
 

 

 

AS THE WIND BLOWS: THE EFFECTS OF LONG-TERM 

EXPOSURE TO AIR POLLUTION ON MORTALITY* 
 

 

Michael L. Anderson 
University of California, Berkeley, and NBER 

 
30 January 2019 

 
Abstract 

There is strong evidence that short-run fluctuations in air pollution negatively impact infant 
health and contemporaneous adult health, but there is less evidence on the causal link 
between long-term exposure to air pollution and increased adult mortality. This project 
estimates the impact of long-term exposure to air pollution on mortality by leveraging quasi-
random variation in pollution levels generated by wind patterns near major highways. 
I combine geocoded data on the residence of every decedent in Los Angeles over three years, 
high-frequency wind data, and Census Short Form data. Using these data, I estimate the 
effect of downwind exposure to highway-generated pollutants on the age-specific mortality 
rate by using orientation to the nearest major highway as an instrument 
for pollution exposure. I find that doubling the percentage of time spent downwind of a 
highway increases mortality among individuals 75 and older by 3.8 to 6.5 percent. These 
estimates are robust and imply significant loss of life years. 
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The effect of air pollution on premature mortality is a fundamental parameter for 

environmental regulation. For example, the United States Environmental Protection Agency 
(US EPA) estimates that the 1990 Clean Air Act Amendments (CAAA) will generate $12 

trillion in gross benefits from 1990 to 2020, with 92 percent of these benefits accruing in the 

form of avoided mortality (US EPA 2011, Ch. 7, p. 8). In the past decade, researchers have 

employed quasi-experimental designs with great success to estimate the effects of air 
pollution on fetal and infant health (Chay and Greenstone 2003; Currie and Neidell 2005; 

Currie, Neidell, and Schmieder 2009; Jayachandran 2009; Currie and Walker 2011; Knittel, 

Miller, and Sanders 2015; Arceo-Gomez, Hanna, and Oliva 2015). There is also strong 

evidence that short-term fluctuations in air pollution negatively impact contemporaneous 
pediatric and adult health (Ransom and Pope 1995; Pope and Dockery 1999; Friedman et al. 

2001; Moretti and Neidell 2011; Schlenker and Walker 2015). In comparison, however, there 

is a shortage of quasi-experimental evidence linking long-term exposure to air pollution to 

increased adult mortality. This effect is of great policy interest because the goal of most air 
quality regulations, such as the CAAA, is to achieve long-term reductions in ambient 

pollution levels. 

Estimating the effects of long-term exposure to air pollution is challenging for two 

reasons. First, it is difficult to identify quasi-random variation in long-term air pollution 
levels across geographic areas. Second, even if pollution were randomly assigned, individuals 

may endogenously migrate in response to pollution (Banzhaf and Walsh 2008). The 

identifying variation in air pollution thus needs to be cross-sectional in nature (or a very long 

panel), exogenous, and yet subtle enough not to induce migration. 
I exploit quasi-random variation in pollution levels generated by wind patterns near 

major Los Angeles highways to estimate the effect of long-term exposure to air pollution on 

mortality rates. Relative to other major California metropolitan areas, the Los Angeles Basin 

has consistent, predictable wind patterns. The atmospheric sciences literature has established 
that certain pollutants, and especially ultrafine particles (UFP), are found at elevated levels up 

to 600 meters downwind of major highways. In contrast, pollution levels rapidly decline 

within 100 meters on the upwind or parallel wind sides of highways. This pattern suggests 

the use of location relative to highways as a proxy for pollution exposure. 
My research design compares mortality rates for individuals who live within 600 

meters of highways but on different sides, one predominantly upwind and the other 

predominantly downwind. This comparison should isolate variation in long-term pollution 

exposure — the median household in my analytic sample has lived at the same address for 



	 2 

over two decades — that is uncorrelated with other factors affecting mortality. In particular, 

after controlling for distance from highway and a fine set of spatial fixed effects, there is 
little reason to believe that individuals who live downwind of highways differ from 

individuals who live upwind of highways, unless people move in response to the pollution 

itself. Such a response seems unlikely because the pollutants in question, UFP, nitrogen 

oxides, and carbon monoxide (CO), are measurable with scientific equipment but not readily 
perceived by the human senses at the concentrations found near highways (and atmospheric 

research suggests that coarser particles, which are more readily sensed, do not disperse as 

far). Furthermore, I demonstrate that property values are not lower downwind of highways, 

which would be the natural consequence of endogenous migration in response to perceived 
pollution. 

I find a statistically and economically significant relationship between downwind 

exposure in the Los Angeles Basin and mortality rates among the elderly. For individuals 

over the age of 75 — the most vulnerable group — a one standard deviation increase in 
share of time spent downwind of a highway increases mortality by 3 to 5 percent. When 

instrumenting for percentage of time downwind using orientation (e.g., north, south, east, or 

west) to the highway, my estimates imply that a one standard deviation increase in time spent 

downwind of a highway increases mortality by 6 percent. These effects persist across a range 
of elderly or near-elderly age groups (e.g., individuals over 65 or over 70) and spatial 

bandwidths. My estimates are somewhat larger in magnitude than those from studies that 

estimate the high-frequency time-series relationship between daily mortality rates and daily 

particulate levels. They are smaller than existing cross-sectional estimates, but they remain 
economically significant, implying over 300,000 life years lost in the Los Angeles Basin alone. 

There is little evidence that households are currently aware of the potential risks of 

downwind exposure; property values are balanced across the highways. This fact suggests 

that residential sorting behavior, development patterns, and adaptation measures are 
suboptimal. The health damages also imply substantial benefits from regulating UFP and 

other near-highway pollutants. They represent, to the best of my knowledge, the first quasi-

experimental evidence on the effects of long-term exposure to fine or ultrafine particulate 

pollution on adult mortality. 
 

I. Background 
Dozens of studies establish that daily or weekly fluctuations in air pollution have 

negative impacts on contemporaneous adult health, including mortality (Pope and Dockery 
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1999). Extrapolating the effects of short-term fluctuations to long-term exposure, however, 

is problematic for two reasons. First, the effects of exposure may accumulate over time, so 
that the cumulative effect of long-term exposure is greater than the implied effect of the sum 

of repeated short-term exposure coefficients. Second, over short time horizons, the 

“harvesting” effect — the possibility that short-term insults to health “harvest” sick 

individuals who were about to die anyway — may underlie some of the contemporaneous 
relationship between pollution shocks and adult mortality. If so, then the effect of 

cumulative exposure to pollution may be smaller than suggested by short-term estimates. In 

summary, for adults it is difficult to bound the effects of long-term pollution exposure in 

either direction using estimates from short-run pollution fluctuations.1 
 

A. Particulates and Health 
Particulate pollution has been a focus of air quality regulations since the 1970 CAAA. 

In 1971, the EPA issued CAA standards focusing on total suspended particles (TSPs), or 
particles of approximately 100 micrometers in diameter or less. In 1987, they revised the 

standards to focus on PM10 (particles 10 micrometers in diameter or less), and in 1997 they 

issued standards targeting PM2.5 (particles 2.5 micrometers in diameter or less). The clear 

trend in regulation is toward finer particles over time, and the current research focus on the 
health effects of particulates is on fine particulates (PM2.5) and UFP (particles 0.1 

micrometers in diameter or less). 

The most heavily-cited evidence linking long-term exposure to air pollution and 

premature adult mortality comes from cross-sectional epidemiological studies. The seminal 
paper in this series is the “Six City study” (Dockery et al. 1993), which documents a 

significant relationship between mortality risk and air pollution across six cities. The 

mortality rate in the most polluted city in that study was 26 percent higher than the mortality 

rate in the least polluted city, with the strongest association observed for fine particulates 
(PM2.5). This finding was replicated in a follow-up study covering all US metropolitan areas 

with available pollution data (Pope et al. 2002), and a similar relationship exists for 

cardiovascular events and PM2.5 (Miller et al. 2007). Pope, Ezzati, and Dockery (2009) use 

two repeated cross sections and demonstrate that long-differenced (20 year) changes in PM2.5 
correlate significantly with changes in city-level life expectancy. The EPA applies results 

from this literature when evaluating the CAAA (US EPA 2011), but it is unclear whether the 

																																																								
1 The issues discussed are less problematic for infants. Because infants are very young, a short-term fluctuation 
in pollution can represent a large change in total lifetime pollution exposure. 



	 4 

observed relationships reflect a causal effect of air pollution on mortality or whether they 

reflect the role of unobserved confounding factors that correlate with air pollution levels 
across cities. 

A small number of papers have employed quasi-experimental methods to estimate 

the effect of long-term pollution exposure on adult mortality. Chay, Greenstone, and 

Dobkin (2003) use variation in the long-run reduction in TSP pollution induced by the 
CAAA of 1970. They find that counties with the largest decreases in TSPs (i.e., the most 

polluted counties prior to 1970) did not experience greater reductions in adult or elderly 

mortality than counties with smaller decreases in TSPs. However, they urge caution in 

interpreting these results “due to the imprecision of the estimated effects and evidence of 
significant problems with the research design” (Chay, Greenstone, and Dobkin 2003, p. 299). 

Chen et al. (2013) exploit a policy in China that provides coal-fired heat to all cities north of 

the Huai River. Using a regression discontinuity (RD) design, they estimate that TSPs are 55 

percent higher north of the river and that life expectancies are 5.5 years lower. These results 
imply large effects of air pollution on mortality. The implications for regulation in the United 

States (US) and other developed countries are unclear, however, because pollution levels are 

much higher in China. 

The other evidence linking particulates and health comes from laboratory or 
biomarker studies with animals and humans. Elder et al. (2004) and Elder et al. (2007) 

exposed laboratory rats to UFP levels mimicking urban roadside environments and found 

negative effects on white blood cell counts and heart rate. Vinzents et al. (2005) and Brauner 

et al. (2007) document significant relationships between personal exposure to UFP over 
several hours and oxidative DNA damage in humans. Frampton et al. (2006) exposed human 

subjects to UFP and found negative effects on blood leukocytes (white blood cells); Brook et 

al. (2009) exposed human subjects to PM2.5 and found adverse effects on blood pressure. Of 

relevance to this study, both Frampton et al. (2006) and Oberdörster et al. (2009) found that 

UFP reduced pulmonary diffusing capacity for CO, suggesting a negative interaction effect 

between two of the main pollutants from motor vehicles (UFP and CO). 

 
B. Pollution Dispersion Near Highways 

Understanding the dispersal of pollutants from highways is critical for implementing 

my identification strategy and interpreting my results. Karner, Eisinger, and Niemeier (2010) 

synthesize results from 41 atmospheric science studies on near-roadway air quality. These 
studies measure pollutant levels at varying distances from busy highways in the upwind, 
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downwind, and parallel wind directions. Several clear patterns emerge from this meta-

analysis that inform my research design. 
First, pollutant levels are consistently higher downwind of highways than upwind of 

highways. This implies that the percent of time spent downwind of highways should affect 

pollutant exposure. Second, while many pollutants decay to near background levels within 

200 meters downwind, several do not. Most significant among these are UFP, which have 
demonstrated adverse health effects in laboratory studies, nitrogen oxides (NO and NO2, or 

NOx), and to a lesser degree CO. UFP decay to background levels by 570 to 910 meters 

downwind, and nitrogen oxides decay to background levels by 550 to 570 meters downwind. 

Notable pollutants whose plumes do not extend beyond 100 to 200 meters downwind, or 
whose concentrations do not seem to be strongly affected by wind direction, include coarse 

and fine particulates (PM10 and PM2.5) and ozone (a secondary pollutant). In practical terms, 

by 300 meters the only pollutants with levels that are at least 15 percent higher than 

background levels are UFP (150 percent higher), NO (70 percent higher), and CO (25 
percent higher) (Karner et al. 2010, p. 5337). Dispersion of up to 500 meters is important 

because the spatial resolution of my data, while high, becomes imprecise for coding at radii 

of less than 100 meters. Noise is an additional “pollutant” that decays with distance from the 

highway, but recent research reveals that noise levels do not vary strongly with wind 
direction and thus are unlikely to affect my research design (Shu, Yang, and Zhu 2014). 

An additional study, conducted after the Karner et al. meta-analysis, is particularly 

relevant to my research design. Quiros et al. (2013) measure UFP concentrations before, 

during, and after a 36-hour shutdown of the I-405 highway in Los Angeles. This July 2011 
event, locally known as “Carmageddon,” was scheduled to accommodate a major highway 

improvement project. During the closure, particle number concentrations — which are 

determined by UFP counts — were 83 percent lower 50 to 300 meters downwind of I-405 

than during comparable non-closure days. There were no substantial trends in particles 
upwind of the freeway.2 These results corroborate the effects of downwind exposure on 

pollution concentrations in the area included in this study. 

Elevated outdoor UFP levels may have limited health effects if the particles do not 

penetrate indoors. Jamriska et al. (1999), Palmgren et al. (2003), and Morawska et al. (2009) 
study the relationship between outdoor and indoor levels of traffic-generated particle 

																																																								
2 Quiros et al. also compared downwind weekday particle number concentrations in 2011 to concentrations 
from the same area in 2001 (taken from an earlier study). They found that concentrations fell 60 percent from 
2001 to 2011, suggesting that the effects of being downwind from freeways may have declined during this 
period. 
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emissions in a variety of contexts. They find that UFPs have high penetration efficiency into 

buildings unless mitigated with a high efficiency filtration system, which most residential 
buildings lack. 

In summary, the only pollutants that consistently reach levels high enough to 

generate a meaningful first stage several hundred meters from the highway are UFP, nitrogen 

oxides, and CO.3 These pollutants are either colorless and odorless (UFP and CO) or are 
found at concentrations too low to be perceptible to the human senses (the odor threshold 

for NO2 is 0.12 ppm, which is above the 99.9th percentile of NO2 measurements at near-

highway pollution monitors in the study area; Nagata and Takeuchi 2003, p. 122). It is thus 

unlikely that individuals will move in response to downwind frequency. 
In terms of health impacts, the clearest hazard is UFP, since they are the most 

elevated relative to background levels and have been shown to have negative impacts in 

laboratory studies. CO is also dangerous (Currie and Neidell 2005; Currie et al. 2009), and 

may negatively interact with UFP, but its plume decays much more rapidly. Nitrogen oxides 
are a criteria pollutant in part because they interact with volatile organic compounds (VOCs) 

to form ozone. Since the Los Angeles Basin is VOC-limited (South Coast Air Quality 

Management District 2014), and has been for many years (Milford, Russell, and McRae 

1989), additional nitrogen oxides will not increase ground-level ozone concentrations. 
Nevertheless, there is some evidence that sustained exposure to low levels of nitrogen oxides, 

like those found in the study area, may have negative health impacts. Complicating inference 

is the fact that in almost all contexts there is strong colinearity between fine particles and 

nitrogen oxides (Committee on the Medical Effects of Air Pollutants 2015). A cautious 
interpretation of my results is that I estimate the reduced form effect of an increase in 

several near-roadway air pollutants — UFP, NO2, and CO — on mortality. 

A final strand of literature directly related to this research estimates the relationship 

between roadway proximity and health. Hoek et al. (2002) examine data in the Netherlands 
and find that the risk of mortality is 41 percent higher for individuals living within 100 

meters of major roads or freeways. Gauderman et al. (2007) find that children living within 

500 meters of California freeways had depressed lung development relative to children living 

more than 1,500 meters from freeways. Currie and Walker (2011) exploit a natural 

																																																								
3 As noted above, all other pollutants decay to within 15 percent of background levels or less by 300 meters. 
Since the difference in average downwind frequency between an “upwind” and “downwind” block is only on 
the order of 15 to 20 percentage points, the actual difference in average pollution exposure between upwind 
and downwind blocks would only be a maximum of 2 to 3 percent for these other pollutants. These differences 
in pollution would be too small to generate a detectable effect on mortality in my data, unless the mortality 
effect were of a clinically implausible magnitude. 
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experiment arising from the introduction of electronic tolling and find that reductions in 

traffic congestion near toll plazas reduces the incidence of prematurity and low birth weight 
among mothers living within 2,000 meters of the plazas. Rosenbloom et al. (2012) find that 

all-cause mortality among individuals who have previously suffered from heart attacks is 13 

to 27 percent higher when living within 1,000 meters of a major roadway. 

 
II. Data 

This study estimates the effect of downwind exposure from highways in the Los 

Angeles Basin (the area of Los Angeles County that lies northwest of the Pacific Ocean and 

southeast of the mountains). The Los Angeles Basin is an ideal study area for several reasons. 
First, it contains a large population (approximately 5 million in 2000). Second, there are 

many major highways. Third, there are consistent, predictable wind patterns across the Basin. 

This is helpful in assigning wind directions to Census Blocks — the unit of analysis — 

because weather stations are much sparser than Census Blocks. Finally, I have detailed data 
on Los Angeles real estate transactions. This enables property value based falsification tests. 

The data underlying my estimates come from four distinct sources. The primary 

outcome is the Census Block age-specific mortality rate. To compute this rate, I combine 

two data sets. The first is the California Death Address File.	These data contain information 
on every death in California from 1999 to 2001, including the residential address of each 

decedent. Key variables include age and cause of death. The second data set is the GeoLytics 

CensusCD 2000 Short Form. These data contain 2000 Census Short Form data, aggregated 

and geocoded at the Census Block level. Key variables include population by age group, 
gender, and race. Note that no data beyond these basic demographic variables exist at the 

Census Block level because the Census Long Form is only distributed to one in six 

households and is not available below the Block Group level, which is much too coarse a 

geographic unit for this analysis (United States Census Bureau 2016). 
In Los Angeles, each Census Block generally corresponds to a city block and 

averages 150 to 300 meters on each side. I geocoded the Death Address File addresses for 

the entire Los Angeles area and assigned each address to a Census Block. I then computed 

three-year Census Block mortality rates for various census age groups, including ≥65, ≥70, 
and ≥75 years of age.4 For each Census Block, I calculated the distance and angle 

(orientation) to the nearest major highway, as defined by ESRI ArcGIS. 

																																																								
4 I define the three year mortality rate for the ≥75 years of age group in Census Block i as follows. The 
numerator is the number of deaths in Census Block i from 1999 to 2001 among people who would be 75 years 
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The independent variable of interest is downwind frequency, or the fraction of time 

spent downwind of a major highway. I define a Census Block as downwind at a moment in 
time if the wind direction is within 45 degrees of a perpendicular ray running from the 

highway to the Census Block.5 If the wind blows in any other direction or if there is no wind, 

then the Census Block is not downwind. Note that if the wind blows approximately parallel 

to the highway (i.e., within 45 degrees of the highway’s direction), then neither side of the 
highway is downwind. In Section V.A, I experiment with an alternative definition of 

downwind that weights exposure by the cosine of the difference in angles between the wind 

direction and a perpendicular ray from the highway to the Census Block and find similar 

results. I omit a very small number of populated Census Blocks that are near the 
intersections of two highways, as the downwind direction for these blocks is ambiguous. 

Figure 1 depicts four scenarios with different wind directions. The figure overlays a 

short segment of Interstate 110, which runs north-south in the Los Angeles Basin. Dashed 

lines mark the analytic sample boundaries, which include the area between 50 and 600 
meters from the highway. Solid arrows represent the wind direction. 

Panel A presents the downwind area when the wind blows east. This is a 

straightforward scenario, as the wind direction is perpendicular to the north-south highway, 

and the eastern side of the highway is downwind. Panel B presents the downwind area as the 
wind shifts to blowing northeast. Since the angle between a perpendicular ray from the 

highway and the wind direction is still less than 45 degrees, the downwind area remains 

unchanged. Panel C presents the downwind area as the wind shifts to blowing almost north. 

The angle between a perpendicular ray from the highway and the wind direction is now 
more than 45 degrees, so the wind is almost parallel to the highway. Neither side is now 

downwind. Finally, Panel D presents the downwind area as the wind shifts to blowing 

northwest. The western side of the highway is now downwind. 

In addition to demonstrating the underlying geometry, Figure 1 also highlights the 
spatial scale of the study. The outer dashed lines mark 600-meter limits from the center of 

the highway. These limits encompass less than 1.5 city blocks on either side. The inner 

dashed lines represent 50-meter limits from the center of the highway, the minimum 

distance for a Census Block to be included in the analytic sample. There is also an 800-meter 

																																																																																																																																																																					
or older in 2000. The denominator is the imputed number of people living in Census Block i in 1999 who 
would be 75 years or older in 2000. The imputed number of people living in Census Block i in 1999 is the 
actual number of people living in Census Block i on 1 April 2000, plus the number of people who died between 
1 January 1999 and 31 March 2000. 
5 “Wind direction” in this case refers to the direction toward which the wind blows. However, in 
meteorological data, “wind direction” refers to the direction from which the wind blows. 
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length marked in the figure to represent the radius of the highway segment spatial fixed 

effects discussed in Section III. 
To measure wind direction and speed I collected one year of wind data for 20 

available Los Angeles Basin weather stations from MesoWest. I matched each Census Block 

to its nearest weather station and assigned wind directions and wind speeds using this match. 

The average distance to the nearest weather station in the analytic sample is 4.9 kilometers, 
with a standard deviation of 2.1 kilometers and a maximum distance of 11.1 kilometers. I 

verify the accuracy of these data by predicting the measured downwind frequency at Census 

Blocks within 500 meters of a weather station using data from the next nearest weather 

station. The correlation coefficient between predicted downwind frequency and actual 
downwind frequency is 0.87 (N = 64). However, this figure understates the accuracy of the 

predictions because the average distance to the next nearest weather station is higher than 

the average distance to the nearest weather station. If I limit the sample to Census Blocks 

where the next nearest weather station is less than 7.4 kilometers away, the average distance 
to the next nearest weather station (5.0 km) becomes similar to the average distance to the 

nearest weather station in the analytic sample (4.9 km). In this restricted sample, the 

correlation between predicted downwind frequency and actual downwind frequency is 0.96 

(N = 32). 
The last data set is data on property sales. I use these data to conduct falsification 

tests using property values and to make inferences about the frequency at which households 

in the sample move. These data come from DataQuick and represent the universe of real 

estate transactions involving single-family homes in Los Angeles County between 1990 and 
1998. The data include address, date of transaction, transaction price, and square footage. 

Table 1 presents summary statistics for key variables. There are 27,908 Census 

Blocks in the overall sample (the Los Angeles Basin), but only 9,027 lie in the analytic sample 

(i.e., between 50 and 600 meters from a major highway). In both samples, the three-year 
mortality rate among individuals 75 and older is approximately 0.16, with two-thirds of that 

due to cardio-respiratory causes and under 20 percent due to cancer. The average block is 

downwind of the closest highway 15 percent of the time, and the winds do not blow at all 42 

percent of the time. The average block contains 167 individuals, 7 of whom are over the age 
of 75. Approximately half of all households in both samples own their own homes. The 

share of black individuals is lower in the analytic sample (12 percent) than in the full sample 

(14 percent). 
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Figure 2 overlays the entire analytic sample on a map of the Los Angeles Basin. The 

Census Blocks in the sample are tightly clustered around highways. In a few cases — for 
example, just below the exact center of the map — the distribution of Census Blocks 

appears asymmetric, with a much higher density of blocks on one side of the highway. This 

occurs when one side of the highway is primarily residential, while the other side is primarily 

industrial or commercial. To ensure that this type of imbalance does not bias the research 
design, I employ a spatial fixed effects strategy, discussed in Section III, that limits 

comparisons to areas in which I have residential Census Blocks on both sides of the 

highway.6 

A critical question for the research design is how long the average individual in the 
sample has lived near the highway. If mobility is high in the sample, then the average length 

of exposure to elevated pollution levels will be short. The Census Short Form does not have 

a question on how long a household has lived at the current location, but the Census Long 

Form, which is available at the Census Tract level, does. The median individual over 75 
living in one of the analytic sample’s Census Tracts has lived at the current location for 25 

years, and 78 percent of them have lived at the current location for over 10 years.7 Thus, the 

vast majority of “downwind” individuals in the sample have been exposed to elevated 

pollution levels for over a decade, and many for over two decades. 
 

III. Empirical Strategy 
My empirical strategy compares Census Blocks that are close together but differ in 

downwind exposure from highways. Because downwind exposure changes discontinuously 
at the highway, and because I limit comparisons to households that are spatially proximate 

(see Figure 1), the strategy shares features with a boundary discontinuity design. In a typical 

boundary discontinuity design, identification relies on the assumption that housing supply 

and demand are smooth across the boundary (in this case, the highway). That assumption 
may not hold for a single highway segment, because highways often form dividing lines 

between neighborhoods. However, in this case there are at least eight highways and over two 

																																																								
6 Areas that lack residential Census Blocks on one side of the highway have no variation in downwind exposure 
within a small spatial radius. Thus, these areas do not contribute to my estimates when employing the spatial 
fixed effects design. Areas with a few residential Census Blocks on one side of the highway do contribute to my 
estimates, but the implicit weight they receive is very low because they have little variation in downwind 
exposure within a small spatial radius. 
7 To calculate these figures, I match each Census Block from the analytic sample to its Census Tract and 
calculate the statistics across matched Census Tracts, weighting each Census Tract by the number of matched 
Census Blocks. If I expand the focus to all individuals over age 65, the median individual has lived at the 
current location for 25 years, and 73 percent of them have lived at the current location for at least 10 years.  
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dozen highway segments (where a segment refers to a multi-mile stretch of highway that 

does not intersect any other highways). Thus, identification relies on the assumption that, if 
there are discontinuous changes in housing supply or demand at highways, these changes are 

not consistently related to the prevailing wind directions. In Section V.B, I test for failures in 

this assumption by examining the relationship between downwind exposure and household 

characteristics or property values. 
To implement my strategy, I trim the sample along the dimension that is orthogonal 

to the highway. I then generate spatial fixed effects along the dimension that is parallel to the 

highway, which I refer to as “highway segment fixed effects.” I estimate two sets of 

regressions using these data. First, I estimate ordinary least squares (OLS) regressions of 
Census Block mortality rates on percentage of time spent downwind of a highway, 

controlling for distance to the highway and highway segment fixed effects. Later, I estimate 

two stage least squares (2SLS) regressions in which time spent downwind of a highway is the 

endogenous regressor and orientation to the highway is the instrument. 
The analytic sample consists of Census Blocks with centroids located between 50 

and 600 meters from major highways in the Los Angeles Basin. I set a minimum distance 

from the highway because the geocoding of residential addresses to Census Blocks and 

Census Blocks to highways is only accurate to within 50 to 100 meters. This inaccuracy 
occurs for several reasons. First, the GeoLytics Census Block boundaries are inexact. In 

theory, they should precisely overlay the road network, which is the primary delineator of 

Census Blocks in the Los Angeles Basin, but in practice I observe some slippage. Second, as 

demonstrated in Figure 1, Los Angeles highways are wide — often 75 meters or more — so 
their network representation in the ArcGIS shape file is not exact. Third, the mapping of 

addresses to coordinates is only approximate in many cases. The ArcGIS shape file assigns 

each road segment an address range, and addresses within that range are linearly interpolated. 

For example, in a road segment assigned an address range of 101 through 109, the geocoder 
assumes that the address of 105 lies at the midpoint of that road segment. All of these issues 

combine to generate measurement error in the assignment of addresses to Census Blocks. 

Further from the highway, this generates noise in the dependent variable (Census Block 

mortality rates) but not the independent variable (downwind exposure to the highway), since 
a Census Block that is far from the highway should have the same downwind exposure as its 

neighbor. Adjacent to the highway, however, the measurement error affects the independent 

variable as well, causing attenuation bias. I thus set a minimum distance of 50 meters to the 
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highway in selecting the analytic sample. This minimum distance threshold is analogous to a 

“donut RD” in the regression discontinuity framework (Barreca et al. 2011). 
I take the maximum distance from the highway of 600 meters from the atmospheric 

sciences literature summarized in Karner et al. (2010). This literature finds elevated UFP 

levels out to 570 meters when normalizing concentrations against those found upwind of 

highways.8 The 600-meter figure lies near the middle of the range of spatial bandwidths used 
in existing studies of roadway proximity and health (see Section I.B). I test the sensitivity of 

the results to different maximum (and minimum) distances in Section V. 

I generate highway segment fixed effects after trimming the sample on distance from 

the highway. The highway segment fixed effects are similar to the spatial fixed effects (SFE) 
that have appeared in other spatial analyses (Conley and Udry 2008; Goldstein and Udry 

2008; Magruder 2012). The SFE estimator is analogous to a standard fixed effects estimator 

in that it demeans each observation i relative to other nearby observations. It then estimates 

the regression 𝑦" − 𝑦$" = 𝛽(𝑥" − �̅�"), where 𝑦$" and �̅�" represent the mean values for 

observations within a radius r of observation i. Unlike a standard fixed effects estimator, 

however, SFE cannot be represented as a set of dummy variables, because the relevant 
comparison group changes continuously as one moves through space. 

The highway segment fixed effects modify the SFE estimator to demean observation 

i relative to observations lying within a radius r along the dimension parallel to the highway.9 

I implement highway segment fixed effects rather than standard spatial fixed effects because 
they allow me to independently control the spatial bandwidth along two orthogonal 

dimensions: distance from the highway and distance along the highway. For example, 

suppose that r = 800 meters and that observation i lies 400 meters south of an east-west 

highway. Observation i is compared to all other observations on that highway that are within 
800 meters in the east-west direction. This includes observations over 400 meters north of 

the highway, even though these observations are more than 800 meters away from 

observation i in two-dimensional space. With standard spatial fixed effects, it is impossible to 

																																																								
8 Karner et al. report that elevated UFP concentrations persist out to 910 meters downwind of highways when 
normalized against background concentrations far from highways. However, given my research design, 
normalizing against upwind levels is more relevant than normalizing against concentrations in areas with no 
highways. 
9 For Census Block i, I calculate the distance to any point j along the dimension parallel to the highway nearest 

Block i as 𝑑", = -.𝑙𝑎𝑡, − 𝑙𝑎𝑡"2
3
+ .𝑙𝑜𝑛, − 𝑙𝑜𝑛"2

3
∙ 8sin <tan?@ A

BCDE?BCDF
BGHE?BGHF

I − 𝜃"K8, where lat and lon 

represent latitude and longitude (normalized to meters), and 𝜃" is the angle of a perpendicular ray from the 
highway nearest i to Census Block i (converted to radians). Block j is included in the neighborhood mean for 
Block i if and only if dij is less than r (and both blocks lie within 600 meters of the same highway).	
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assess the sensitivity of the results to decreasing the radius of the SFE without also 

decreasing the bandwidth around the highway. Independent manipulation of both 
bandwidths is important because the highway segment fixed effects are meant to control 

omitted variables bias, while the bandwidth around the highway determines the composition 

of the sample (and potentially the average treatment effect). 

Figure 3 presents a stylized example of the near-highway bandwidth and highway 
segment fixed effects when applied to a highway running east-west. Consider block S0, lying 

directly south of the highway. When calculating 𝑦$" and �̅�" for S0, I include all blocks whose 

centroids are within a radius r in the east-west direction, regardless of which side of the 

highway they are on. This cut represents the highway segment fixed effect. In the north-

south direction I include all blocks with centroids within 600 meters of the highway. This cut 

represents the near-highway bandwidth. Thus, if the reference block is S0, then blocks S-1, S0, 

S1, N-1, N0, N1, N3, N4, and N5 all enter the calculation of  𝑦$" and �̅�". Blocks S-2, S2, N-2, and 

N2 are excluded because they are more than r meters from S0 in the east-west direction, and 

block N6 is excluded because it is more than 600 meters from the highway (and therefore not 

in the analytic sample at all). 

After trimming the sample to Census Blocks located between 50 and 600 meters and 
transforming the data with highway segment fixed effects, I estimate OLS regressions of the 

form 

(1)   𝑦M" = 𝛽𝑤O" + 𝑥M"𝛿 + 𝜀"̃ 
where yi represents the three-year mortality rate in Census Block i among individuals 75 and 

older, wi represents the fraction of time that Census Block i is downwind of a highway, and xi 

represents other covariates. I define the transformation 𝑢M" = 𝑢" − 𝑢$" , where 𝑢$" is the mean 

of observations lying within r meters of observation i along a line parallel to the highway. I 
set a default highway segment fixed effect bandwidth of r = 800 meters but test the results’ 

robustness to different bandwidths. Covariates in the vector xi include distance to the 

highway, weather station fixed effects, race, and age distribution. 

I augment the OLS estimates with 2SLS estimates that employ the orientation of the 
Census Block to the highway as an instrument for downwind exposure. Orientations of 0, 90, 

180, or 270 degrees imply, respectively, that the highway lies north, east, south, or west of 

the Census Block. The identifying variation for the 2SLS estimates is broadly similar to the 

OLS identifying variation. Nevertheless, 2SLS estimates have two potential advantages over 
OLS estimates. First, the 2SLS estimates should be less sensitive to the exclusion of spatial 

fixed effects because the relative position of Census Blocks to the nearest highway is evenly 
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distributed throughout the Los Angeles Basin. In contrast, even if housing is evenly 

distributed across both sides of all highways, downwind exposure could be higher in certain 
areas of Los Angeles simply because winds might blow more consistently in those areas. 

Second, the 2SLS estimates should reduce the measurement error in downwind frequency 

that arises because most Census Blocks do not contain weather stations. Because the 

measurement error will likely attenuate the OLS estimates, I expect — and find — that the 
2SLS estimates exceed the OLS estimates in magnitude. 

I parameterize the instrument, orientation to the nearest major highway, as a set of 

seven dummy variables. Each dummy variable represents a 45-degree range (e.g., 22.5 

degrees to 67.5 degrees, 67.5 degrees to 112.5 degrees, etc.). The excluded category is north 
(337.5 degrees to 22.5 degrees). The first stage regression is thus 

(2)   𝑤O" = �̃�"𝛼 + 𝑥M"𝛾 + 𝑣M" 
where zi represents the set of 45-degree range dummy variables, and wi, xi, and the 

transformation 𝑢M" are as defined above. The second stage estimates the equation: 

(3)   𝑦M" = 𝛽𝑤X" + 𝑥M"𝛿 + 𝜀"̃ 

where 𝑤X" are the fitted values from the first-stage results. 

In all regressions (OLS and 2SLS), I compute standard errors that are robust to 

spatial dependence, following Conley (1999). I employ a uniform kernel and a spatial 

bandwidth of 3,200 meters (two miles) in computing the standard errors. Their size is 

insensitive to reasonable variations in this bandwidth or alternative kernel choices. All 
regressions are weighted by the unit of analysis (the Census Block); Section V.A discusses 

population-weighted estimates as well. 

 

IV. Results 
I begin with a graphical analysis of the relationship between downwind exposure and 

mortality. Figure 4 presents a bin scatterplot of the three-year mortality rate among 

individuals 75 and older against the frequency of downwind exposure to a major highway. In 

this figure, both mortality rates and downwind exposure are residualized with respect to 800-
meter highway segment fixed effects; downwind frequency is thus negative for a small 

number of Census Blocks. Figure 4 reveals that Census Blocks with a high frequency of 

downwind exposure have higher mortality rates than Census Blocks with a low frequency of 

downwind exposure. 
Figure 5 presents the instrumental variables analog of Figure 4. Figure 5 plots the 

relationships of two variables with respect to orientation to the highway (the instrument) 
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using local polynomial regressions.10 The first plot — the dashed blue line — is the 

relationship between downwind frequency and orientation to the highway. This plot is the 
graphical analog of the first-stage regression. It reveals that when the highway lies south or 

west of a Census Block, the block is downwind much more often than when the highway lies 

north or east. The second plot — the solid red line — is the relationship between the three-

year mortality rate among individuals 75 and older and orientation to the highway. This plot 
is the graphical equivalent of the reduced-form regression. It reveals that when the highway 

lies south or west of a Census Block, the mortality rate is higher than when the highway lies 

north or east. The visible correlation between the dashed blue line and the solid red line 

suggests a relationship between downwind frequency and mortality, consistent with Figure 4. 
The results tables report the coefficient on downwind frequency, which ranges from 

zero to one. However, the raw coefficient is not directly relevant because a change in 

downwind frequency from zero to one represents a shift of almost eight standard deviations 

and is far outside the support of the data. In the text, I thus refer to effects of a one standard 
deviation (0.13 unit) change in downwind frequency; by coincidence, this is approximately 

equivalent to doubling downwind frequency from its average level of 0.154 units. 

Table 2 presents results from estimating equation (1) via least squares. Column (1) 

regresses the three-year mortality rate among individuals 75 and older on frequency 
downwind, plus controls for distance to the highway, weather station fixed effects, race, and 

age distribution. It does not transform the data using highway segment fixed effects, instead 

including flexible controls for latitude and longitude (quintics in latitude and longitude, plus 

first and second order interactions between latitude and longitude). A one standard deviation 
(or 0.13 unit) increase in downwind frequency is associated with a 0.5 percentage point (or 3 

percent) increase in the all-cause mortality rate. This result is statistically significant (t = 2.5). 

Column (2) transforms the data using highway segment fixed effects and corresponds to 

equation (1); this is my preferred OLS specification. The effect of a one standard deviation 
change in downwind frequency increases to 0.8 percentage points (5 percent) and becomes 

highly significant (t = 3.6). 

Columns (3) through (8) in Table 2 report results for mortality from specific causes. 

Columns (3) and (4) report effects on cardio-respiratory related mortality using the same 
regressions as columns (1) and (2), respectively. Previous epidemiological studies, as well as 

laboratory studies, suggest that air pollution should have pronounced impacts on 

																																																								
10 As in Figure 4, all variables in Figure 5 are residualized with respect to 800 meter highway segment fixed 
effects. 
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cardiovascular health. Columns (3) and (4) reveal that over half the effect on overall 

mortality is due to deaths from cardio-respiratory diseases, and the specification with 
highway segment fixed effects achieves statistical significance (t = 3.1). Columns (5) and (6) 

report effects on lung cancer deaths, while columns (7) and (8) report effects on deaths from 

other cancers. In all cases, the effects are positive but statistically insignificant. 

Table 3 presents results from the first-stage regression of downwind frequency on 
orientation to the nearest highway. Column (1) estimates the relationship with the default set 

of controls plus flexible controls for latitude and longitude, and column (2) implements 

highway segment fixed effects. The coefficients in both columns are similar and confirm the 

visual relationship in Figure 5; Census Blocks with a highway to the west or south are 
downwind at a higher frequency than Census Blocks with a highway to the east or north. 

Since I parameterize orientation to the nearest highway as seven indicator variables, the 

possibility of many weak instruments is a concern. However, the F-statistic on the 

instruments ranges from 26.5 to 30.4, which is well above the suggested critical values for 
first-stage F-statistics in Stock, Wright, and Yogo (2002). Furthermore, the partial R2 for the 

instruments exceeds 0.55 in both columns.11 

Table 4 reports 2SLS estimates of the effect of downwind exposure to highways on 

mortality. Columns (1) and (2) present the effects on overall mortality among 75+ year olds. 
The first column includes the default controls and flexible functions of latitude and 

longitude but no highway segment fixed effects, while the second column adds highway 

segment fixed effects and is my preferred 2SLS specification. The estimated effect on 

mortality rates of a one standard deviation increase in downwind exposure is 0.9 percentage 
points (6 percent) with or without highway segment fixed effects. Both estimates are highly 

significant (t = 3.0 and t = 2.8). The 2SLS estimates are less sensitive than the OLS estimates 

to the use of highway segment fixed effects, presumably because orientation to the highway 

is more balanced across space than is downwind frequency. 
Columns (3) and (4) report 2SLS estimates of the effects on cardio-respiratory mortality. 

As with the OLS estimates, the effect on cardio-respiratory mortality accounts for the 

majority of the overall mortality effect. A one standard deviation increase in downwind 

frequency raises the cardio-respiratory mortality rate by 0.5 percentage points. Both 
estimates are marginally significant (t = 2.0 and t = 1.9). Columns (5) through (8) report 

2SLS estimates of the effects on mortality from lung cancer and other cancers. All point 
																																																								
11 Estimating the effects using LIML, whose median is generally close to the population parameter to be 
estimated even in cases with many instruments, generates estimates that are nearly identical to the 2SLS 
estimates. 
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estimates are positive, but most are statistically insignificant. The one exception occurs for 

lung cancer, which achieves marginal significance in Column (6) (t = 1.9); the point estimate 
implies that a one standard deviation increase in downwind exposure increases lung cancer 

mortality by 0.1 percentage points (20 percent). 

I next explore whether effects appear for younger age groups. Previous cross-sectional 

studies have found that the relationship between air pollution and negative health events 
increases with age in both proportional and absolute terms (Miller et al. 2007), but there may 

be detectable effects for younger age groups. Table 5 reports estimates from the preferred 

OLS and 2SLS specifications for two younger age groups. The sample size grows for the 

younger age groups because the likelihood of a Census Block containing a positive number 
of people in a given age group grows with the size of the age group. Columns (1) through (4) 

report effects on all-cause mortality and cardio-respiratory mortality for 65–74 year olds. The 

effects are close to zero and statistically insignificant. Columns (5) through (8) report effects 

on all-cause mortality and cardio-respiratory mortality for 50–64 year olds. The point 
estimates are again close to zero and statistically insignificant. These results suggest either 

that the negative health impacts of air pollution are primarily distributed among the oldest 

age groups, or that cumulative exposure to air pollution tends to shorten lives by years rather 

than decades.12 
Finally I present evidence on whether the mortality effects appear to be the result of 

cumulative exposure to pollution or contemporaneous exposure to pollution. Either 

mechanism is plausible, but the policy implications may differ by mechanism. For example, 

if contemporaneous exposure drives the effects, then minimizing exposure during the most 
vulnerable periods of life — the youngest and oldest ages — may be sufficient to minimize 

																																																								
12 To ensure that the main results are robust to the exact age cutoff used in defining the oldest age group, 

Appendix Table A1 explores their sensitivity to using different age cutoffs. Columns (1) through (4) report 
effects on all-cause mortality and cardio-respiratory mortality for 70+ year olds. The effects are 11 to 36 
percent smaller in absolute magnitude than for 75+ year olds, but statistical significance remains unchanged. 
Columns (5) through (8) report effects on all-cause mortality and cardio-respiratory mortality for 65+ year olds. 
The effects diminish further but, with the exception of the 2SLS coefficient for cardio-respiratory mortality, 
remain statistically significant. Columns (9) through (12) report effects for a much younger age group, 50+ year 
olds. The coefficients are close to zero and reveal no significant effects for this much younger cutoff. In 
summary, the effects decrease for younger age groups, but persist when expanding the population to include 
70-74 year olds and, in most cases, 65-69 year olds. 
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damages. To discriminate between these mechanisms I estimate effects separately by month 

of year. Underlying this estimation strategy is the fact that winds blow more often during the 
summer months than the winter months in the Los Angeles Basin. Thus, if the effects are 

driven primarily by contemporaneous exposure, one should expect larger effects during the 

summer months than the winter months because the downwind distinction is more 

meaningful during summer. In short, there should be a seasonal pattern in the mortality 
coefficients that matches the seasonal pattern in wind activity. 

To exploit seasonal variation in wind patterns I proceed in two steps. First, I estimate the 

fraction of time during which the winds blow for each month of the year. Then I estimate 

the preferred OLS regression specification by month of year. Figure 6 presents the results of 
this exercise. The dashed line plots the “first-stage” coefficients for each month. It reveals 

that winds are much more likely to blow during the summer. During the peak month, July, 

the wind blows almost twice as often in the sample area as during the nadir month, January. 

The solid line in Figure 6 plots coefficients from the regression of monthly mortality 
rates on (overall) downwind frequency. The seasonal pattern is more muted than the 

seasonal pattern in wind activity, and the correlation between the two patterns appears, if 

anything, negative. In particular, the largest mortality coefficient occurs near the winter 

(October), and the smallest mortality coefficient occurs during the summer (June). This 
pattern is the opposite of what one might expect if the effects were driven primarily by 

contemporaneous exposure. 

Nevertheless, precision is an issue when stratifying by month of year. The dotted lines 

plot confidence intervals for the monthly mortality effects, and in many months the 
confidence interval includes both zero and the largest mortality effect. Thus, while the 

evidence in Figure 6 suggests that the observed mortality effects represent cumulative 

exposure rather than contemporaneous exposure, it is not conclusive. 

 
V. Robustness and Falsification Tests 

The estimated effects of downwind exposure on mortality are conditional on choices 

about the affected population and the appropriate spatial bandwidths. In this section, I 

explore the estimates’ sensitivity to these choices and conduct a series of falsification 
exercises to test whether the relationship between mortality and downwind exposure could 

be due to residential sorting. 

 

A. Robustness to Parameter Choices and Weights 
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The regressions estimate the effect of downwind exposure on mortality rates among a 

specific population: 75+ year olds living 50 to 600 meters from highways. As I describe in 
Section III, data limitations dictate the minimum distance from a highway (50 meters), and 

the results from the atmospheric sciences literature inform the maximum distance from a 

highway (600 meters). I use a radius of 800 meters for the spatial fixed effects because it 

corresponds to one-half mile and is close in magnitude to the 600-meter radius that I apply 
around the highways. Finally, for simplicity, I define “downwind” to mean that the wind 

direction is within 45 degrees of a perpendicular ray running from the highway to the Census 

Block. Table 6 examines how the estimates change with respect to these parameter choices. 

Table 6 reports estimates from the preferred OLS and 2SLS specifications for a variety 
of spatial bandwidths. Each coefficient represents a separate regression. Columns (1) and (2) 

report effects of downwind exposure on all-cause mortality, and columns (3) and (4) report 

effects of downwind exposure on cardio-respiratory mortality. The top set of rows 

reproduces the baseline OLS and 2SLS estimates, taken from Tables 2 and 4, for comparison 
purposes. 

The first set of rows (following the top set) presents results from regressions that change 

the definition of downwind frequency. The alternative definition of downwind frequency 

weights exposure by the cosine of the difference in angles between the wind direction and a 

perpendicular ray from the highway to the Census Block. Formally, the weight is w = cos(𝛳 

– 90), where 𝛳 is the angle between the wind direction and the highway. This implies w = 1 

when the wind blows perpendicular to the highway, w = 0.71 when the wind blows at a 45-
degree angle to the highway, and w = 0 when the wind blows parallel to the highway. I set a 

zero lower bound on w so that it does not become negative when a Census Block is upwind. 

With this alternative definition, Census Blocks receive some downwind exposure even when 

the wind blows at angles between 0 and 45 degrees to the highway. Using this alternative 
definition, I find estimates that are slightly smaller in magnitude than the baseline estimates 

but remain highly significant. 

The next two sets of rows present estimates that apply spatial fixed effects with radii of 

400 meters (one-quarter mile) and 1,600 meters (one mile). In all columns, the estimates are 
reasonably close to the baseline estimates, implying that the results are not very sensitive to 

changes in the radius of the spatial fixed effects. The subsequent two sets of rows present 

estimates that change the “donut size,” or minimum distance from a highway, to 25 meters 

or 100 meters. Reducing the donut size to 25 meters — which Figure 1 makes clear is too 
small — decreases the OLS (2SLS) effects on all-cause mortality by 16 percent (24 percent). 
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The OLS (2SLS) effects on cardio-respiratory mortality drop by 23 percent (36 percent). 

Increasing the donut size to 100 meters has the opposite effect, with effect sizes increasing 
by approximately 25 percent, except in column (3), where they increase by 14 percent. These 

patterns are consistent with the fact that measurement error in a Census Block’s location 

relative to the highway becomes more severe as the donut size shrinks. 

The bottom two sets of rows present estimates that change the maximum distance from 
a highway to 400 meters or 800 meters. Reducing the maximum distance to 400 meters has 

the largest impact of any spatial bandwidth modification; the OLS effect on all-cause 

mortality drops by 20 percent, though it remains statistically significant (t = 2.6). The 2SLS 

drops by 18 percent. The effects on cardio-respiratory mortality are also less impacted, 
dropping by 3 to 16 percent. Increasing the maximum distance to 800 meters has modest 

impacts on most estimates except the 2SLS effect on cardio-respiratory mortality, which 

decreases by 39 percent and loses statistical significance. Overall, while the estimates do vary 

with some spatial bandwidths, both the OLS and 2SLS effects on all-cause mortality are 
consistently positive and statistically significant. 

The results in all main tables are weighted by the unit of analysis (the Census Block). 

Appendix Table A2 reports alternative population-weighted estimates. Population-weighting 

can make the estimates more representative of the Los Angeles population but less 
representative of Los Angeles geography. It also has ambiguous impacts on precision. 

The first set of rows in Appendix Table A2 reproduces the baseline (Census Block 

weighted) estimates. Subsequent sets of rows report estimates weighted by actual Census 

Block population, predicted Census Block population over age 75+, actual Census Block 
population age 50–74, and actual Census Block population age 75+ respectively.13 Age 75+ 

population weights should make the estimates more representative of the Los Angeles 

population circa-2000, while age 50–74 population weights should make them more 

representative of the Los Angeles population today. 
Weighted OLS results, reported in Columns (1) and (3) for all-cause and cardio-

respiratory mortality respectively, are generally smaller in magnitude than unweighted results. 
																																																								

13 To predict the Census Block population over age 74, I use the fitted values from a regression of actual 
population over age 74 on a third-order polynomial of actual population age 50–74. One reason to use 
predicted population over age 74 instead of actual population over age 74 is that with actual population the 
weights are endogenous since they appear in the denominator of the dependent variable, the Census Block’s 
75+ mortality rate. 
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The effect of a one standard-deviation change in downwind frequency on all-cause mortality 

ranges from 0.6 to 0.8 percentage points (compared to an unweighted effect of 0.8 
percentage points), and the effect on cardio-respiratory mortality ranges from 0.3 to 0.7 

percentage points (compared to an unweighted effect of 0.6 percentage points). Nevertheless, 

in all cases the results remain statistically significant. 

Weighted 2SLS results, reported in Columns (2) and (4) for all-cause and cardio-
respiratory mortality respectively, are more sensitive to the choice of weights. In all but one 

case — all-cause mortality weighted by actual age 75+ population — the weighted 2SLS 

coefficients are smaller in magnitude than the weighted OLS coefficients. Furthermore, 

weighting generally increases the 2SLS standard errors, despite decreasing the OLS standard 
errors. As a result the weighted 2SLS coefficient estimates are statistically insignificant in all 

cases except when examining all-cause mortality weighted by actual age 75+ population (t = 

2.0). To understand the sensitivity of the 2SLS estimates I re-estimated the first-stage 

regression using each set of population weights. The first-stage F-statistic in the unweighted 
regression is approximately 60 percent larger than the ones in the weighted regressions (26.5 

versus 16.5). Thus, the instrument is not as strong when populating weighting.14 

 

B. Falsification Tests 
Identification in this study hinges on the assumption that an individual’s orientation to 

the nearest highway is “as good as randomly assigned.” There are two ways in which this 

assumption could fail. One would be if there were discrete changes in housing supply or 

demand at highways that were unrelated to winds but consistently occurred in the direction 
of prevailing winds. In practice, this would entail northern and eastern sides of highways 

being consistently poorer than southern and western sides. The second would be if 

households moved in response to the wind-driven pollution. Previous work, for example, 

has found that changes in ozone pollution are capitalized into Southern California property 
values (Sieg et al. 2004). In this context movement is less likely since UFP and CO pollution 

are undetectable to human senses. Furthermore, any movement in response to illness would 

attenuate the effects rather than inflate them. In either scenario, however, I would expect 

																																																								
14 This could occur if certain high-population areas (e.g., neighborhoods near downtown) are also places in 

which the wind does not blow as consistently or frequently. 
  

	



	 22 

demographic characteristics and property values to vary with downwind exposure. Tables 7 

and 8 thus estimate the relationships between these characteristics and downwind exposure. 
Table 7 presents results from OLS and 2SLS regressions in which the dependent variable 

is a measure that should be unrelated to downwind exposure if my research design is valid. 

Columns (1) through (4) estimate OLS and 2SLS regressions in which the dependent 

variable is the share of the Census Block population over 75 or 65 years of age. The 
coefficients in all four columns are statistically insignificant. Columns (5) and (6) estimate 

OLS and 2SLS regressions in which the dependent variable is the share of households that 

own their own home. The coefficients are statistically insignificant, and the point estimates 

imply that downwind Census Blocks have higher rates of home ownership, contrary to what 
one might expect if residential sorting were occurring. In either column, I can reject the 

hypothesis that a one standard deviation increase in downwind exposure correlates with a 

greater than 0.6 percentage point (1.1 percent) decline in homeownership rates. Columns (7) 

and (8) estimate regressions in which the dependent variable is the share of individuals who 
are African-American. The coefficients are statistically insignificant, and the point estimates 

imply that downwind Census Blocks are less likely to contain African-Americans. Columns 

(9) through (12) estimate regressions in which the dependent variable is the external-cause 

mortality rate — i.e., deaths from accidents, homicide, or suicide — among 75+ year olds 
(the ninth and tenth columns) or among all individuals (the eleventh and twelfth columns). 

In all cases, the coefficients are statistically insignificant, although in general they are 

imprecisely estimated relative to the mean because external-cause mortality is a rare outcome. 

Ideally I would test whether household income and education vary with downwind 
exposure as well, but these measures are not on the Census Short Form and thus are not 

available below the Block Group level. As an alternative, I test whether property values vary 

with downwind exposure. Table 8 presents results from OLS and 2SLS regressions in which 

the dependent variables are housing prices or housing characteristics. The unit of 
observation is a house or condominium sale, and I match each sale to a Census Block from 

the analytic sample to assign downwind frequency. These regressions represent a strong test 

of the research design in that any large-scale residential sorting should manifest itself in 

housing prices. The data for these regressions come from DataQuick (1990 to 2000 sales) or 
the Los Angeles County Assessor’s Office (2006 to 2010 sales). The DataQuick data’s date 

range fits the study period better, but they only include sales of single-family homes and only 

cover the City of Los Angeles (which does not contain the entire Los Angeles Basin). The 

Assessor’s Office data covers sales of all residential units in the entire Los Angeles Basin, but 
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the date range is somewhat later than my study’s data. Given these limitations, I present 

estimates for each data source separately. 
Column (1) of Table 8 reports results from OLS regressions of log price on downwind 

frequency, as well as the standard controls. Panel A reports estimates on the 1990 to 2000 

sales sample (DataQuick), and Panel B reports estimates from the 2006 to 2010 sales sample 

(Assessor’s Office). A one standard deviation (0.13 unit) increase in downwind exposure is 
associated with a statistically insignificant 0.2 percent increase in property values in either data 

set. Column (2) reports analogous estimates from 2SLS regressions, and the effects are 

negative but statistically and economically insignificant. For example, the largest coefficient 

(–0.112 in Column (2) of Panel A) implies that a one standard deviation increase in 
downwind frequency is associated with a statistically insignificant 1.5 percent decrease in 

property values. Columns (3) and (4) estimate the same regressions as Columns (1) and (2) 

but include log square footage and a cubic in date sold as controls to increase precision. The 

standard errors fall by 37 to 46 percent, but all coefficients remain statistically and 
economically insignificant. Columns (5) and (6) estimate OLS and 2SLS regressions in which 

the dependent variable is square footage to check that square footage is not endogenously 

determined by downwind frequency. A one standard deviation increase in downwind 

frequency is associated with a statistically insignificant 16 to 27 square foot increase in house 
size. 

When considering the potential for omitted variables bias it is instructive to directly 

compare the magnitudes of the coefficients from the property value regressions with those 

from the mortality rate regressions. The largest coefficient in the price regressions in Table 8, 
–0.140 in Column (4) of Panel A, implies that a one standard deviation increase in 

downwind frequency is associated with a statistically insignificant 1.8 percent decrease in 

property values. The comparable mortality rate regression coefficient in Table 4 implies that 

a one standard deviation increase in downwind frequency causes a 5.8 percent increase in 
mortality rates. In the Los Angeles Basin I find a cross-sectional elasticity of mortality rates 

with respect to property values of approximately 0.05. This implies that a 1.8 percent 

decrease in property values is associated with a 0.09 percent increase in mortality rates, a 

figure that is almost two orders of magnitude less than the estimated effect of 5.8 percent. It 
is thus unlikely that the mortality coefficients simply represent neighborhood differences 

between upwind and downwind Census Blocks, unless these neighborhood differences are 

somehow not capitalized into property values. 
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VI. Discussion 
The results imply that living downwind of highways increases mortality rates among the 

elderly. However, it is difficult to interpret the magnitude of the “reduced-form” estimates 

without a “first stage” relating downwind frequency to pollution. Estimating this first-stage 

relationship is challenging because air quality monitors are sparsely located and do not 

measure UFP, the pollutant I expect the instrument to affect most strongly.15 
 

A. “First-Stage” Estimates 
As a proxy for UFP, and as a relevant pollutant itself, I consider measurements of NO2. 

Vehicles are the primary source of NO2 in Los Angeles, accounting for 85 percent of 
nitrogen oxide emissions (US EPA 2014). Furthermore, the near-roadway dispersion pattern 

of NO2 mimics UFP more closely than other pollutants mimic UFP (Karner et al. 2010). I 

calculate the downwind frequency of air pollution monitors near highways in the Los 

Angeles Basin, and estimate a first-stage relationship between downwind frequency and NO2 
concentrations. I compare these first-stage estimates to results from the atmospheric 

sciences literature and apply them in interpreting the reduced-form results. 

Four air pollution monitors in the Los Angeles Basin are close to highways: the West 

Los Angeles-Veterans Administration (VA) Hospital monitor near Santa Monica, the Los 
Angeles-Westchester Parkway monitor near Los Angeles International Airport (LAX), the 

North Long Beach monitor, and the Lynwood monitor. For the first two, the highway lies 

northeast of the monitor, and thus they are primarily upwind. For the latter two, the highway 

lies southwest of the monitor, and thus they are primarily downwind. I collected hourly NO2 
measurements from these monitors from 1995 to 2009.16 

Figure 7 charts average hourly NO2 concentration against downwind frequency for three 

groups of monitors. Two monitors have downwind frequencies of 0.11, one has a downwind 

frequency of 0.20, and one has a downwind frequency of 0.33. Table 9 presents estimates 
from regressions of hourly NO2 concentrations on monitor downwind frequency. Column 

(1) reveals that a one standard deviation (0.13 unit) increase in downwind frequency is 

associated with a 9.2 part per billion (ppb) increase in NO2 concentrations, or 33 percent of 

the mean level. Column (2) adds day-of-sample fixed effects to increase precision and 
eliminate bias from any imbalance in sample periods across monitors. A one standard 

																																																								
15 The absence of UFP monitoring is not surprising since UFPs are not currently a regulated pollutant. 
16 One monitor started collecting data in 2004, and another stopped collecting data in 2008. To ensure that an 
imbalance in sample periods across monitors does not affect my results, I estimate first-stage regressions with 
day-of-sample fixed effects. 



	 25 

deviation increase in downwind frequency is associated with a 7.9 ppb increase in NO2 

concentrations (29 percent of the mean level). 
A primary concern in interpreting these estimates is that I cannot control for monitor-

specific characteristics. For example, one upwind monitor is near LAX, and one downwind 

monitor is near the Port of Long Beach. An idealized research design would include highway 

segment spatial fixed effects to control for any local factors that might affect NO2 
concentrations at a monitor, but I lack sufficient monitors for this design. Stated another 

way, I would like to cluster at the monitor level, but it is infeasible to do so with only four 

monitors. As an alternative robustness check, Figure 8 plots coefficients from two sets of 

regressions, each estimated separately by hour of day. The first set of regressions — the solid 
line — regresses hourly downwind frequency on average downwind frequency (which is 

fixed within a monitor). The relationship between these two variables is close to zero from 

midnight until 8 a.m., and then becomes strongly positive from 10 a.m. until 8 p.m. This 

pattern reveals that most of the downwind exposure at downwind monitors accrues during 
daylight hours when the winds blow consistently. It also implies that I should expect the 

relationship between NO2 levels and average downwind frequency to be stronger during the 

day than during the night. The second set of regressions — the dashed line — regresses 

NO2 concentrations (which vary by hour) on average downwind frequency. This reveals that 
the relationship between NO2 concentrations and average downwind frequency is strong 

during the day, when downwind monitors are actually downwind, and weak during the night, 

when they are not. These patterns are consistent with the hypothesis that downwind 

exposure generates the observed differences in NO2 concentrations across monitors and are 
inconsistent with the hypothesis that monitor-specific characteristics generate the observed 

differences in NO2 concentrations across monitors. If the latter were true, I would expect 

NO2 concentrations to be consistently higher throughout the day at downwind monitors, 

contrary to Figure 8. For completeness, I note that the small NO2 coefficients during 
nighttime hours are not the result of an absence of NO2 during these hours; NO2 

concentrations from midnight to 8 a.m. are nearly identical to the overall average. 

The first-stage estimates are broadly consistent with the results in the atmospheric 

sciences literature. Karner et al. (2010) report that, across 11 studies, NO2 concentrations are 
on average 1.7 to 2.2 times higher than ambient levels on the prevailing downwind side of 

the highway. The preferred estimate (Column (2) of Table 9) implies that average NO2 
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concentrations at the two downwind monitors are 2.1 times higher than ambient levels.17 

This 2.1-times figure is also consistent with the results from Quiros et al. (2013) following 
the shutdown of I-405 in Los Angeles. Quiros et al. find that NO levels are approximately 

twice as high on the downwind side of I-405 when it is open relative to when it is closed.18 

I combine the first-stage estimates with the reduced-form results to generate a back-of-

the-envelope estimate of the elasticity of mortality with respect to pollution. The first-stage 
estimates imply that moving from the upwind side to the downwind side increases 

downwind frequency by 15.5 percentage points and average pollution levels by 43 percent,19 

and the reduced-form estimates imply that a 15.5 percentage point increase in downwind 

frequency raises mortality rates by 3.9 to 6.7 percent. The “IV” estimate thus suggests an 
elasticity of mortality rates (among 75+ year olds) with respect to near-roadway pollution in 

the range of 0.10 to 0.18. 

 

B. Comparisons of Estimates 
A natural question is how the estimates compare to estimates from the existing literature. 

I consider several relevant comparisons from the existing literature: time-series estimates of 

the effects of short-run exposure; long-differences estimates from Pope et al. (2009); cross-

sectional estimates from Dockery et al. (1993) (the “Six City study”); and RD estimates from 
Chen et al. (2013). Making these comparisons requires some transformation of the results. 

Pope and Dockery (1999) summarize an extensive literature estimating the mortality 

effects of short-run exposure to particulates using daily time-series data. They find consistent 

estimates of a 0.5 to 1.5 percent increase in mortality rates in response to a 10 µg/m3 
increase in particulate pollution. Lipfert and Wyzga (1995) translate these effects into 

elasticities in a meta-analysis and find an average elasticity of daily adult mortality rates to 

fine particulate pollution of 0.039. Most studies do not separately estimate effects for the 

elderly and non-elderly, but among those that do, the mortality effects appear concentrated 
among the elderly. To compare short-term exposure results against mine, I construct a life 

																																																								
17 On average, the two downwind monitors are downwind 26.8 percent of the time. The intercept for the 
regression in Column (2) of Table 9 is 15.0, so the implied average NO2 concentration at the downwind 
monitors is 15.0 + 61.1*0.268 = 31.4. This figure is 2.1 times higher than the intercept of 15.0 (i.e., a theoretical 
monitor that is never downwind of the highway).  
18 Quiros et al. take measurements at several distances on the eastern (downwind) side of I-405, but, past 150 
meters, the NO concentrations on operational days stabilize at double the concentrations of the closure day.  
19 On average, the two downwind monitors are downwind 26.8 percent of the time, while the two upwind 
monitors are downwind 11.3 percent of the time. The intercept for the regression in Column (2) of Table 9 is 
15.0, so the implied average NO2 concentration at the downwind monitors is 15.0 + 61.1*0.268 = 31.4, and the 
implied average NO2 concentration at the upwind monitors is 15.0 + 61.1*0.113 = 21.9. The proportional 
increase in average NO2 concentration from moving from upwind to downwind is thus 31.4/21.9 = 1.43. 
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table using observed mortality rates in Census Tracts within one kilometer of Los Angeles 

Basin highways. I compare the projected effects of a 10 percent increase in pollution using 
my estimates with the projected effects of the same increase using estimates from studies 

examining short-term exposure. Specifically, I compare the effect of a mortality elasticity of 

0.14 for 75+ year olds (my average estimate) to the effect of a mortality elasticity of 0.039 for 

all adults (the average estimate from short-term exposure studies). 
Using the life table, and assuming the estimated mortality effects occur only at age 75 

and beyond, I compute that a 10 percent change in near-roadway air pollution changes life 

expectancy at birth by 0.05 years.20 In comparison, a mortality elasticity of 0.039 for all adults 

implies that a 10 percent change in pollution changes life expectancy at birth by 0.036 years. 
Thus my estimates are approximately 40 percent larger in magnitude than the implied effects 

from short-term exposure studies. This pattern suggests that any harvesting issues that may 

inflate long-run projections from daily exposure studies are more than offset by the negative 

impacts of cumulative long-run exposure to pollutants. 
In contrast to short-term exposure studies, Pope et al. estimate that a 10 percent (2 

µg/m3) decrease in PM2.5 over 20 years in the US increases life expectancy by 0.12 years. My 

estimate that a 10 percent change in near-roadway air pollution changes life expectancy at 

birth by 0.05 years is approximately 60 percent smaller than the estimate from Pope et al. 
Thus my estimates are larger than those from daily-exposure studies but smaller than those 

estimated off long-run trends.21 

Dockery et al. find an elasticity of mortality rates with respect to fine particle pollution 

(PM2.5) of approximately 0.2 when using cross-sectional data. However, their outcome is the 
15-year mortality rate amongst individuals from age 25 to 74 at baseline. To compare my 

estimates, I compute the effect of an increase in mortality rates amongst 75+ year olds on 

overall mortality rates for a cohort of 25 to 74 year olds followed over 15 years. The result is 

an elasticity of mortality rates amongst 25 to 74 year olds with respect to near-roadway 

																																																								
20 My smallest estimate (OLS with no highway segment FE) generates an effect on life expectancy of 0.035 
years, and my largest estimate (2SLS with highway segment FE) generates an effect on life expectancy of 0.064 
years. 
21 One concern in comparing effect magnitudes is that restricting mortality effects to 75+ year olds in my 
simulations may attenuate the predicted impacts if the true effects extend to younger age groups as well. 
However, if I apply my largest estimate for 65+ year olds (reported in Appendix Table A1) to individuals age 
65 and above in the life table, I compute that a 10 percent change in near-roadway pollution changes life 
expectancy at birth by 0.06 years, which is within the range of my predictions above (see Footnote 20). Even 
when applying the insignificant coefficients for 50+ year olds from Appendix Table A1 and adding one 
standard error to these coefficients, I only project that a 10 percent change in near-roadway pollution changes 
life expectancy at birth by 0.05 to 0.08 years. 
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pollution of approximately 0.03,22 which is approximately seven times smaller than the cross-

sectional estimate from Dockery et al. 
Finally, Chen et al. estimate that a 55 percent increase in TSPs in China reduces life 

expectancy at birth by 5.5 years. Using my life table, and assuming that mortality effects 

occur only at age 75 and beyond, I compute that a 55 percent increase in near-roadway air 

pollution reduces life expectancy at birth by 0.24 years.23 This is approximately 23 times 
smaller than the estimate from Chen et al. Pollution levels in China, however, are much 

higher than in the US; average TSP levels in the US were about 60 µg/m3 in 1990 (Chay and 

Greenstone 2003), while Chen et al. report average Chinese TSP levels of 350 to 550 µg/m3 

(six to nine times higher). 
Table 10 summarizes the findings across studies of different types. To aid in 

comparisons, I compute the implied effect of a 10 percent increase in air pollution for each 

study.24 The table reveals that my estimates are somewhat larger than estimates from daily 

time-series studies, but notably smaller than estimates from cross-sectional or long-
differences studies. 

When reconciling my results with the existing literature, several factors are important to 

consider. First, the relevant particulates differ across papers. I focus on UFP, and to a lesser 

degree nitrogen oxides and CO. Lipfert and Wyzga, Dockery et al., and Pope et al. focus on 
coarser PM2.5 (and, implicitly, other pollutants that correlate with fine particulates), and Chen 

et al. focus on still coarser TSPs. Second, Dockery et al. and, to a lesser degree, Pope et al. 

do not employ quasi-experimental research designs, so their estimates may reflect some 

degree of selection bias. Third, even when comparing different “long-term exposure” papers, 
the pollution exposure period may differ. While the median 75-year old in my study has lived 

at the same location for over 25 years, younger individuals have shorter occupancy durations. 

The median 45-to-54 year old in my study area, for example, has lived in the same location 

for only eight years. An eight-year exposure period is roughly comparable to the implicit 
exposure period in Pope et al. but is shorter than the exposure periods in Dockery et al. and 

Chen et al. The briefer exposure period for younger individuals could contribute to the null 

effects I observe on those younger than 75. Finally, the sparsity of pollution monitors and 

																																																								
22 My smallest estimate (OLS with no highway segment FE) generates an elasticity of 0.02, and my largest 
estimate (2SLS with highway segment FE) generates an elasticity of 0.04. 
23 My smallest estimate (OLS with no highway segment FE) generates an effect on life expectancy of 0.18 years, 
and my largest estimate (2SLS with highway segment FE) generates an effect on life expectancy of 0.30 years. 
24 In the case of Dockery et al. (1993), this computation requires a life table. I use my Los Angeles life table, 
which is likely a reasonable approximation for the United States. 
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lack of UFP monitoring affects the reliability of my “first-stage” estimates. If I have 

overestimated the first stage, then I will underestimate the IV coefficient. 
The overall trend that emerges from these comparisons is that, within the United States, 

studies leveraging more plausibly exogenous pollution variation appear to find smaller 

elasticities of mortality with respect to pollution. The largest elasticities arise in cross-

sectional studies such as Dockery et al. (1993) and Pope et al. (2002). Pope et al. (2009) 
employ a long-differencing strategy across cities and find elasticities that are smaller than the 

cross-sectional studies but larger than the ones reported here. My estimates are somewhat 

larger than results from papers examining daily response of mortality rates to fluctuations in 

air pollution, however, suggesting that in this case the inability to account for cumulative 
effects outweighs the potential bias from harvesting when making long-run extrapolations 

from high-frequency studies. 

 

C. Policy Implications 
I consider the implications of my results for two relevant policies: congestion pricing and 

adoption of zero-emissions vehicles. Recent work in the European context has 

demonstrated that congestion-pricing schemes can reduce pollution levels. For example, 

Gibson and Carnovale (2015) estimate the pollution impacts of road pricing in Milan, Italy. 
They find particulate matter decreases of between 6 and 17 percent. I consider the effects of 

a generic congestion pricing policy that reduces pollution levels by 10 percent. 

In the previous section I find that a 10 percent reduction in pollution increases life 

expectancy at birth by 0.05 years. This increase equates to an additional 78,000 life-years 
gained across the 1.55 million individuals in my analytic sample. The economic value of this 

life-expectancy gain totals $7.8 billion when valuing each life-year at $100,000 (Neumann, 

Cohen, and Weinstein 2014), or approximately $100 million for the cohort born each year in 

my sample area. This compares to a benefit of $257 million in reduced travel time costs if 
the policy were to reduce congestion by 50 percent in my sample area.25 For a congestion 

pricing policy, the economic benefits of decreased premature mortality could be equivalent 

to approximately 40 percent of the primary time-savings benefits. 

To gauge the potential benefits from regulating mobile-source pollution, I consider a 
policy in which I replace all cars on Los Angeles-area highways with zero-emissions vehicles 

																																																								
25 Schrank, Lomax, and Eisele (2015) report 44.1 hours of traffic delay per capita in Los Angeles in 2000. 
Setting the value of time at half the Los Angeles MSA median wage in 2000 implies an annual delay cost of 
$325 per capita (U.S. Department of Labor 2001; Parry and Small 2009), or $504 million across 1.55 million 
individuals in my sample area. A 50 percent reduction translates to $257 million. 



	 30 

(ZEVs). To calculate the impact of this policy, I construct a counterfactual scenario in which 

no Census Blocks are ever downwind of a highway. In this scenario, applying my 2SLS 
estimates to the life table reveals a 0.22-year increase in life expectancy at birth. This increase 

equates to an additional 341,000 life-years gained across the 1.55 million individuals in my 

analytic sample, or $34.1 billion when valuing each life-year at $100,000. I do not attempt to 

calculate the exact cost of replacing every car in the Los Angeles Basin with a ZEV over 
several decades. Nevertheless, I note that there are approximately 2.9 million cars in the Los 

Angeles Basin, and the value of applying the federal electric vehicle tax credit to all of these 

vehicles equates to $21.8 billion.26 In that sense, the local air pollution benefits alone may 

justify a significant fraction of the current electric vehicle credit, at least in dense urban 
areas.27 

Finally, while they are beyond the scope of this paper, it is instructive to consider other 

potential costs from air pollution. I measure only effects on mortality; additional effects on 

morbidity or medical expenditures could increase the total economic impacts of mobile-
source pollution. Avoidance behavior — e.g., remaining inside to try to avoid pollution — 

could generate further economic costs. The lack of any evidence of residential sorting with 

regards to downwind exposure in Tables 7 and 8 suggests that individuals are unlikely to 

engage in more avoidance behavior downwind of highways than they do upwind of 
highways. Nevertheless, avoidance behavior in the vicinity of highways could be a general 

equilibrium effect of mobile-source air pollution that neither my outcome nor research 

design would detect. 

 
VII. Conclusion 

I find statistically and economically significant effects of exposure to near-roadway 

pollution on mortality amongst the elderly. I find no evidence of selection bias or residential 

sorting — both demographic characteristics and property values appear unrelated to 
downwind exposure — suggesting that households are generally unaware of the invisible 

pollution gradient. 

																																																								
26 Los Angeles County contained approximately 5.9 million registered automobiles in 2008 (California 
Department of Finance 2009), and the Los Angeles Basin contains approximately half the population of Los 
Angeles County. The federal electric vehicle tax credit is $7,500, so $7,500*2.9 million = $21.8 billion. 
27 Complicating the comparison is the fact that both the costs and benefits evolve dynamically. The benefits 
figure does not take into account that the “treated” population will include future cohorts not yet born, while 
the costs figure does not take into account that even low-maintenance electric vehicles will need replacement 
after two or three decades. The purpose of the comparison is thus not to conduct a precise benefit-cost analysis 
but to establish that the value of the life-expectancy gains and the electric vehicle credit are of the same order 
of magnitude. 
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This lack of awareness regarding the potential risks has welfare implications for sorting, 

adaptation, and regulation. Sorting behavior is suboptimal in that downwind households face 
similar prices as upwind households despite increased risk. With complete information, the 

relative price of downwind housing should be lower than upwind housing. How additional 

information changes the absolute prices of upwind and downwind housing depends on 

current household beliefs, however. If households already view highway proximity as 
inherently dangerous due to near-roadway pollution, then additional information on wind 

direction and pollutant dispersion should increase upwind prices and decrease downwind 

prices. But if households are unaware of the risks of near-roadway pollution, then additional 

information could decrease both upwind and downwind prices, with a greater effect 
downwind. 

The ZEV simulation suggests a plausible estimate of individual willingness to pay (WTP) 

to avoid near-highway pollution exposure is $22,000 in the average downwind block, or 

approximately $66,000 per household. With an average home price of $369,000 in my 
analytic sample, this implies that a price difference of 15 to 20 percent between upwind and 

downwind areas — corresponding to a price elasticity with respect to pollution of –0.35 to –

0.47 — would not be unreasonable.28 This magnitude is at the upper end of the range in 

Chay and Greenstone (2005), who find an elasticity of housing prices with respect to total 
suspended particulates of –0.2 to –0.35. The implicit price drop is not sufficiently large to 

suggest that it is optimal to leave downwind blocks undeveloped, but it could induce 

resorting based on risk aversion and, on the margin, encourage higher density development 

upwind than downwind. Adaptation is another margin of adjustment. Air filtration units cost 
an order of magnitude less than the implied WTP to avoid downwind areas, and they could 

be effective in reducing indoor exposure.29 

Finally, regulation of UFP has the potential to reduce the marginal damages of mobile-

source emissions. Since UFP are not a criteria pollutant, it is unclear how effective current 
automotive emissions control systems are in reducing them, or what the potential for 

improvement is. Increasing the prevalence of ZEVs, however, would reduce UFP emissions, 

as well as emissions of any other relevant pollutant (e.g., CO). The ZEV policy simulation 

suggests that the “hyperlocal” health benefits of ZEVs may be substantial. In aggregate my 

																																																								
28 The equilibrium effect on property values would depend on the degree of heterogeneity in WTP as well as 
the relative supply of upwind and downwind properties. See, for example, Sieg et al. (2004) and Kuminoff and 
Pope (2014). 
29 Since UFP are 0.1 microns or less, current air filters would need to be tested for effectiveness in reducing 
UFP. High efficiency particulate air (HEPA) filters are currently tested to remove particles greater than 0.3 
microns. 
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estimates imply that near-highway pollution generates damages totaling tens of billions of 

dollars in the Los Angeles area alone. Given that over 70 percent of the US population lives 
in urbanized areas (US Census Bureau 2015), the potential nationwide impacts of near-

highway pollution are considerably larger and worth considering from both research and 

regulatory perspectives. 
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Panel A: Wind Blowing to East Panel B: Wind Blowing to Northeast

Panel C: Wind Blowing to North Panel D: Wind Blowing to Northwest

Legend

Wind directionSample boundary Downwind area

800 m 800 m

800 m 800 m

Figure 1: Stylized Wind Direction Scenarios

Notes: Panels depict a segment of  Interstate 110, which runs north-south in the sample area. Wind
direction varies by panel.



Figure 2: Analytic Sample Census Blocks 

Figure 3: Stylized Example of  Highway Segment Fixed Effects 



Figure 4 

 
Notes: Figure plots a bin scatterplot of the three-year mortality rate for 75+ year olds against 
downwind frequency. Variables are residualized with respect to 800-meter highway segment 
fixed effects. Each bin contains approximately 500 observations. 

Figure 5 

 
Notes: Figure plots local polynomial regressions of downwind frequency or the three-year 
mortality rate for 75+ year olds on orientation to highway in degrees (bandwidths of 15 and 
30 degrees respectively, Epanechnikov kernel). Variables are residualized with respect to 
800-meter highway segment fixed effects. On the x-axis each tick mark is separated by 45 
degrees, and parentheses contain orientation in degrees. 
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Figure 6 

 
Notes: Figure plots regression coefficients or means estimated by month of year. Solid line 
plots coefficients from a regression of monthly mortality rates on overall downwind 
frequency, controlling for distance to highway, weather station fixed effects, highway 
segment fixed effects, share African-American, and share over ages 50, 55, 60, 65, 70, and 75. 
Dashed line plots sample-weighted share of month during which wind blows at under 1 mph. 

Figure 7 

 
Notes: Figure plots average NO2 concentration against average downwind frequency for air 
pollution monitors located near highways in the Los Angeles Basin. The 0.11 bin contains 
two monitors, and other bins contain one monitor each. 
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Figure 8 

 
Notes: Figure plots regression coefficients from regressions of hourly downwind frequency 
on average downwind frequency (solid line) or regressions of NO2 concentrations on 
average downwind frequency (dashed line). Each regression is limited to a single hour of day, 
and in all regressions the unit of observation is a single pollution reading at one monitor.  
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Mean Range N Mean Range N
3-yr mortality rate among 
75+ year olds from:
All causes 0.157 0.000–0.857 27,908 0.155 0.000–0.833 9,027

(0.178) (0.181)
Cardio-respiratory 0.103 0.000–0.800 27,908 0.103 0.000–0.800 9,027

(0.145) (0.148)
Cancer 0.029 0.000–0.667 27,908 0.029 0.000–0.667 9,027

(0.076) (0.078)
External causes 0.002 0.000–0.500 27,908 0.002 0.000–0.500 9,027

(0.019) (0.020)
Other variables
Frequency downwind 0.150 0.003–0.490 27,908 0.152 0.003–0.490 9,027
   of major highway (0.130) (0.129)
Frequency dead wind 0.423 0.101–0.660 27,908 0.421 0.101–0.660 9,027

(0.135) (0.131)
Population 164.8 1–6,375 27,908 166.9 1–2,215 9,027

(180.2) (167.6)
Population aged 75+ 8.5 1–542 27,908 6.7 1–154 9,027

(15.1) (7.3)
Distance to highway 1,182 0–7,666 27,908 313 50–600 9,027
   (meters) (1,035) (158)
Share owner occupied 0.548 0–1 27,869 0.518 0–1 9,022

(0.323) (0.315)
Share black 0.143 0–1 27,908 0.119 0–1 9,027

(0.240) (0.202)
Share aged 75+ 0.064 0–1 27,908 0.053 0–1 9,027

(0.071) (0.058)

Table 1:  Summary statistics

Notes: The observation is the Census Block. Parentheses contain standard deviations. The
analytic sample is limited to Census Blocks with centroids between 50 and 600 meters
from major highways.

Full sample Analytic sample



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)

Frequency downwind 0.039 0.064 0.021 0.044 0.002 0.006 0.008 0.005
(0.016) (0.018) (0.013) (0.014) (0.003) (0.004) (0.007) (0.009)

Effect of 1 SD change in freq downwind 0.005 0.008 0.003 0.006 0.000 0.001 0.001 0.001

Highway segment FE Yes Yes Yes Yes

Dependent variable mean 0.155 0.155 0.103 0.103 0.006 0.006 0.022 0.022

N 9,027 9,027 9,027 9,027 9,027 9,027 9,027 9,027
Notes: Each column represents a separate regression of the dependent variable on the percent of time spent downwind of a
major highway. The observation is the Census Block, and the sample is limited to Census Blocks with centroids between 50
and 600 meters from major highways. Parentheses contain spatial standard errors with a 3,200 meter bandwidth. All
regressions include controls for distance to highway, weather station fixed effects, share African-American, and share over
ages 50, 55, 60, 65, 70, and 75. Regressions without highway segment fixed effects include quintics in latitude and
longitude and first and second order interactions between latitude and longitude. Regressions with highway segment fixed
effects include highway segments fixed effects with an 800 meter bandwidth.

Table 2: OLS Effects of Frequency Downwind of Highways

3-year mortality rate for 75+ year olds from:
All causes Cardio-respiratory Lung cancer Other cancer



Dependent Variable:

(1) (2)

Highway northeast 0.005 -0.025
(0.010) (0.009)

Highway east 0.031 -0.025
(0.016) (0.024)

Highway southeast 0.071 0.053
(0.014) (0.012)

Highway south 0.109 0.109
(0.013) (0.013)

Highway southwest 0.221 0.194
(0.026) (0.024)

Highway west 0.242 0.187
(0.036) (0.034)

Highway northwest 0.029 0.024
(0.028) (0.022)

F -statistic 30.4 26.5

Partial R 2 0.551 0.653

Highway segment FE Yes

N 9,027 9,027
Notes: Each column represents a separate regression of the
frequency downwind on seven indicators summarzing
orientation to the nearest major highway. The omitted
category is north. The observation is the Census Block,
and the sample is limited to Census Blocks with centroids
between 50 and 600 meters from major highways.
Parentheses contain standard errors clustered on a spatial
grid with a width of 0.05 degrees longitude or latitude in
each cell. All regressions include controls for distance to
highway, weather station fixed effects, share African-
American, and share over ages 50, 55, 60, 65, 70, and 75.
Regressions without highway segment fixed effects include
quintics in latitude and longitude and first and second
order interactions between latitude and longitude.
Regressions with highway segment fixed effects include
highway segments fixed effects with an 800 meter
bandwidth. The F -statistic tests the hypothesis that all
seven orientation indicators equal zero; the partial R 2 is
the R 2 generated by these seven orientation indicators after 
partialing out controls.

Frequency downwind

Table 3: First-stage relationship between orientation to 
highway and frequency downwind



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)

Frequency downwind 0.067 0.066 0.035 0.036 0.003 0.009 0.015 0.015
(0.022) (0.024) (0.018) (0.019) (0.004) (0.005) (0.009) (0.010)

Effect of 1 SD change in freq downwind 0.009 0.009 0.005 0.005 0.000 0.001 0.002 0.002

Highway segment FE Yes Yes Yes Yes

Dependent variable mean 0.155 0.155 0.103 0.103 0.006 0.006 0.022 0.022

N 9,027 9,027 9,027 9,027 9,027 9,027 9,027 9,027
Notes: Each column represents a separate 2SLS regression of the dependent variable on the instrumented percent of time
spent downwind of a major highway. The observation is the Census Block, and the sample is limited to Census Blocks with
centroids between 50 and 600 meters from major highways. The instruments are a set of seven indicator variables
summarizing orientation to the nearest major highway. Parentheses contain spatial standard errors with a 3,200 meter
bandwidth. All regressions include controls for distance to highway, weather station fixed effects, share African-American,
and share over ages 50, 55, 60, 65, 70, and 75. Regressions without highway segment fixed effects include quintics in
latitude and longitude and first and second order interactions between latitude and longitude. Regressions with highway
segment fixed effects include highway segments fixed effects with an 800 meter bandwidth.

Table 4: 2SLS Effects of Frequency Downwind of Highways

3-year mortality rate for 75+ year olds from:
All causes Cardio-respiratory Lung cancer Other cancer



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Frequency downwind 0.005 0.004 0.009 0.009 -0.003 -0.002 -0.002 -0.004
(0.010) (0.014) (0.008) (0.010) (0.005) (0.006) (0.003) (0.004)

Effect of 1 SD change in freq downwind 0.001 0.001 0.001 0.001 0.000 0.000 0.000 -0.001

Dependent variable mean 0.058 0.058 0.030 0.030 0.022 0.022 0.009 0.009

N 9,796 9,796 9,796 9,796 10,659 10,659 10,659 10,659

Table 5: Effects of Frequency Downwind for Different Age Groups

Notes: Each cell represents a separate regression of the dependent variable on the percent of time spent downwind of a major highway
(OLS) or instrumented percent of time spent downwind of a major highway (2SLS). The observation is the Census Block, and the
sample is limited to Census Blocks with centroids between a minimum of 50 meters and a maximum of 600 meters from major
highways. The instruments are a set of seven indicator variables summarizing orientation to the nearest major highway. Parentheses
contain spatial standard errors with a 3,200 meter bandwidth. All regressions include controls for distance to highway, weather station
fixed effects, 800 meter highway segment fixed effects, share African-American, and share over ages 50, 55, 60, 65, 70, and 75

3-yr mortality rate for 50-64 year olds from:
All causes Cardio-respiratory

3-yr mortality rate for 65-74 year olds:
All causes Cardio-respiratory



Dependent Variable: N

(1) (2) (3) (4)
Estimation method: OLS 2SLS OLS 2SLS
Baseline estimate 0.064 0.066 0.044 0.036 9,027

(0.018) (0.024) (0.014) (0.019)
    Effect of 1 SD change in freq downwind 0.008 0.009 0.006 0.005
Modification:
Cosine-weighted downwind frequency 0.059 0.057 0.039 0.032 9,027

(0.017) (0.022) (0.014) (0.018)
    Effect of 1 SD change in freq downwind 0.008 0.007 0.005 0.004

400 m hwy segment FE 0.073 0.070 0.054 0.038 9,027
(0.018) (0.025) (0.015) (0.020)

    Effect of 1 SD change in freq downwind 0.010 0.009 0.007 0.005

1,600 m hwy segment FE 0.057 0.066 0.039 0.038 9,027
(0.017) (0.023) (0.014) (0.018)

    Effect of 1 SD change in freq downwind 0.007 0.009 0.005 0.005

25 m “donut” around hwy 0.054 0.050 0.034 0.023 9,307
(0.019) (0.025) (0.015) (0.019)

    Effect of 1 SD change in freq downwind 0.007 0.007 0.004 0.003

100 m “donut” around hwy 0.081 0.083 0.050 0.045 8,193
(0.021) (0.026) (0.016) (0.020)

    Effect of 1 SD change in freq downwind 0.010 0.011 0.007 0.006

Within 400 m of hwy 0.051 0.054 0.037 0.035 6,039
(0.020) (0.028) (0.018) (0.023)

    Effect of 1 SD change in freq downwind 0.007 0.007 0.005 0.005

Within 800 m of hwy 0.061 0.056 0.034 0.022 11,839
(0.015) (0.021) (0.012) (0.017)

    Effect of 1 SD change in freq downwind 0.008 0.007 0.004 0.003
Notes: Each cell represents a separate regression of the dependent variable on the percent of time
spent downwind of a major highway (OLS) or instrumented percent of time spent downwind of a
major highway (2SLS). The observation is the Census Block, and the sample is limited to Census
Blocks with centroids between a minimum of 25/50/100 meters (50 m is the baseline) and a
maximum of 400/600/800 meters from major highways (600 m is the baseline). The instruments
are a set of seven indicator variables summarizing orientation to the nearest major highway.
Parentheses contain spatial standard errors with a 3,200 meter bandwidth. All regressions include
controls for distance to highway, weather station fixed effects, highway segment fixed effects, share
African-American, and share over ages 50, 55, 60, 65, 70, and 75.

3-year mortality rate for 75+ year olds from:

Table 6: Robustness of Effects to Different Spatial Parameters

All causes Cardio-respiratory



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Frequency downwind 0.012 0.016 0.019 0.029 0.073 0.078 -0.010 -0.035 -0.0007 -0.0010 -0.0015 -0.0022
(0.009) (0.013) (0.015) (0.023) (0.071) (0.074) (0.028) (0.036) (0.0018) (0.0024) (0.0009) (0.0015)

Effect of 1 SD change in freq downwind 0.002 0.002 0.002 0.004 0.010 0.010 -0.001 -0.005 0.000 0.000 0.000 0.000

Dependent variable mean 0.053 0.053 0.109 0.109 0.518 0.518 0.119 0.119 0.0020 0.0020 0.0012 0.0012

N 9,027 9,027 9,027 9,027 9,022 9,022 9,027 9,027 9,027 9,027 9,027 9,027
Notes: Each cell represents a separate regression of the dependent variable on the percent of time spent downwind of a major highway (OLS) or instrumented percent of time spent
downwind of a major highway (2SLS). The observation is the Census Block, and the sample is limited to Census Blocks with centroids between a minimum of 50 meters and a
maximum of 600 meters from major highways. The instruments are a set of seven indicator variables summarizing orientation to the nearest major highway. Parentheses contain
spatial standard errors with a 3,200 meter bandwidth. All regressions include controls for distance to highway, weather station fixed effects, 800 meter highway segment fixed effects,
share African-American, and share over ages 50, 55, 60, 65, 70, and 75.

Table 7: Effects of Frequency Downwind on Placebo Measures

External-cause mortality rate among:
Owning residence African-American 75+ year olds All residents

Share of population:
Over 75 Over 65



Dependent Variable:

(1) (2) (3) (4) (5) (6)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS

Panel A: 1990-2000 sales
Frequency downwind 0.017 -0.112 -0.037 -0.140 208.5 124.7

(0.078) (0.173) (0.049) (0.094) (186.3) (351.3)

Effect of 1 SD change in freq downwind 0.002 -0.015 -0.005 -0.018 27.1 16.2

Control for log sq ft and date sold Yes Yes

Dependent variable mean 11.961 11.961 11.961 11.961 1,311.2 1,311.2

N 21,455 21,455 21,455 21,455 21,455 21,455

Panel B: 2006-2010 sales
Frequency downwind 0.017 -0.026 -0.069 -0.091 162.3 97.1

(0.094) (0.103) (0.058) (0.065) (138.5) (144.5)

Effect of 1 SD change in freq downwind 0.002 -0.003 -0.009 -0.012 21.1 12.6

Control for log sq ft and date sold Yes Yes

Dependent variable mean 13.029 13.029 13.029 13.029 1,385.1 1,385.1

N 21,713 21,713 21,713 21,713 21,713 21,713
Notes: Each cell represents a separate regression of the dependent variable on the percent of time
spent downwind of a major highway (OLS) or instrumented percent of time spent downwind of a
major highway (2SLS). The observation is a housing sale, and the sample is limited to sales in
Census Blocks with centroids between a minimum of 50 meters and a maximum of 600 meters
from major highways. The instruments are a set of seven indicator variables summarizing
orientation to the nearest major highway. Parentheses contain spatial standard errors with a 3,200
meter bandwidth. All regressions include controls for distance to highway, weather station fixed
effects, 800 meter highway segment fixed effects, share African-American, and share over ages 50,
55, 60, 65, 70, and 75. Regressions in Columns (3) and (4) include controls for log square footage
and a cubic in time of sale (measured at the daily frequency).

Table 8: Effects of Frequency Downwind on Property Values

Square feetLog price



Dependent Variable:

(1) (2)

Frequency downwind 70.5 61.1
(2.1) (1.6)

Effect of 1 SD change in freq downwind 9.2 7.9

Day-of-sample FE Yes

Dependent variable mean 27.4 27.4

N 400,218 400,218
Notes: Each column represents a separate OLS regression of the
dependent variable on the percent of time spent downwind of a
major highway. The observation is the hour-by-site. Parentheses
contain standard errors clustered by month of sample.

Table 9: Relationship Between NO2 and Frequency Downwind of Highways

NO2 Concentration (ppb)



Study Research Design Effect of 10% 
Pollution Increase

Lipfert and Wyzga (1995) Daily time-series analysis 0.04 years

Pope et al. (2009) 20-year long difference 0.12 years

Dockery et al. (1993) Cross-sectional analysis 0.22 years

Chen et al. (2013) Single boundary discontinuity 1 year

This study Multiple boundary discontinuities 0.05 years
Notes: Effect sizes represent the implied effect of a 10% increase in pollution on
life expectancy.

Table 10: Life Expectancy Estimates from Existing Literature



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Frequency downwind 0.041 0.048 0.032 0.032 0.028 0.033 0.026 0.022 0.003 0.005 0.002 0.000
(0.016) (0.021) (0.012) (0.016) (0.012) (0.016) (0.009) (0.012) (0.007) (0.009) (0.005) (0.006)

Effect of 1 SD change in freq downwind 0.005 0.006 0.004 0.004 0.004 0.004 0.003 0.003 0.000 0.001 0.000 0.000

Dependent variable mean 0.136 0.136 0.086 0.086 0.116 0.116 0.072 0.072 0.062 0.062 0.035 0.035

N 9,810 9,810 9,810 9,810 10,232 10,232 10,232 10,232 10,776 10,776 10,776 10,776
Notes: Each cell represents a separate regression of the dependent variable on the percent of time spent downwind of a major highway (OLS) or instrumented percent of time spent
downwind of a major highway (2SLS). The observation is the Census Block, and the sample is limited to Census Blocks with centroids between a minimum of 50 meters and a
maximum of 600 meters from major highways. The instruments are a set of seven indicator variables summarizing orientation to the nearest major highway. Parentheses contain spatial
standard errors with a 3,200 meter bandwidth. All regressions include controls for distance to highway, weather station fixed effects, 800 meter highway segment fixed effects, share
African-American, and share over ages 50, 55, 60, 65, 70, and 75.

Table A1: Effects of Frequency Downwind for Different Age Cutoffs

3-yr mortality rate for 70+ year olds from: 3-yr mortality rate for 65+ year olds from: 3-yr mortality rate for 50+ year olds from:
All causes Cardio-respiratory All causes Cardio-respiratory All causes Cardio-respiratory

Michael Anderson
Appendix



Dependent Variable: N

(1) (2) (3) (4)
Estimation method: OLS 2SLS OLS 2SLS
Baseline estimate 0.064 0.066 0.044 0.036 9,027

(0.018) (0.024) (0.014) (0.019)
    Effect of 1 SD change in freq downwind 0.008 0.009 0.006 0.005
Weights:
Total population 0.064 0.053 0.057 0.043 9,027

(0.017) (0.031) (0.015) (0.026)
    Effect of 1 SD change in freq downwind 0.008 0.007 0.007 0.006

Predicted population over 74 0.055 0.045 0.040 0.024 9,027
(0.017) (0.027) (0.014) (0.022)

    Effect of 1 SD change in freq downwind 0.007 0.006 0.005 0.003

Actual population 50 to 74 0.055 0.045 0.040 0.024 8,997
(0.017) (0.026) (0.014) (0.022)

    Effect of 1 SD change in freq downwind 0.007 0.006 0.005 0.003

Actual population over 74 0.043 0.043 0.026 0.017 9,027
(0.013) (0.022) (0.012) (0.020)

    Effect of 1 SD change in freq downwind 0.006 0.006 0.003 0.002

Table A2: Heterogeneity of Effects by Weighting

3-year mortality rate for 75+ year olds from:
All causes Cardio-respiratory

Notes: Each cell represents a separate regression of the dependent variable on the percent of time
spent downwind of a major highway (OLS) or instrumented percent of time spent downwind of a
major highway (2SLS). The observation is the Census Block, and the sample is limited to Census
Blocks with centroids between a minimum of 25/50/100 meters (50 m is the baseline) and a
maximum of 400/600/800 meters from major highways (600 m is the baseline). The instruments
are a set of seven indicator variables summarizing orientation to the nearest major highway.
Parentheses contain spatial standard errors with a 3,200 meter bandwidth. All regressions include
controls for distance to highway, weather station fixed effects, highway segment fixed effects, share
African-American, and share over ages 50, 55, 60, 65, 70, and 75.


