actual Biomass under
Area ASP revenue quota actual quota
1984
Area 2 20.4 19.4 9.1 352.7
Area 3 39.4 52.1 13.7 256.9
1985
Area 2 20.7 20.1 11.8 368.8
Area 3 36.4 35.2 17.5 291.3
1986
Area 2 21.0 19.9 13.9 382.6
Area 3 33.8 26.2 21.0 318.0
Area Maximum sustainable yield
Area 2 732.3
Area 3 ' 211.5
Maximum sustainable catch
Area 2 32.2
Area 3 57.7

exhaustible resource. The method could also be used to estimate aggregate
capital. Each of these models is sketched in turn.

To make an estimate of resources which remain to be found in some
areas, a planner could reason as follows. The prior is (Zg, Py) — the
quantity of the resource to be discovered and its variance. It might just
as well be a vector of the types of resources and their covariances. Again,
h; is found with exploration effort, E;, so the observation equation is h; =
f(zs, Ey) and the state equation is simply ;41 = z;—h;. The measurement
equation has the same justification as the fishing measurement equation: It
is easier to find an exhaustible resource when there is more of it to be found.
The state equation is the exhaustible resource state equation. Assume that
the measurement equation is just the familiar h/E = kz. Substitute the
definitions of #;;_; and e; into equation (10), the filter; and subtract h,
from both sides to get

Zoje — he = Erjeo1 + Rek(V + kRK') ™" (ys — ko) — he . (17)
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Equation (17) is the estimate of the mean stock remaining to be discov-
ered after the findings of period ¢, that is, Zty1)e- Since y, = hy/Ey,
(0Z4)¢41)/(Ohs) > 0 whenever

RkE'(V + kRE) 'E; T > 1. (18)
Looking at (9), this can be re-expressed as (19)

cov (et]t—la $t|t—1)

var (etlt—l)

>FE. (19)

Increasing discoveries increases one’s estimate of stock when surprises in
discovery per unit effort are highly correlated with stock and when the
absolute value of effort or the variance of stock is low.

The multivariate expansion of this model could include good and bad
grades of the resource. The discovery equation would then have two ks, one
for each grade. Discovery effort would result in both good and bad grades
being discovered, in proportion to their difficulty to discover, k, and their
abundance, z. This gives a model without the usual odious assumption
that good grades are discovered first.

Undocumented crop acreage is a real problem in California. Marijuana
is often alleged to be an important (sometimes the important) cash crop of
the northern timber growing regions. The natural agricultural model is a
stock adjustment model. Unobservable production, z, is a function of past
production, observable price, and observable apprehension expenditure.
The latter variable represents a very severe cost to the grower. In addition
to expenditure on enforcement, one also observes enforcement success —
tons seized. Let y be tons seized per dollar of enforcement effort. As before,
y = kz is the observation equation. There are many problems with this
example — particularly rapid technical progress in crop cultivation and
detection avoidance and equally rapid progress in detection through aerial
surveillance.

Undocumented aliens are definitely not directly observable. Torok and
Huffman (1986) examined U.S.-Mexican trade in winter vegetables and
undocumented immigration. Their model shows that the same work force
picks tomatoes in both countries so that the United States will import either
labor or tomatoes. To estimate their structural model, they substitute
apprehensions and apprehension effort for the actual unobservable stock of
laborers and supply of labor. Their model could be cast in the filter mode
by adding a state equation and treating the stock of those undocumented
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in the other equations. A plausible state equation would be: The stock
of Mexican agricultural laborers (undocumented) is determined by the
past stock and wage and unemployment differentials between the United
States and Mexico. Undocumented immigration is a complicated matter.
Both the actual number of aliens who do not return home and the size
of the network that safely imports them contribute to what would be
measured as stock. The observation equations are the demand and supply
of undocumented labor. The demand equation in their model (simplified)
is In(A) = co + ¢1 In(P) + ca In(w), where A is apprehensions, P is tomato
price, and w is the wage rate. The ¢'s are constant. The model is derived
from a simple yield effort model: In(A) = kIn(BP)+ In(N), where BP is
apprehension effort by the Immigration and Naturalization Service and NV
is the stock of undocumented laborers. (They also assume that labor supply
is proportional to N, so the demand equation for apprehensions really is
the labor demand equation.) The natural way to expand the model would
be to avoid the substitution of apprehensions for labor quantity and write
In(N) 4k In(BP) = cg+c1 In(P) 4 ey In(w) and In(A) = ko In(BP)+1In(N)
as the two observation equations. The two different k's allow for the
difference between labor supply and the stock of undocumented laborers.
A third observation equation would be the labor supply equation which
can be handled in a similar fashion.

The last example is the capital stock. The state equation is K; = K, —
K141, or capital is depreciated at the unknown rate, 8, and replenished
by investment, 7. The usual method for constructing such a sequence is to
take Ky as some reasonable estimate and infer § from depreciation data for
various industries. Although the resultant numbers are used as the capital
stock, they are clearly estimates with substantial probable error. Viewed
this way, ¥ = F(K, L, M); the aggregate production function in terms of
capital (labor and materials) is just a measurement equation for the capital
stock. The filter will produce stock estimates, estimates of the production
function, and estimates of the reliability of the stock estimates.

Conclusions

Unobservable stochastic variables play a major role in many applied eco-
nomic fields. In fishery economics, the major explanatory variable is the
unobserved fish stock. Sampling methods based upon population dynam-
ics are almost always supplemented with information inferred from the
economic activity of the harvesting agents. In this paper, we used just
the information from economic activity to infer stock. Our Pacific Hal-
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ibut biomass estimates generally agree in pattern, though not magnitude,
with the estimates made by IPHC. In the immediate postsample period,
the filter estimates for area 3 provide more accurate predictions of halibut
catch-per-unit effort than the IPHC estimates. The experience in the fish-
ery was closer to our expectations than it was to those of the IPHC. We
view this as providing some evidence for the utility of this method.

On the other hand, the vast disparity in our stock estimates and those
of the IPIHC suggests that our estimates ought to be called effective stock,
that is, the unobserved variable that correlates well with fishing success.

This paper also provides several other examples of unobserved variables
in economics. In each case the Kalman filter/maximum likelihood ap-
proach is a promising method for preserving the stochastic variability and
endogeneity of the model during estimation. This method provides more
information on the dynamics of the unobserved variable than has heen
available or used in past studies.
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