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Public transit accounts for only 1% of U.S. passenger miles traveled but nevertheless attracts 
strong public support. Using a simple choice model, we predict that transit riders are likely to 
be individuals who commute along routes with the most severe roadway delays. These 
individuals’ choices thus have very high marginal impacts on congestion. We test this 
prediction with data from a sudden strike in 2003 by Los Angeles transit workers. Estimating 
a regression discontinuity design, we find that average highway delay increases 47% when 
transit service ceases. This effect is consistent with our model’s predictions and many times 
larger than earlier estimates, which have generally concluded that public transit provides 
minimal congestion relief. We find that the net benefits of transit systems appear to be much 
larger than previously believed. 
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1. INTRODUCTION 

It is a stylized fact in the transportation literature that mass transit attracts a 

disproportionate share of public funds but carries a negligible fraction of commuters. In 

2010, public transit received 23% of federal highway and transit outlays but accounted for 

1% of passenger miles traveled (U.S. Department of Transportation 2009, 2011a, 2011b). 

State, local, and federal subsidies exceed $40 billion per year and cover 63% of operating 

costs and 100% of capital costs. Even in Washington, DC – which boasts the second busiest 

metro system in the United States – transit accounts for only 5% of passenger miles traveled 

(American Public Transportation Association 2011; Schrank, Lomax, and Eisele 2011). 

Public transit subsidies nevertheless remain popular in many areas. For example, in 2008 

67% of Los Angeles County residents voted to allocate $26 billion to transit over 30 years. 

Why is there deep public support for transit subsidies if few voters are frequent riders? The 

simplest explanation is the possibility of congestion relief – commuters may expect to 

benefit from reduced congestion even if they rarely use public transit themselves.1 A large 

body of transportation and economic research, however, concludes that public transit has 

little effect on reducing congestion, calling into question its heavy subsidy rate (Rubin, 

Moore, and Lee 1999; Stopher 2004; Small 2005; Winston and Maheshri 2007). 

An important detail that has received little attention in the existing literature is that 

commuters on different roadways in the same metropolitan area face sharply different levels 

of congestion during peak hours. This paper presents a simple choice model in which 

commuters face differing levels of congestion and choose either to drive or take transit. 

Calibrating the model using data from the Los Angeles metro area, we predict effects on 

congestion that are approximately six times larger than a model that does not account for 

heterogeneity in congestion levels. This prediction is much larger than previous estimates, 

and the qualitative conclusion is robust to wide variations in parameter values. The intuition 

is straightforward: Transit is most attractive to commuters who face the worst congestion, so 

a disproportionate number of transit riders are commuters who would otherwise have to 

drive on the most congested roads at the most congested times. Since drivers on heavily 

congested roads have a much higher marginal impact on congestion than drivers on the 

average road, transit has a large impact on reducing traffic congestion. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This possibility is perhaps best summarized by the title of a satirical article in the November 29, 2000, issue of 
The Onion, “Report: 98 Percent of U.S. Commuters Favor Public Transportation for Others.” Other factors 
that may explain local support of capital investment in transit include high federal matching rates, a combination 
of concentrated economic rents and dispersed costs, and the political appeal of “ribbon cutting” ceremonies 
(Taylor 2004; Baum-Snow and Kahn 2005; Winston and Maheshri 2007). 
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We test our predictions using freeway speed data from a 2003 strike by Los Angeles 

County Metropolitan Transportation Authority (MTA) workers. In October 2003, MTA 

workers began a strike that lasted 35 days and shut down MTA bus and rail lines. Using 

hourly data on traffic speeds for all major Los Angeles freeways, we estimate a regression 

discontinuity (RD) design using time as the running variable. We find an abrupt increase in 

average delays of 47% (0.19 minutes per mile) during peak periods. This increase persists 

through the end of the strike, and the estimate – consistent with the predictions of our 

model – is many times larger than estimates in the existing literature. The effects are largest 

on freeways that parallel transit lines with heavy ridership, and they are small and statistically 

insignificant during the same period in neighboring counties unaffected by the transit strike. 

Our estimates imply that the annualized congestion relief benefit of operating the Los 

Angeles transit system is between $1.2 billion to $4.1 billion, or $1.20 to $4.10 per peak-hour 

transit passenger mile. We consider the potential gap between the short-run effect of ceasing 

transit provision (i.e., our estimates) and the effect of a longer shutdown. We find that 

reducing the longer-run effect to less than 50% of the short-run effect’s lower bound 

requires very large elasticities of travel with respect to travel costs. We consider the net 

benefits of constructing the Los Angeles rail system and conclude – contrary to the existing 

literature on rail capital investment – that they are large and positive. 

Nevertheless, we cannot determine what types of long-run adaptations, such as dispersal 

of employment or desynchronization of business operating hours, might occur if transit 

permanently shut down. These adaptations, while likely costly, could further attenuate the 

congestion-relief effects. On a broader scale, our findings demonstrate that in contexts in 

which policymakers encourage adoption of activities that mitigate negative externalities, 

considering who adopts the mitigating activity is critical in determining a policy’s expected 

benefits. We close with a brief discussion of other contexts in which selection into mitigating 

activities may have large impacts on predicted benefits. 

2. BACKGROUND 

Existing economic research on the effects of transit on traffic congestion falls into two 

categories: model-based estimates and empirical estimates. Examples of the former include 

Nelson et al. (2007) and Parry and Small (2009). Parry and Small (2009) develop an analytical 

model of an urban transportation system and compute the optimal transit operating subsidy. 

The model takes as inputs average speeds, costs, and price and service elasticities. One input 

is the effect of transit on relieving traffic congestion. They compute this effect using 

assumptions about substitution between transportation modes and engineering estimates 
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relating average delays and marginal congestion impacts. In Los Angeles, the congestion 

relief externality of traveling 1 mile on transit during peak hours is computed at 1.7 person-

minutes of reduced traffic delays.2 Aggregating this figure across all peak-period transit 

passengers implies that transit reduces average delay by approximately 5% (0.025 minutes 

per mile). Nelson et al. explore the potential benefits of the Washington, DC transit system 

using a simulation model in which travel decisions are modeled as a nested logit tree. The 

model takes as inputs demand response parameters from the literature, and it is calibrated to 

match aggregate Washington travel patterns. Applying a relationship between traffic flows 

and traffic speeds similar to that used by Parry and Small, Nelson et al. calculate that the 

Washington transit system reduces total congestion by 184,000 person-hours per day, or 2.0 

person-minutes per peak transit passenger mile carried. This figure is close to the figure 

implied by Parry and Small. 

Researchers employing empirical approaches include Winston and Langer (2006) and 

Duranton and Turner (2011). Using metropolitan-area data, these authors regress total 

congestion or vehicle miles traveled (VMT) on measures of transit capacity. They reach 

varying conclusions. Winston and Langer estimate that rail lines reduce congestion but that 

bus lines increase congestion. The net effect of transit systems is thus to increase congestion. 

Duranton and Turner focus on testing the “fundamental law of road congestion” – the 

hypothesis that the primary determinant of VMT in most cities is roadway capacity. They 

also estimate a positive relationship between bus fleet size and VMT. To address the 

potential endogeneity of transit provision, they instrument for bus fleets using an area’s 1972 

Democratic vote share. The relationship between bus fleets and VMT then becomes 

statistically insignificant and of variable sign, though the instrument is not powerful enough 

to rule out the possibility that 1 passenger mile traveled on transit removes substantially 

more than 1 VMT from roadways.3 These findings are nevertheless consistent with our own 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 In Los Angeles, Parry and Small assume that each passenger mile traveled on transit diverts approximately 0.9 
passenger miles from roadways. The average peak period delay in Los Angeles is 0.5 minutes per mile, and 
estimates from the literature relating traffic flows and traffic speeds suggest that the marginal effect on total 
delay of adding an additional vehicle to the road is 3.7 times the average delay. The congestion relief externality 
of traveling 1 mile on transit during peak hours is thus (–0.9 auto passenger miles/transit passenger mile * 0.5 
mins avg delay/passenger mile * 3.7 mins increased delay/min avg delay) = –1.7 mins increased delay/transit 
passenger mile. 
3 Duranton and Turner estimate that increasing a city’s bus fleet by 18 buses (10%) changes annual VMT by –
1.3% to 0.6% (–35 million to 16 million VMT) in their most precise instrumental variables (IV) specification 
and –0.7% to 4.9% (–18 million to 133 million VMT) in their least precise IV specification (these figures 
correspond to 95% confidence intervals). An average city bus carries 0.3 million passenger miles per year 
(American Public Transit Association 2011), so adding 5.4 million passenger miles of bus travel could decrease 
VMT by up to 35 million miles in the most precise specification and up to 18 million miles in the least precise 
specification. 
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findings, which suggest that transit has a minimal impact on total VMT but a large impact on 

congestion levels. As we demonstrate below, the type of VMT diverted to transit is critical in 

determining transit’s effects on congestion. 

Overall, previous economic research does not support the hypothesis that transit 

generates large aggregate reductions in traffic congestion. Though transit operating subsidies 

may be justifiable on other grounds, such as returns to scale (Parry and Small 2009) or transit 

passenger welfare gains (Nelson et al. 2007), the existing evidence does not suggest that 

transit is a major factor in reducing congestion. This research represents the first robust 

empirical evidence indicating that transit generates large congestion relief benefits, and it 

presents a model that explains why these benefits appear much larger than previously 

believed. 

3. THEORETICAL MODEL 

We begin with a simple choice model in which travelers choose to either drive or take 

transit. The goal of this model is to explore the quantitative importance of incorporating 

heterogeneity in observed driving delays. We calibrate the model using data from the Los 

Angeles metropolitan area. We choose Los Angeles for three reasons. First, it is the location 

of the transit strike that we use for our RD design. Second, it is one of the three cities 

included in Parry and Small’s comprehensive analysis of optimal transit operating subsidies. 

Third, its annual transit usage is close to the national urban area average. 

3.1 Theoretical Framework 

Consider an individual who can either drive or take rail transit to her destination (we 

consider the possibility of bus transit later). For convenience we refer to this individual as a 

“commuter,” though in practice her trip need not be work-related. Commuter i has 

preferences over consumption of a composite good, Xi, and generalized commute costs, Ti. 

We assume a quasi-linear utility function of the form: 

 

Utility is increasing in the composite good X and decreasing in generalized commute 

costs T. Generalized commute costs are a function of vehicle speed si, access and egress time 

ai, waiting time wi, and commute distance m. Each of these quantities (except commute 

distance) is itself a function of whether the commuter takes rail or drives; Ri equals one if the 

commuter takes rail and zero if she drives. The commuter maximizes utility subject to the 

budget constraint: 

 

Ui = Xi � T (si(Ri), ai(Ri), wi(Ri),m)

s.t. Yi = Xi +m · (prRi + pd(1�Ri))
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Income Yi must equal spending on the composite good X (whose price is normalized to 

unity) plus monetary commute costs. If the commuter takes rail (Ri = 1), then commute 

costs are the per-mile cost of rail (pr) times distance m. Otherwise commute costs are the per-

mile cost of driving (pd) times m. 

Let the commuter value time at vi dollars per hour. An extensive literature concludes 

that commuters place a higher value on time spent waiting for transit, stuck in traffic, or 

walking (Small and Verhoef 2007, p. 53; Abrantes and Wardman 2011) than they do on the 

same amount of time in other circumstances. Defining a “delay multiplier” ! > 1, we can 

write the commuter’s problem as maximizing: 

 

 

 

where sr is rail speed, ari is rail access and egress time, wr is average waiting time for the train, 

sd is free-flow driving speed, ad is car access and egress time, and wdi is driving delay time (i.e., 

the difference between driving time in free-flow traffic and actual driving time). For 

simplicity we do not include a mode-specific utility shock, although our conclusions are 

qualitatively robust to doing so (see Appendix A2). Solving the commuter’s problem leads to 

a decision rule under which the commuter takes rail if and only if: 

  (1) 

Rail is the more appealing choice if the difference between delay-penalized rail travel 

time ! !!" + !! + !
!!

 and delay-penalized driving travel time ! !! + !!" + !
!!

 is less than the 

difference between the cost of driving and the cost of taking rail, converted from dollars to 

hours (!!!
!! − !! ). The share of commuters taking rail is thus determined by the 

probability that the inequality above holds. We calibrate the model under two scenarios. The 

first scenario assumes that, consistent with the existing literature, all peak-period drivers face 

the same average congestion delay, wd. We set the value of time vi at a fraction of the hourly 

wage and calibrate the model by varying the distribution of rail access times until the 

probability of taking rail equals the observed rail market share in Los Angeles. Note that the 

fraction of rail commuters is determined by the fraction of commuters who live sufficiently 

close to rail for Equation (1) to hold. If the predicted number of rail commuters is lower 

than the true number, then we modify the distribution of rail access times to increase the 

[c(ari + wr) +
m

sr
]� [c(ad + wdi) +

m

sd
]  m

vi
(pd � pr)

s.t. Yi = Xi +m · (prRi + pd(1�Ri))

Ui = Xi � vi[Ri(
m
sr

+ c(ari + wr)) + (1�Ri)(
m
sd

+ c(ad + wdi))]

5



!

!

share of commuters who live close to rail. We continue this process until the predicted 

number of rail commuters matches the actual number. 

The second scenario allows for heterogeneous driving delays across commuters. The 

distribution of congestion delays is set so that the average driving delay is identical to wd in 

the first scenario, and the model is again calibrated by varying the distribution of rail access 

times until the probability of taking rail equals the observed rail market share. 

Formally, the two scenarios entail calibrating the following two equations by varying the 

distribution of rail access times (i.e., f(ari)) until the equations hold. We rearrange each 

equation so that terms that vary across individuals fall on the left side of the inequality, and 

terms that are constant across individuals fall on the right side of the inequality. Each 

probability statement thus represents the probability that a random variable falls below some 

fixed value. The number of terms in both scenarios is identical; the only difference is that wd 

changes from being fixed in the first scenario to varying across individuals in the second 

scenario. 
 

(Scenario 1) 

 

(Scenario 2) 
 

Of course, buses rather than rail serve many areas. For simplicity we assume that any 

given area is served either by buses or by rail but not both. This assumption is reasonable in 

that the MTA arranges its bus lines so that they do not duplicate the rail service. The 

commuter takes the bus if and only if: 

 

 

The decision rule for taking the bus is similar to the rule for taking rail, though with 

different parameter values. The main difference is that the bus speed sbi now varies by 

commuter and appears on the left side of the inequality. This reflects the fact that buses do 

not have a dedicated right-of-way and thus may run more slowly on congested routes. We 

calibrate the bus model under the same two scenarios as the rail model: homogeneous 

driving delays and heterogeneous driving delays. We assume that everyone who lives more 

than 1 mile from a rail line (based on the results of calibrating the rail choice model) is in a 

bus catchment area (i.e., on or near a bus line). 

P (Ri = 1) = P [c(ari � wdi)�
m

vi
(pd � pr)  c(ad � wr) +

m

sd
� m

sr
]

P (Ri = 1) = P [c · ari �
m

vi
(pd � pr)  c(ad + wd � wr) +

m

sd
� m

sr
]

c(abi � wdi)�
m

vi
(pd � pb) +

m

sbi
 c(ad � wb) +

m

sd
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3.2 Model Calibration 

Table 1 lists the parameter values used to calibrate the rail choice and bus choice models. 

In cases with any ambiguity we tried to choose parameter values consistent with the previous 

literature (e.g., Parry and Small 2009). We assume a trip length of 7 miles for commuters in 

rail catchment areas and 5 miles for commuters in bus catchment areas. Transit headways 

and fares come from historical MTA documents, and driving costs come from the American 

Automobile Association (AAA). We could not find authoritative data on parking costs or the 

share of commuters with free parking, so we assumed that 85% of commuters have free 

parking and that parking costs $5.00 per day for those with paid parking. These values are 

roughly consistent with those reported in Willson and Shoup (1990), and our results are 

robust to variations in these parameters.4 

Of particular importance for the calibration are parameters that vary across individuals: 

vi and wdi. Absent individual heterogeneity, the predicted transit share would be either 0% or 

100%. To set vi we assume that an average commuter values time at half his gross hourly 

wage and that the elasticity of vi with respect to the wage is 0.8 (Small and Verhoef 2007, p. 

52; Parry and Small 2009). This generates a distribution of vi with the 10th percentile at $4.88, 

the median at $8.76, and the 90th percentile at $17.96. For wdi we assume an average driving 

delay, relative to the free-flow speed, of 0.5 minutes per mile (Parry and Small 2009). This 

translates to an average speed of 30 mph when the free-flow speed is 40 mph and 27.1 mph 

when the free-flow speed is 35 mph.5 When wdi varies across commuters, we draw wdi from a 

gamma distribution parameterized such that the average delay is 0.5 minutes per mile and the 

right tail is consistent with our freeway speed data in Section 4.2. This implies percentile 

delays corresponding to the following average speeds: 98th percentile, 13 mph; 99th percentile, 

11.5 mph; 99.9th percentile, 8 mph.6 An average speed of 11–12 mph is also consistent with 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Willson and Shoup report that the average market price of parking in Los Angeles Central Business District is 
$4.32 per day and that 91% of all workers in Los Angeles, Riverside, San Bernardino, and Ventura Counties 
receive free parking. We view 91% as an upper bound on the free parking share because the Los Angeles 
County MTA service area is more densely populated than the counties in Willson and Shoup. 
5 We use a lower free-flow speed for commuters in bus catchment areas than in rail catchment areas because 
bus commuters have a shorter average commute. A 40 mph free-flow speed over 7 miles (the rail commute 
distance) translates to 2.5 miles on local roads at 25 mph and 4.5 miles on freeways at 60 mph. A 35 mph free-
flow speed over 5 miles (the bus commute distance) translates to 2.5 miles on local roads and 2.5 miles on 
freeways. 
6 We calculate evening rush-hour median speed for 960 Los Angeles freeway segments when the transit system 
is operating. The 0.1st percentile speed is 8 mph, the 1st percentile speed is 15.5 mph, and the 2nd percentile 
speed is 17 mph. We lack speed data for local roads, but Dowling and Skabardonis (2008) take 216 hourly 
samples across 8 Los Angeles arterial streets and find average speeds between 7 to 10 mph approximately 10% 
of the time. Assuming a local road speed of 8 mph for the 0.1st and 1st percentiles and 9 mph for the 2nd 
percentile, then average trip speeds for the 0.1st, 1st, and 2nd percentiles are approximately 8 mph, 11.5 mph, 
and 13 mph respectively (as in footnote 5, we assume the 7 mile trip entails 2.5 miles on local roads and 4.5 
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the lowest average speed for a 7-mile trip in Los Angeles that we regularly observed during 

rush hour in 2012 (Bing Maps 2012). We set bus speeds to strongly correlate with driving 

speeds (ρ = 0.97). 

 We calibrate the model by varying the distribution of transit access times until the 

predicted rail and bus shares match their observed values. In Los Angeles, rail and bus 

account for 0.4% and 1.2% of peak-hour travel respectively (Parry and Small 2009). We 

generate rail access times ari from a sum of two gamma distributions with shape parameters 

of 2 (i.e., similar shape to a chi-square with low degrees of freedom). The first gamma-

distributed random variable, a1ri, represents access time from home to transit. The second, a2ri, 

represents egress time from transit to work. We set E[a2ri] = 0.5*E[a1ri] to reflect the fact that 

commercial districts have denser transit service than residential areas. We vary the scale 

parameter on f(a1ri) until predicted rail share equals 0.4%. 

 We generate bus access times abi from a sum of two triangular distributions. In an 

area with uniformly distributed population and bus lines placed in a grid pattern, the access 

time to the nearest bus stop will follow a triangular distribution (see Appendix A1). The first 

triangular-distributed random variable, a1bi, represents access time from home, and the 

second triangular-distributed random variable, a2bi, represents egress time to work. We again 

set E[a2bi] = 0.5*E[a1bi] and vary the scale parameter on f(a1bi) until predicted bus share equals 

1.2%. We assume access times ari and abi are independent of driving delays wdi and value of 

time vi, but our qualitative results are robust to relaxing this assumption (see Appendix A2). 

Replacing the triangular distribution with a smoother gamma distribution also has minimal 

impact on our results (see Appendix A2). 

3.3 Model Results 

Table 2 presents results from calibrating the rail and bus choice models. The first 

column reports results from a model in which driving delay wdi is fixed at 0.5 minutes per 

mile for all commuters. All rail and bus passengers would thus face the same 0.5 mins/mile 

delay if they were to drive. We compute the effect of ceasing transit service (which would 

force current rail and bus passengers to drive) by applying a power function of !! = ! ⋅
!"#$$%&!!"#$%!!.! (Parry and Small 2009). The predicted effect of ceasing transit service is 

to increase average driving delays by 0.032 minutes per mile (6%). This increase is roughly 

similar to the effect of transit service on congestion computed by Parry and Small (2009), 

which is reassuring as their study applied similar parameter values. We also calculate 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
miles on freeways). Corresponding values for our gamma distribution are 8 mph, 11.3 mph, and 13.2 mph. We 
truncate the distribution at 8 mph to prevent speeds slower than the minimum observed speed in the data. 
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consumer surplus for transit riders (relative to driving) by computing the difference in 

generalized cost between the rail option and the driving option for each transit rider (see 

Appendix A1). We find an average consumer surplus of $0.08/mile for rail passengers and 

$0.04/mile for bus passengers. 

The second column in Table 2 reports results from a model in which wdi varies across 

commuters. The average driving delay is 0.5 minutes/mile, but rail and bus passengers come 

from routes with higher-than-average driving delays. On these routes, if the rail passenger 

chose to drive instead, the average driving delay would be 3.2 mins/mile. The average 

driving delay for a bus passenger who drove her own car would be 2.5 mins/mile. As a result, 

we predict that ceasing transit service would increase average delays by 0.189 minutes per 

mile (38%). This effect is 5.9 times larger than the predicted effect in the homogeneous 

driving time model, and routes with the most congestion would experience the largest 

increases. The implied fare elasticity in the heterogeneous model is –1.1, which is slightly 

larger than estimates from the literature.7 Average consumer surplus (relative to driving) is 

higher than in the homogeneous model, at $0.24/mile for rail passengers and $0.11/mile for 

bus passengers.8 The increase in consumer surplus occurs because transit, particularly rail, 

can become time-competitive with driving for commuters on routes with substantial freeway 

congestion. Under the homogeneous model, transit is never time-competitive with driving, 

even for commuters living next to transit stops. Most transit riders in the homogeneous 

model are thus commuters who must pay for parking and have relatively low values of time; 

consumer surplus for these commuters is bounded by the price of parking. 

The bottom two rows of Table 2 report the parameter values that calibrate the model 

in each case. We calibrate the model using transit access times; comparing the calibrated 

access time distribution to the true access time distribution serves as a check on the model. 

In reality, approximately 26% of the Los Angeles metropolitan area lives within 2 miles of a 

rail line, and the median spacing between bus lines in residential areas is approximately 0.5 

miles.9 When calibrating the homogeneous model, 51% of commuters live within 2 miles of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 Litman (2004) summarizes long-run fare elasticity estimates as ranging from –0.6 to –0.9. Our overall fare 
elasticity of –1.1 is driven by a fare elasticity of –1.3 for bus riders. This elasticity of –1.3 is likely too large 
because we do not consider “captive” bus riders who do not own cars. However, we show in Appendix A2 that 
the qualitative conclusions from our model are robust to introducing captive bus riders. 
8 These values represent average consumer surplus for rail (bus) passengers at current congestion levels. If a 
significant number of rail (bus) passengers drove instead, increasing congestion, then average consumer surplus 
among the remaining passengers would likely increase. 
9 In 2003, approximately 240 square miles of Los Angeles were within two miles of a subway or light rail line. 
The average population density of zip codes containing rail lines is 13,648 residents per square mile (author’s 
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a rail line, and the implied spacing between bus lines is 0.4 miles. When calibrating the 

heterogeneous model, 30% of commuters live within 2 miles of a rail line, and the implied 

spacing between bus lines is 0.5 miles. The parameter values that calibrate the heterogeneous 

driving time model are thus reasonably close to their true values. 

The intuition underlying our results is straightforward. Driving is the more attractive 

option for most commuters because the average cost of driving (including the cost of time) 

is much lower than the average cost of transit. Nevertheless, some commuters choose transit, 

and these commuters must be different from the average commuter along one or more 

dimensions. An important dimension is transit access time – commuters who choose transit 

tend to live close to transit. Another dimension is roadway congestion – commuters who 

choose transit tend to commute on highly congested routes. As long as there is substantial 

heterogeneity in traffic delays, commuters choosing transit will come from routes that have 

higher than average congestion. This implies that their marginal effect on congestion will be 

higher than the average commuter’s marginal effect on congestion, and the model 

demonstrates that the difference is potentially very large. 

The qualitative result that a model with heterogeneous driving times predicts much 

larger effects from ceasing transit service than a model with homogeneous driving times is 

robust to a wide range of parameter values. In general, assumptions that lower the cost of 

driving or increase the cost of transit service will widen the difference between the two 

models’ predictions.10 In cases with uncertainty we therefore err on the side of picking high 

values for driving costs and low values for transit costs. For example, we assume that drivers 

account for all vehicle operating costs (gas, maintenance, and tires) rather than only gas costs, 

and we assume that transit riders are risk-neutral with respect to waiting time for the bus or 

train (i.e., they only care about expected waiting time, not the variance in waiting time). 

In some cases the parameter choices do not have clear implications for the relative 

cost of driving versus transit. Specific examples include the delay multiplier (which applies to 

both driving delays and transit wait and access time), the wage multiplier, and trip length. We 

test the sensitivity of our conclusions to reasonable variations in these parameters. We also 

consider adding a mode-specific error term to the utility function and – in an extreme case 

of mode-specific preferences – include a group of riders who are “captive” to transit because 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
calculation from US Census). Thus 3.3 million of the 12.8 million Los Angeles metropolitan area residents 
(26%) lived within two miles of a rail line. 
10 As the average cost gap between driving and transit increases, commuters need more extreme shocks in 
order to choose transit. This means that transit commuters either need to live very close to transit or need to 
experience more severe driving delays. The latter factor increases their marginal impact on congestion. 
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they do not own cars. In all cases the model with drive time heterogeneity predicts 

qualitatively larger congestion impacts from ceasing transit than the model with 

homogeneous drive times. Nevertheless, the magnitudes vary substantially. For example, the 

predicted congestion impacts from the heterogeneous model are 3.4 times larger than the 

homogeneous model if we reduce the delay multiplier from c = 1.8 to c = 1.3, but they are 

7.7 times larger if we increase the delay multiplier to c = 2.3. There is also some sensitivity to 

trip length, the wage multiplier, or the addition of mode-specific error term (see Appendix 

A2). Augmenting the model with a group of commuters who do not own cars and thus 

always take the bus attenuates the overall effect of ceasing transit service but has little impact 

on the relative magnitudes of the homogeneous and heterogeneous models’ predictions (the 

latter is 6.1 times larger than the former). Incorporating the possibility that access times are 

lower when delays are higher (i.e., when transit lines are located in dense, congested areas) 

slightly increases the predicted effect of ceasing transit service, and incorporating the 

possibility that lower-income households locate near transit lines modestly decreases it (see 

Appendix A2). Thus, while our model unambiguously predicts much larger congestion 

impacts from ceasing transit service than the previous literature, it does not identify exact 

magnitudes. For this we turn to empirical estimates. 

4. REGRESSION DISCONTINUITY ESTIMATES 

On October 14, 2003, Los Angeles County MTA workers went on strike, shutting 

down the entire transit system for 35 days. We use this abrupt halt in service to estimate the 

effects of transit provision on traffic congestion. To do so we implement an RD design with 

the date as the running variable and October 14 as the discontinuity threshold. This design is 

similar in principle to the RD designs implemented by Davis (2008), Auffhammer and 

Kellogg (2011), Chen and Whalley (2012), and Bento et al. (2012). 

4.1 Institutional Background 

The Los Angeles County MTA provides heavy rail (subway), light rail, and bus service 

for approximately 10 million people in a 1,400 square mile service area. The MTA service 

area includes most incorporated areas in Los Angeles County; the largest populated area that 

is not served by the MTA is the area east of I-605 (basically the area from El Monte to 

Pomona). In 2003 it operated one subway line (the Red Line), two light rail lines (the Blue 

and Green Lines), and dozens of bus lines.11 The bus lines included five “Metro Rapid” lines 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 A third light rail line, the Gold Line, began operation three months before the strike, but it had not attracted 
significant ridership by the time of the strike. 
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featuring frequent service, limited stops, and traffic signal preemption (the number of Metro 

Rapid lines has since increased). The busiest Metro Rapid line – the Rapid 720 – runs down 

Wilshire Boulevard and carries more passengers than the Metro Green light rail line. The 

average number of weekday passenger boardings was 200,000 on all three rail lines and 1.1 

million on all bus lines. While the MTA is by far the largest transit provider in Los Angeles 

County, some municipalities complement MTA service with their own bus lines, primarily to 

fill gaps in local intra-municipality service. Metrolink commuter rail service is also operated 

independently of the MTA and serves a much larger geographic area (the majority of its 

track lies outside Los Angeles County). Overall, annual transit usage in the Los Angeles area 

is very close to the national urban area average (244 miles travelled per capita in Los Angeles 

versus 252 miles travelled per capita nationwide; Schrank, Lomax, and Eisele 2011). 

Private automobiles account for over 98% of passenger miles traveled in the Los 

Angeles metropolitan area. Fifty-three percent of vehicle miles traveled (VMT) occur on 

freeways, with the remainder on city streets. Congestion levels in Los Angeles average 0.34 

minutes of delay per VMT (peak and off-peak), which is higher than the national urban area 

average of 0.21 minutes per VMT but closer to the average level in other large urban areas of 

0.28 minutes per VMT (all figures are from Schrank, Lomax, and Eisele 2011).12 The 

backbone of the Los Angeles freeway network contains three freeways running northwest-

to-southeast (I-5, US-101, and I-405), two freeways running east-west (I-10 and I-105), and 

two freeways running north-south (I-110 and I-710). Several smaller state freeways (SR-2, 

SR-60, SR-91, and SR-170) supplement these primary freeways. Ramp meters regulate traffic 

flows at most freeway entrances, and many freeways contain carpool lanes. Figure 1 covers 

the MTA service area and shows the major Los Angeles highways and MTA rail lines. 

The 2003 strike was rooted in a disagreement with MTA mechanics over contributions 

to a health care fund. The mechanics had worked without a contract for over one year 

before striking on October 14. The strike’s exact timing was exogenous in that it occurred 

on the first business day following the expiration of a 60-day court-ordered injunction on 

striking. MTA drivers, clerks, and supervisors honored the mechanics’ picket line, shutting 

down the entire system (Streeter and Bernstein 2003). A small number of contract-operated 

MTA bus lines continued service, and the MTA contracted a “Red Line Special” bus service 

to duplicate part of the Red Line subway route. Metrolink also continued scheduled 

commuter rail service. However, these combined services carried an insignificant fraction of 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 Other large urban areas include Atlanta, Boston, Chicago, Dallas-Fort Worth, Detroit, Houston, Miami, 
Philadelphia, Phoenix, San Diego, San Francisco-Oakland, Seattle, and Washington, DC. We exclude New 
York-Newark from this category because of its unique attributes, particularly with respect to transit use. 
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total MTA riders. Anecdotal evidence suggested that congestion increased substantially 

during the strike (Rubin 2003), and this was later confirmed in data analyses.13 The strike 

continued until November 18, at which point service was gradually resumed over the 

following week (Streeter, Bernstein, and Liu 2003). 

4.2 Data 

The data for our study come from the Caltrans Performance Measurement System 

(PeMS). All major divided freeways in California contain embedded loop detectors that 

continually measure the number of vehicles crossing the detector and the average time that 

each vehicle spends over the detector. Using these data, PeMS constructs hourly measures of 

vehicle flows and average vehicle speed for each detector. The average spacing between loop 

detectors is 0.6 miles along the freeways in our sample. 

The primary outcome is average delay, measured in minutes per mile. We assume a 

free-flow speed of 60 mph on freeways (Schrank and Lomax 2003) and calculate delay as 

(60/speed – 1), with a lower bound of 0. For example, a speed of 40 mph corresponds to a 

delay of 0.5 minutes per mile. Our results are robust to alternative values for free-flow speed 

(e.g., 65 mph or 55 mph) or to using average speed itself as the dependent variable. 

We focus on weekday peak hours since this is when congestion occurs. We define 

peak hours as hours during which the average speed on Los Angeles freeways consistently 

fell below 60 mph during the pre-strike period. Under this definition, the morning peak lasts 

from 7 a.m. to 10 a.m., and the evening peak from 2 p.m. to 8 p.m. We prefer a broad 

definition of peak hours because the strike lengthens the morning and evening commute 

periods. Shortening the peak period increases the average level of congestion and the 

magnitude of our estimates. We exclude weekends and holidays from our data set, and we 

drop observations that correspond to periods when a detector is out of service.14 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 The Los Angeles Department of Transportation reported that the number of cars and trucks on the road 
increased 4% during the strike (Bernstein, Pierson, and Hernandez 2003). Lo and Hall (2006) analyzed average 
traffic speeds from 7:00 a.m. to 8:00 a.m. and focused on three highways paralleling MTA rail lines (US-101, I-
105, and I-110). Doing a simple before-and-after comparison, they found that average traffic speeds declined 
between 0 and 37% on these highway segments. In contrast to Lo and Hall, we analyze all loop detectors on all 
major Los Angeles highways during all peak hours. We employ a regression discontinuity design, which turns 
out to be important for achieving identification in this context. If we replicate Lo and Hall’s before-and-after 
design on “control” freeways in neighboring counties, we find that peak-period delays increased 32.3% (t = 7.0) 
during the strike. These highways were too far from Los Angeles County to be affected by the strike, so 
seasonal trends or other unobserved factors must be driving the observed increase. Estimating the RD design 
on the same control freeways generates estimates that are much smaller (e.g., 11.7%) and statistically 
insignificant (see Section 4.5). 
14 When a detector is out of service, PeMS imputes flows and speed using historical data for the same detector. 
The imputed data cannot reveal changes over time and are thus useless to us. 
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Table 3 reports summary statistics for our data set over a 200-day window containing 

the strike. Each observation is a detector-by-hour. The first two columns report unweighted 

means and standard deviations, and the last two columns report VMT-weighted means and 

standard deviations. For average speed, average delay, and share of time occupied, the VMT 

weight equals the length of highway covered by a detector multiplied by the average pre-

strike traffic flow across the detector.15 

The average highway is 3.2 lanes wide and carries approximately 4,400 vehicles per 

hour (in each direction). Average speed is 52.8 mph when the strike is not in effect and 

drops to 48.3 mph during the strike; average delays increase accordingly. Peak vehicle flows 

are 1% lower during the strike, in part because increased congestion reduces roadway 

capacity. Detectors are occupied by vehicles 11% of the time outside the strike and 12.5% of 

the time during the strike. The number of detectors changes slightly over time because 

detectors go in and out of service. We include detector fixed effects in our specifications to 

ensure that changes in the composition of detectors in service do not bias our estimates. 

4.3 Regression Discontinuity (RD) Specification 

We use an RD design to estimate the effects of the transit strike. Specifically, we 

estimate the equation: 

 

In this equation yit is the average delay (in minutes per mile) for detector i during hour 

t, strikeit is a binary variable equal to unity when the strike is in effect and zero otherwise, and 

dateit is the date measured in days from the beginning of the strike. Identification in the RD 

model comes from assuming that the underlying, potentially endogenous relationship 

between εit and the date is eliminated by the flexible function f(.). In particular, the 

relationship between εit and the date must not change discontinuously on or near the date on 

which the strike begins. The RD is a sharp RD in that the running variable dateit completely 

determines strikeit. We set the RD threshold at the beginning of the strike rather than the end 

of the strike because service is restored gradually when the strike ends. There is thus no 

sharp change in the “treatment” when the strike ends. 

To estimate this model we follow Imbens and Lemieux (2008). With dateit normalized 

to be zero on the day the strike begins, we estimate local linear regressions of the form: 

 

 (2) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 For lanes and total flow, the weight equals the length of freeway covered by a detector, and for average share 
of time occupied the weight equals the length of freeway covered by a detector times the number of lanes. 

yit = ↵+ � strikeit + f(dateit) + "it
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In this specification, the function f(dateit) is specified as !1·dateit + !2·dateit·strikeit (note 

that both dateit and strikeit vary only by date). The terms dateit and dateit·strikeit should absorb 

any smooth relationship between the date and εit in the days surrounding the beginning of 

the strike. If the RD assumption is valid (i.e., εit does not change discontinuously when the 

strike begins) our estimate of β, the coefficient of interest, will be unbiased even without the 

controls Xit. However, we include several variables in Xit to increase our estimates’ precision. 

These additional controls include day-of-week indicators and detector fixed effects.16 

The local linear regression estimates β at the time the strike begins, or at dateit = 0. As a 

kernel estimator, it requires a kernel function and a bandwidth. We specify a uniform kernel 

(Imbens and Lemieux 2008) and use a bandwidth of 28 days on each side of the strike 

threshold in our base specification. The strike began on October 14, 2003, so the sample 

includes dates between September 16 and November 10 (excluding all weekends and 

holidays). Since our identification strategy only attempts to estimate β at dateit = 0 (when the 

strike begins) no additional dates beyond the 28 day bandwidth surrounding October 14 

enter the sample. In alternative specifications we use varying bandwidths and find similar 

results. In all cases we weight each detector by pre-strike VMT. In practice this means each 

observation is weighted by ωi, which equals the length of highway covered by detector i 

multiplied by the average traffic flow across detector i in the pre-strike period. Unweighted 

regressions generate qualitatively similar results. 

Statistical inference is complicated by the fact that εit is correlated both over time and 

across detectors. It is thus impossible to construct a single set of clusters in which 

observations in different clusters are independent of each other. We address this problem by 

clustering along both the day and the detector dimensions, as suggested in Cameron, 

Gelbach, and Miller (2011). The resulting standard errors are robust both to within-day and 

within-detector serial correlation. 

4.4 RD Results 

Figure 2 plots the average delay by week across all major Los Angeles freeways for a 

28-week window containing the strike. Each point is a VMT-weighted average of delays 

during peak periods across all detectors. Some weeks are missing one or more weekdays due 

to holidays. To adjust for this we plot the residuals from a regression of average delay on 

day-of-week indicators rather than plotting the raw average delay. The two dashed lines in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 Dropping Xit increases the standard errors somewhat but has little impact on the estimates of β. 
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the figure indicate the beginning and the end of the strike. Delays average around 0.4 

minutes per mile in the 12 weeks leading up to the strike and then jump discontinuously to 

0.6 minutes per mile during the strike. Average delay increases as the strike continues, 

suggesting that the strike’s impacts are not confined to the initial week of the strike. Delays 

fall following the strike but take several weeks to reach pre-strike levels. There are several 

reasons for this gradual decline. First, service is slowly phased back in over the first week 

following the strike. Second, the weeks around Thanksgiving (which occurs two weeks after 

the strike ends) tend to have higher-than-average delays (see Section 4.5). Finally, it may take 

commuters some time to readjust to their original travel patterns. The outlier at week 24 is 

the week containing New Year’s Day. 

Figure 3 plots the average delay by week for freeways that parallel major transit lines. 

The four busiest transit lines in 2003 were the Red Line (99,000 daily boardings), the Blue 

Line (67,000 daily boardings), the Green Line (32,000 daily boardings), and the Metro Rapid 

720 bus line (45,000 daily boardings). Panels A and B in Figure 3 plot the average delay on 

US 101 and Interstate 105. US 101 parallels the Red Line subway, and Interstate 105 

contains the Green Line on its median. In both cases there is a striking and sustained 

increase in average delay after the strike begins. Panels C and D plot average delay on 

Interstates 110 and 710 and on Interstate 10. Interstates 110 and 710 parallel the Blue Line, 

though both of them lie 2 to 4 miles away from the line itself. Interstate 10 parallels the 

Metro Rapid 720 bus line. In both panels there is a notable increase in average delay after the 

strike begins, though it is less dramatic than on US 101 or Interstate 105. 

Table 4 presents the regression analogs of Figures 2 and 3. Each column reports 

results from a separate regression. The first column estimates Equation (2) on a sample that 

includes all major Los Angeles freeways. The average delay increases by 0.19 minutes per 

mile (t = 4.7), or 47% of the pre-strike average delay. The second column reports results for 

US 101. Average delay increases by 0.33 minutes per mile (t = 4.4), or 90% of the pre-strike 

average. Columns (3), (4), and (5) report results for Interstate 105, Interstates 110 and 710, 

and Interstate 10 respectively. Average delay increases between 53% and 81% when the 

strike begins, and the coefficients are significant in all three columns. Column (6) reports 

results for all major Los Angeles freeways that do not parallel a major transit line. Average 

delay increases by 0.13 minutes per mile (29%) on these freeways when the strike begins. 

The increase is statistically significant (t = 3.0), but it is more modest than the increases 

observed on freeways paralleling major transit lines. 

16



!

!

Table 5 presents regression estimates for the a.m. peak period only. Column (1) 

reports results for all major Los Angeles freeways. Average delay increases by 0.31 minutes 

per mile (67%) when the strike begins (t = 4.2). Columns (2) through (5) report a.m. peak 

period results for freeways that parallel major transit lines. Morning delays increase 123% 

and 106% on freeways that parallel the Red Line and Green Line respectively. They increase 

39% on freeways paralleling the Blue Line and 65% on the freeway paralleling the Rapid 720 

bus line. Morning delays on freeways not paralleling major transit lines, reported in Column 

(6), increase 56%. All estimates in Table 5 are statistically significant. 

Table 6 reports analogous estimates for the p.m. peak period. Average delay increases 

0.16 minutes per mile (41%) across all major freeways (t = 3.9). Delays are again 

concentrated on freeways that parallel major transit lines. Average delay on these highways, 

reported in Columns (2) through (5), increases between 66% and 78%. The coefficients are 

smaller in magnitude than during the a.m. peak period. This occurs in part because the p.m. 

peak period is longer, with lower average delay. Transit may also be a poorer substitute for 

driving during evening   because some trips involve returning late at night, when trains and 

buses run less frequently. The increase in average delay on freeways that do not parallel 

major transit lines, reported in Column (6), is statistically insignificant. 

Table 7 presents regressions measuring the strike’s effect on freeway occupancy. The 

dependent variable in these regressions is the share of time that a detector is occupied. This 

share increases with the density of cars on the roadway. If cars were placed bumper-to-

bumper, the share of time occupied would be 100%. If the average space between cars were 

equal to the average length of a car, the share of time occupied would be 50%. The first 

column reports results for all major Los Angeles freeways during peak hours. The share of 

time occupied increases 1.3 percentage points (t = 4.1), or 12% of the pre-strike level. 

Columns (2) through (5) report larger increases of 1.6 to 2.3 percentage points on freeways 

paralleling major transit lines. The increase in share of time occupied on other freeways, 

reported in Column (6), is 0.8 percentage points (t = 2.5). 

A 12% increase in the share of time occupied does not imply that the total number of 

vehicles traveling on freeways increased 12%. This distinction arises because the share of 

time occupied is a function of both the number of vehicles on the freeway and the speed at 

which they travel. If the density of vehicles were homogeneous over time, then speed would 

not affect the share of time occupied; a decrease in speed would have the same 

proportionate impact on the time a vehicle takes to cross the detector and the time it takes 

for the next vehicle to reach the detector. However, the density of vehicles is heterogeneous 
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over time, and the share of time occupied is a weighted average of different vehicle densities, 

with weights inversely proportional to speed.17 A 1% increase in vehicles thus increases the 

share of time occupied by more than 1% because it both increases vehicle density and 

increases the relative weight placed on higher levels of density (recall that a vehicle’s marginal 

effect on congestion is strongly increasing in average congestion). The increase in share of 

time occupied will be particularly high if, as predicted by our model, the increase in vehicles 

is concentrated among times and freeways with the highest vehicle densities. 

Table 8 presents estimates of the strike’s effect on peak-hour vehicle flows. The 

dependent variable is the hourly traffic flow per lane. The first column reports results for all 

major Los Angeles freeways. Vehicle flows fall by 31 cars per hour (t = 3.2) during peak 

hours, or 2.2% of pre-strike levels. The effects are particularly strong on the freeways 

paralleling the Red Line and the Rapid 720 (Columns (2) and (5)), but statistically 

insignificant on freeways paralleling the Green and Blue lines (Columns (3) and (4)). It may 

seem counterintuitive that vehicle flows decrease when transit shuts down, but this occurs 

because traffic throughput decreases as congestion increases (Small and Verhoef 2007). Thus, 

while the density of vehicles on the freeways increases, the number of vehicles crossing a 

specific point per hour decreases. 

Since peak vehicle flows decrease, it is likely that queues spill into off-peak periods. 

Figure 4 confirms this prediction. Each panel plots the change in vehicle flows by hour of 

day (shaded area) for a given freeway and superimposes the average congestion level by hour 

of day during the strike (dashed line). The bimodal peaks in the dashed lines represent the 

morning and evening rush hours. On all freeways, vehicle flows decrease (the change is 

negative) during periods of high congestion. On US 101 (Panel A) some drivers leave earlier 

in the morning to avoid delays, and some return later in the evening, either purposely or 

because they are caught in congestion. A similar pattern emerges on Interstate 10 (Panel D) 

but without the early morning departures. On Interstates 105, 110, and 710 (Panels B and C), 

there is some evidence of early morning departures. On these freeways morning queues spill 

into the lunchtime hours, and afternoon queues spill into evening hours. The time-shifted 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 Consider a set of vehicle platoons of heterogeneous density x crossing detector i. The density measure x runs 
from 0 (a platoon with no vehicles) to 1 (a platoon that is bumper-to-bumper). Let f(x) represent the frequency 
at which platoons of density x occupy detector i. The average share of time occupied for detector i is 

!"(!)!"!
! . However, f(x) = (minutes taken for platoons of density x to cross detector i )/60 minutes 

= [(length of platoons of density x in miles)/(speed of platoons of density x in miles per minute)]/60 minutes 
= (length of platoons of density x in miles)/[60*(speed of platoons of density x in miles per minute)]. The 
weighting function f(x) is thus inversely proportional to the speed at which platoons of density x travel. 
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departures and queue spillovers represent an additional potential welfare cost from the strike, 

though some of the time-shifted departures are off-peak transit riders that are now driving. 

The mixture of positive and negative changes in vehicle flows across different 

freeways and hours suggests that total vehicle flows change only modestly. If we estimate the 

regression in Column (1) of Table 8 using all hours of the day, we find a statistically 

insignificant effect of the strike on total vehicle flows. The 95% confidence interval ranges 

from –13.7 to +9.8 vehicles per hour, or –1.3% to +1.0% of pre-strike levels (see Appendix 

Table A3). These results are consistent with our model, which predicts small changes in 

VMT but large changes in average delays, and with the fact that the MTA transports less 

than 2% of the region’s total passenger miles. However, we cannot rule out larger changes in 

VMT on arterial roads as freeways slow down. 

4.5 Falsification Tests 

Identification in the RD model comes from assuming that the conditional expectation 

E[εit | dateit] is smooth as dateit crosses the RD threshold. In our context this implies that 

factors affecting traffic congestion must not change sharply on or near October 14, 2003. 

The exact timing of the strike corresponded to the expiration of a 60-day court injunction 

and is thus exogenous. Nevertheless, it is important to rule out any possibility of seasonal 

effects influencing our results, particularly since the strike began the first day following a 

three-day weekend (Columbus Day weekend). 

We conduct two falsification tests to rule out bias in our RD design. First, we estimate 

the strike’s effect on traffic in neighboring Orange and Ventura counties. Portions of these 

counties lie within the Los Angeles Combined Statistical Area, but neither county lies within 

the Los Angeles MTA’s service area. We focus on sections of US 101 in Ventura County and 

I-5 and I-405 in Orange County that lie near the Los Angeles County border. However, to 

avoid spillover effects we exclude any portions of the freeways that are within 10 miles of 

the MTA service area. If the RD design is valid, then there should be no statistically 

significant effects on these “control” freeways. 

Figure 5 plots average delay by week on the control freeways. There is no significant 

break in average delay when the strike begins. Table 9 presents the regression analog of 

Figure 5. The first three columns report results from estimating Equation (2) on the control 

highways. Column (1) uses data from both morning and evening peak hours. Average delay 

increases by a statistically insignificant 0.02 minutes per mile (12% of the pre-strike level). 

Columns (2) and (3) present results from the morning and evening peak hours. In both 

columns the increase is statistically insignificant and less than 15% of pre-strike levels. 
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Our second falsification test examines delays on Los Angeles freeways one year after 

the strike. If seasonal effects drive our results, then similar discontinuities should appear one 

year later. We code a “placebo” strike that begins October 12, 2004 – the day after 

Columbus Day – and lasts 35 days (the length of the real strike). Since there was no strike 

during this period, we expect to find no significant effects if our research design is valid. 

Figure 6 plots average delays on major Los Angeles freeways during the weeks 

surrounding the 2004 placebo strike. There is no visually perceptible break at the beginning 

of the placebo strike. However, delays trend upwards in the weeks during and directly after 

the placebo strike, suggesting that traffic increases in the weeks approaching Thanksgiving 

even absent a strike. The fourth column of Table 9 presents the regression analog of Figure 

6. It estimates Equation (2) using data within 28 days of October 12, 2004. Average delay 

during peak hours increases a statistically insignificant 0.06 minutes per mile (14% of “pre-

strike” levels). Columns (5) and (6) estimate the same regression using only morning and 

evening peak period data respectively. In both cases the changes are statistically insignificant 

and represent less than 15% of “pre-strike” levels. 

5. DISCUSSION 

The RD results demonstrate that ceasing public transit service causes a marked 

increase in traffic delays. Our model calibration results predict a 0.189 minutes per mile 

(38%) increase in average delay (Table 2). In comparison, our preferred RD estimate 

(Column (1) of Table 4) finds that average delay increases 0.194 minutes per mile (47%). The 

observed absolute change is similar to our model’s prediction, but the proportional change is 

larger. The discrepancy in the proportional change occurs because we observe an average 

pre-strike delay of 0.41 minutes per mile instead of the reported Los Angeles average of 0.5 

minutes per mile. Part of this difference may arise because we only have data on freeway 

delays and do not observe delays on arterial roads (the 0.5 minutes per mile figure averages 

delays across freeways and arterial roads). Regardless, the RD estimates come much closer to 

matching the predictions of the model with heterogeneous driving delays than they do to 

matching the predictions of the model with homogeneous driving delays. 

5.1 Potential Congestion Relief Benefits 

How large are the peak-hour congestion relief benefits of public transit? We calculate 

these benefits under two scenarios. Our first scenario focuses on the reduction in freeway 

delays, which is all we can observe in our data. Los Angeles freeways carry approximately 36 

billion passenger miles of peak-hour travel each year (Parry and Small 2009; Schrank, Lomax, 
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and Eisele 2011). An increase of 0.19 minutes per mile in average delay therefore implies an 

aggregate increase of 114 million hours of delay per year. Valuing time at half the average 

hourly wage, or $10.30, we estimate an annual congestion relief benefit of $1.2 billion per 

year (U.S. Department of Labor 2004). However, motorists appear to place a higher value on 

time spent stuck in traffic than on time spent driving on uncongested roads. If we apply a 

delay multiplier of 1.8, the annual congestion relief benefit becomes $2.1 billion. These 

estimates represent a lower bound on the congestion relief benefits since they assume that 

transit has no effect on arterial road congestion. 

In the second scenario we assume that ceasing transit service increases delays on 

arterial roads by the same amount that it increases delays on freeways. This assumption may 

underestimate or overestimate transit’s true effects, but there are strong reasons to believe 

that congestion on arterial roads increased as much as or more than on freeways. In 

particular, ramp meters restrict vehicle flows onto Los Angeles freeways, but they are not 

used on arterial roads. Los Angeles freeways and roadways combined carry approximately 70 

billion passenger miles of peak-hour travel each year (Parry and Small 2009). A 0.19 minutes 

per mile increase in average delay thus increases aggregate delays by 222 million hours per 

year. The annual peak-hour congestion relief benefit is $2.3 billion when valuing time at half 

the hourly wage and $4.1 billion when applying a delay multiplier of 1.8. 

We can also express the congestion relief benefit in “per transit passenger mile” terms. 

The Los Angeles MTA carried approximately 1 billion passenger miles during peak hours in 

2003. A lower bound on the congestion relief benefit per peak-hour transit passenger mile is 

thus $1.20 ($1.2 billion/1 billion passenger miles), and reasonable estimates are as high as 

$4.10 per peak-hour transit passenger mile ($4.1 billion/1 billion passenger miles). These 

estimates are many times larger than those in the previous literature. For example, a 0.025 

minutes per mile increase in average delay – which is consistent with Parry and Small’s 

calculations – would imply a congestion relief benefit of between $0.16 to $0.54 per peak-

hour transit passenger mile.18 The congestion relief benefit is also much larger than estimates 

of consumer surplus. For example, the results in Table 2 from our choice model suggest 

average consumer surplus of $0.24/mile for peak rail passengers and $0.11/mile for peak 

bus passengers. The congestion relief benefits thus appear to be an order of magnitude 

larger than the private benefits to transit riders (at least for those riders that own cars). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 The $0.16 value applies if we limit delays to freeways only and apply no delay multiplier. The $0.54 value 
applies if we assume delays occur on all roads and apply a delay multiplier of 1.8. 
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A final external benefit that we consider is agglomeration externalities. Several studies 

suggest that increasing traffic speeds raises productivity by reducing “effective distance” 

(Prud’homme and Lee 1999; Graham 2007). These papers conclude that a 10% increase in 

commuting speed raises productivity by 2–3%. In our context this suggests that the transit 

system might increase productivity as much as $1.1–1.6 billion per year, or $1.10–1.60 per 

peak-hour passenger mile. 19 These benefits are larger than our consumer surplus estimates. 

5.2 Travel Demand Adjustments 

When faced with an extended shutdown, individuals may adapt to increased traffic 

congestion costs using strategies that are not feasible in the short-to-medium run. Indeed, 

the “fundamental law of road congestion” implies that in the long run individuals respond to 

increases in congestion by reducing travel. The impact on congestion of a long-term 

shutdown of public transit is likely different than the short-run effect of temporarily shutting 

down public transit. Potential adaptations that may not be available in the short run include 

increasing telecommuting, ride sharing, moving closer to work or school, work schedule 

changes, and leaving the metropolitan area entirely. The first three represent reductions in 

travel demand, while the last two represent a relocation of travel demand. 

To evaluate the potential reduction in travel demand due to increased congestion over 

a two- to five-year horizon, we draw on two literatures. The first links gas prices and travel 

demand, and the second links congestion charges and travel demand. Like an increase in gas 

prices or a congestion charge, an increase in road congestion raises the cost of travel. In all 

cases we expect travel demand to fall as a result. Small and van Dender (2007) estimate 

average long-run VMT elasticities with respect to fuel cost ranging from –0.11 to –0.22. 

Bento et al. (2009) estimate a “long-run” VMT elasticity with respect to gas prices of –0.34, 

and Knittel and Sandler (2011) estimate an average “two-year” elasticity of miles traveled 

with respect to gas prices of –0.26. We thus consider a “low” estimate of –0.15 for the long-

run VMT elasticity with respect to fuel cost (Small and van Dender’s estimate using 2006 gas 

prices) and a “high” estimate of –0.34 for the long-run VMT elasticity. These elasticities 

imply long-run VMT elasticities with respect to total travel costs (i.e., fuel costs plus time 

costs) of –0.67 in the “low” case and –1.5 in the “high” case.20 

We supplement these estimates with estimates of the long-run (5 year) travel demand 

response to the London congestion charge, which imply a VMT elasticity with respect to 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 We calculate this figure as: 395,000 Downtown LA workers × $115,000 average output per California worker 
× 12% speed increase × 2–3% productivity increase per 10% speed increase = $1.1–1.6 billion. Employment 
figures are from Thornberg and Haveman (2010), and output per worker is from Wolfram Alpha (2013). 
20 Delay-penalized time costs are approximately 240% higher than fuel costs. 
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total travel costs of –2.0 (Evans 2008, p. 5).21 The London congestion charge is particularly 

applicable because drivers can avoid it by arriving early and departing late (in contrast, 

drivers cannot avoid high fuel prices by rescheduling trips). We consider the congestion 

charge an “extreme” case because London has world-class metro and bus systems, which 

should make roadway travel demand more elastic. In contrast, our counterfactual simulation 

posits a Los Angeles metro area with no transit service at all. 

We solve for a long-run equilibrium using a VMT demand equation of !! = ! ⋅
!"#$!!"#$ + !"#$!!"#$ !!, with ! = 0.67 in the low case, ! = 1.5 in the high case, and ! = 

2.0 in the extreme case. The “supply” equation relating VMT and travel delays is given by 

the power function !"#$% = ! ⋅ !!!.! (see Section 3.3).22!
Panel A of Table 10 summarizes the travel demand response and corresponding long-

run congestion-relief effects under different long-run VMT elasticities. Under a long-run 

VMT elasticity with respect to total travel costs of –0.67, long-run travel demand falls 

between 2.5% (on lightly affected freeways) to 6.7% (on heavily affected freeways). The 

demand reduction is modest for two reasons. First, even on heavily affected freeways, the 

short-run increase in congestion costs represents only a 21% increase in total travel costs. 

Second, these are long-run equilibrium values, and in the long run congestion does not 

increase as much as in the short run. With these reductions the long-run effect on delays is 

between 56% of the short-run effect (on heavily affected freeways) to 63% of the short-run 

effect (on lightly affected freeways). If we increase the long-run VMT elasticity to –1.5 (the 

“high” case), then the long-run effect on delays ranges from 45% to 51% of the short-run 

effect. In the “extreme” case of a VMT elasticity of –2.0, the long-run effect is between 40% 

to 46% of the short-run effect. All of these calculations apply a delay multiplier of 1.8 and 

assume that transit’s effect on arterial congestion is similar to its effect on freeway 

congestion. Panel B applies no delay multiplier – which is necessary for calculating the lower 

bound on the congestion relief benefit (see Section 5.1) – and assumes no arterial congestion. 

The long-run effect on delays is now 85% of the short-run effect if ! = 0.67, 79% of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 Evans finds a long-run VMT elasticity with respect to total travel costs of –1.9 to –2.1 when using a value of 
time of £10.8/hr ($16.60/hr). 
22 We use the supply and demand equations to solve for equilibrium values at which Qd = Qs. Quantities are 
normalized to one during the period before the strike, and the parameters a and b are determined by the 
average delays observed prior to the strike. The shift in demand following the strike, which represents a change 
in b, is calculated by finding the value of b that satisfies the short-run equilibrium at which Qd = Qs during the 
strike. To solve for this equilibrium we apply short-run VMT elasticities of ! = 0.14 in the low case, ! = 0.37 in 
the high case, and ! = 0.50 in the extreme case (Small and van Dender 2007). A spreadsheet detailing these 
calculations is available from the author. 
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short-run effect if ! = 1.5, and 75% of the short-run effect if ! = 2.0.23 The lower bound on 

the long-run benefit is thus not much smaller than the lower bound on the short-run benefit. 

The last column of Table 10 reports the value of these potential long-run effects. Our 

estimates of short-run congestion relief effects range from $1.2 billion to $4.1 billion per 

year. Equivalent long-run effects range from $1.0 billion to $2.6 billion per year, and even in 

the “extreme” case of an elasticity of –2 they can reach $1.9 billion. These long-run figures 

include the loss in consumer welfare experienced by individuals who stop traveling, but this 

welfare loss is second order, ranging from $13 million to $120 million per year. While the 

long-run effects are smaller than the short-run effects, they remain economically significant. 

One possibility not fully captured in our calculations above is the potential for 

households to relocate to a different metropolitan area in response to increased traffic 

congestion. We are not aware of any studies estimating the effect of within-area travel costs 

on migration between metropolitan areas. Nevertheless, we can rule out a large impact on 

the long-run effects due to migration to other cities. If we assume that drivers on the heavily 

affected freeways are the most likely to leave the metropolitan area, then reducing the lower 

bound on our estimated effect by 20% requires an elasticity of migration with respect to 

travel costs of 8.7.24 An elasticity of that magnitude is very large – it is equivalent, for 

example, to assuming that a 10% increase in Los Angeles-area rents would reduce the Los 

Angeles population by 80%.25 The large elasticity is necessary in part because delay costs 

during commute hour represent a minority of annual household travel costs (particularly 

when applying no delay multiplier, as is the case with the lower-bound estimate). It is also 

necessary because migration among metropolitan areas does not eliminate congestion but 

rather reapportions it between areas. In our simulation we assume that households departing 

Los Angeles move to metropolitan areas with a level of congestion equal to the average 

across all 439 U.S. metropolitan areas. This implies that for every one hour of congestion 

eliminated in Los Angeles, approximately 15 minutes of congestion are generated in other 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
23 These figures apply to the average freeway. The analogous figures for lightly affected freeways are 87% and 
80% respectively. The analogous figures for heavily affected freeways are 81% and 74% respectively. The 
difference between short-run and long-run effects is smaller when there is no delay multiplier because the 
dollar value of the congestion increase becomes smaller as a share of total travel costs. 
24 Reducing the high end of our estimate effects by 20% requires an elasticity of migration with respect to travel 
costs of 2.8. A spreadsheet detailing these calculations is available from the author. 
25 The average rent in Los Angeles is approximately $14,400 per year ($1,200 per month), and we calculate that 
the average household spends about $7,200 per year in travel costs (travel time and fuel). The elasticity of 
migration with respect to rents should thus be twice as large as the elasticity of migration with respect to travel 
costs (17.4 versus 8.7). At an elasticity of 17.4, a 10% increase in rents causes 80% of the population to leave. 
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urban areas. The congestion relief in Los Angeles is thus partially offset by increased 

congestion elsewhere. 

In summation, it seems likely that the long-run congestion relief benefits of transit 

service are at least half the size of the short-run benefits. Reducing the long-run effects 

below 50% of the lower bound on the short-run effects requires very large travel cost 

elasticities. Furthermore, the calculations above ignore long-run behavioral responses that 

could increase congestion. Chief among these is the likelihood that some former transit 

riders without cars would purchase cars if the transit system were permanently shut down. 

5.3 Capital Investment 

Previous research has generally concluded that the costs of rail transit capital projects 

greatly exceed the potential congestion-relief benefits (Baum-Snow and Kahn 2005; Winston 

and Maheshri 2007).26 Are the estimates in this paper large enough to alter that conclusion?  

Table 11 estimates the costs and benefits of the Los Angeles rail system under several 

scenarios. The circa-2000 Los Angeles rail system cost $7.1 billion to construct (2003 dollars) 

and transported 85 million passengers in 2010 (48 million during peak hours). We assume 

that ridership increases linearly (as opposed to exponentially) at historical rates and reaches a 

maximum capacity of 175 million riders around 2060.27 We value the short-run congestion 

relief benefit at $2.50 per peak-hour transit passenger mile, which comes from assuming a 

value of time equal to half the median hourly wage, a modest delay multiplier of 1.4, and a 

congestion relief benefit on arterial roads that is half the benefit observed on freeways. We 

assume a high long-run VMT elasticity with respect to total travel costs of –1.5. 

Of course, the average benefit per peak-hour rail passenger mile is less than $2.50 

because some rail passengers are diverted from bus lines that are shut down when the rail 

system opens. If we replace the rail service parameters with typical bus service parameters in 

our choice model, we predict that a bus overlay of the existing rail system would attract 26% 

of the current ridership (assuming rail service ceased). We thus assume that 74% of rail 

passengers are incremental passengers attracted by the rail system. This assumption 

generates a capital cost per incremental rider that is somewhat higher than the estimated 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
26 One exception is Nelson et al. (2007), who estimate that the entire Washington, DC, transit system generates 
positive net benefits even after accounting for capital costs. However, 76% of the benefits in their study accrue 
in the form of consumer surplus among transit riders, which Nelson et al. note must be high by construction 
since their logit-based model imposes severe welfare costs for completely eliminating traveler options. 
27 Linear growth to 2060 implies an average growth rate of 1.5% per year and a doubling of core ridership in 40 
years. This represents slower ridership growth than that experienced by the San Francisco Bay Area Rapid 
Transit system (BART) over the past 35 years. BART opened its initial operating segment in 1972 and its core 
system in 1976. Core system ridership doubled in just 23 years, and from 1977 to 2012 it increased by an 
average of 2.0% per year. 
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capital cost per incremental rider for the Washington Metro system (Pickrell 1990).28 We 

apply a real discount rate of 5%, which lies at the upper end of discount rates used to 

evaluate highway infrastructure projects (U.S. Department of Transportation 2003). 

The first column of Table 11 presents estimates under these baseline assumptions. 

The present value of gross benefits is $13.7 billion and exceeds the costs by $6.6 billion. The 

subsequent columns test the robustness of this conclusion to variations in key parameters. 

The second column assumes annual ridership grows half as fast; the gross benefits fall to 

$11.8 billion but still exceed the costs by $4.8 billion. The third column assumes that a bus 

replacement of the rail system would attract much higher ridership than in the baseline 

scenario (50% of rail ridership). Gross benefits are $12.3 billion and exceed the costs by $5.2 

billion, in large part because the cost of operating additional buses to accommodate greater 

ridership offsets the reduction in benefits from incremental rail passengers. The last column 

increases the long-run VMT elasticity with respect to total travel costs to the “extreme” case 

of –2. Gross benefits are $12.7 billion and exceed the costs by $5.7 billion. Reducing the 

gross benefits to less than the costs requires a long-run VMT elasticity with respect to travel 

costs of –26.2 (equivalent to a VMT elasticity with respect to fuel costs of –5.9).29 This value 

lies far outside the range of estimates in the literature and is inconsistent with basic time-

series evidence on gas prices and VMT. The calculations in Table 11 do not account for the 

full range of benefits (e.g., reductions in air pollution, consumer surplus, agglomeration 

externalities, or construction firm profits) or costs (e.g., cost of public funds). Nevertheless, 

they indicate that capital investments in transit infrastructure may generate substantial 

positive net benefits – a finding that has previously had little empirical support. 

5.4 Limitations 

Our analysis presents strong evidence that transit systems play an important role in 

reducing peak-hour congestion. Nevertheless, several limitations are worth noting. First, it is 

difficult to anticipate what types of long-run adaptations might occur if the transit system 

were shut down in perpetuity. Section 5.2 discusses potential travel demand elasticities over a 

two- to five-year horizon, but no fuel price change is truly permanent, and even the London 

congestion charge has been in effect for only a decade. In fact, the ease of switching to 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28 Pickrell (1990) estimates that the Washington Metro attracted 281,000 new weekday passengers at a capital 
cost of $11.5 billion, or $40.9 million per weekday rider. We estimate that Los Angeles attracted 148,000 new 
weekday passengers at a capital cost of $7.1 billion, or $48.0 million per weekday rider (all costs converted to 
1998 dollars). 
29 Consistent with the literature linking gas prices and VMT, we assume in this calculation that the short-run 
VMT elasticity with respect to gas prices is 20% of the long-run VMT elasticity, but we cap the maximum value 
of the short-run elasticity at –1. 
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transit in London may prevent more costly long-run adaptations like relocating employment 

centers or reorganizing workplaces. 

To consider potential long-run adaptations, note that rail lines and busways deliver 

substantial transport capacity. During their peak hours, the Metro Red and Blue lines carry as 

many passengers as congested 12- and 8-lane freeways respectively, at substantially lower 

capital costs.30 In the long run, this capacity determines urban densities and work patterns; 

employment can cluster in the downtown area, and firms can coordinate on business hours. 

Valuing the welfare gains of coordination in space or time is beyond the scope of this paper, 

but back-of-the-envelope calculations suggest that long-run adaptations that reduce spatial 

density or temporal coordination are feasible but costly. For example, MTA rail and bus lines 

currently transport approximately 100,000 commuters daily into downtown Los Angeles. 

Relocating these workers to sparse outlying areas with much lower employment density 

could help alleviate downtown congestion without infrastructure investment. However, the 

agglomeration literature suggests that such a move would reduce total productivity by about 

$1 billion per year.31 Alternatively, firms might change employment hours to spread the 

commute over a longer rush hour. Capacity constraints on parallel freeways limit temporal 

substitution however. Transporting most of the Red Line commuters on US 101, for 

example, would require a rush hour beginning as early as 2 am. We cannot estimate the 

welfare costs of these adaptations beyond concluding that they would likely be significant. 

A second limitation is that, because the entire system shuts down, the empirical results 

do not reveal the effects of marginal changes in the transit network, such as a subway line 

extension. Likewise they cannot reveal the optimal mix of service (e.g., whether a particular 

route should be served by light rail or bus rapid transit). A final caveat is that all of the policy 

discussion assumes that the first-best solution of congestion pricing is politically infeasible. 

With optimal congestion pricing there would be no congestion-relief externality, and the 

benefits of transit service could be evaluated on more conventional grounds. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 Interstate 105 parallels the Green Line and was built during the same period. It cost $127 million per mile 
(Reinhold 1993). In comparison the Metro Green and Blue lines cost $36 million and $40 million per mile 
respectively. A subterranean freeway paralleling the Red Line subway would be impractically expensive. 
31 Following Glaeser and Kahn (2004) we define the downtown as a 5-mile radius around the central business 
district. Moving firms from a downtown area to an area 15–25 miles away reduces the employment density of 
their environment by a factor of 10 to 20 (Glaeser and Kahn 2004, p. 2491). Combes et al. (2010) report an 
elasticity of total factor productivity (TFP) with respect to employment density of 0.035, implying that TFP 
falls 8 to 10 percent when moving firms out of the downtown area. Aggregated across 100,000 workers and an 
average gross domestic product of $115,000 per California worker (Wolfram Alpha 2013), the reduction in 
productivity is $0.9 billion to $1.2 billion per year (e.g., 100,000 workers × $115,000/worker × 8 percent = 
$0.92 billion). 
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6. CONCLUSION 

Using a simple choice model, we show that transit provision should have much larger 

impacts on traffic congestion than predicted by models that do not incorporate within-city 

heterogeneity in driving delays. Our regression discontinuity estimates of the effects of a 

transit strike confirm this prediction, and back-of-the-envelope calculations suggest that the 

congestion relief externality of a peak-hour transit passenger mile ranges from $1.20 to $4.10. 

Reasonable lower bounds on potential long-run benefits are at least half those values. 

Contrary to the conclusions in the existing transportation and urban economics literature, 

the congestion relief benefits alone may justify transit infrastructure investments. 

Both the model calibration and the regression discontinuity estimates apply specifically 

to the Los Angeles metropolitan area. The exact magnitudes of the effects are thus unlikely 

to generalize to other U.S. urban areas. Nevertheless, there are good reasons to believe that 

the qualitative effects of transit on congestion are similar in other large cities. Los Angeles 

per capita transit ridership and congestion levels are roughly equivalent to those in other 

large urban areas (244 annual transit passenger miles per capita versus 295, and 0.34 minutes 

of delay per VMT versus 0.28). The effects are less applicable to smaller urban areas (e.g., 

Buffalo, Fresno, Madison, or Omaha), where congestion levels are three to four times lower 

than in Los Angeles. At a minimum, however, the results establish the importance of transit 

in what many consider the prototypical car-centric city. 

The results also illustrate a more general point of substantive importance to public 

policy. In many cases it is logistically or politically infeasible to internalize externalities, and 

policymakers instead implement second-best policies that lower the cost of activities that 

mitigate externalities. In these cases, determining who will adopt the mitigating activities is 

critical in determining a policy’s effectiveness. If the mitigating activity is more attractive to 

individuals who generate greater externalities, then it will be more effective than a calculation 

using simple population averages would predict. There are numerous potential examples 

other than mass transit and congestion. For example, programs that encourage home 

weatherization should be most attractive to households with the highest energy costs. 

Hybrid and electric vehicle subsidies should be most appealing to drivers who average a high 

number of VMT per year. Vaccination against hepatitis B should be most attractive to 

individuals who engage in high-risk sexual activities and needle sharing. Exploring the policy 

significance of self-selection into mitigating activities in settings such as these may be a 

useful area of future research. 
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Figure 1: Los Angeles Freeways and Rail Lines (2003) 
 

 
Figure 2: Weekly Peak Hr. Delay on Major L.A. Freeways (7/14/03–1/30/04) 
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Figure 3: Weekly Peak Hr. Delay on Specific L.A. Freeways (7/14/03–1/30/04) 
     Panel A: Red Line Freeway (US-101)    Panel B: Green Line Freeway (I-105) 

      
Panel C: Blue Line Freeways (I-110 & I-710)      Panel D: Rapid 720 Freeway (I-10) 

      
Figure 4: Changes in Traffic Flows by Hour of Day on Specific L.A. Freeways 

     Panel A: Red Line Freeway (US-101)    Panel B: Green Line Freeway (I-105) 

      
Panel C: Blue Line Freeways (I-110 & I-710)      Panel D: Rapid 720 Freeway (I-10) 
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Figure 5: Weekly Peak Hr. Delay on Orange/Ventura County Freeways (7/14/03–1/30/04) 

 
 

Figure 6: Weekly Peak Hr. Delay on Major L.A. Freeways 1 Year Later (7/14/04–1/30/05) 
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Parameter Related variable Rail Bus Source (where applicable)
General Parameters
Trip Length m 7 miles 5 miles Parry and Small (2009)
Hourly Wage (avg) vi BLS (2004)
Hourly Wage (95% interval) vi BLS (2004)
Wage Multiplier for Value of  Time vi Parry and Small (2009)
Delay Multiplier c Parry and Small (2009)

Transit Travel Time and Costs
Transit Vehicle Speed (avg) sr , sb 23 mph 11 mph Parry and Small (2009)
Transit Vehicle Speed (95% interval) sr , sb 23 mph 8.8–11.6 mph
Avg Time Between Trains/Buses wr , wb 7 mins 8 mins Los Angeles County MTA
Walking Speed ar , ab

Adult Fare (per mile) pr , pb $0.12 $0.17 Los Angeles County MTA

Driving Travel Time and Costs
Free-flow Driving Speed sd 40 mph 35 mph Parry and Small (2009)
Actual Driving Speed (avg) wd 30 mph 27.1 mph Parry and Small (2009)
Actual Driving Speed (95% interval) wd 14 –40 mph 13.3–35 mph PeMS Data, Bing Maps
Access, Parking, and Egress Time ad

Operating Costs (per mile) pd AAA (2004)
Share Commuters with Free Parking pd

Parking Costs (per day) pd

Notes: The delay multiplier applies to time spent waiting for transit, walking, or delayed in traffic. For time
spent delayed in traffic, we calculate delay time as the difference between actual driving time and driving time
under free-flow conditions.

Table 1:  Parameter Values for Model Calibration

3 mins
$0.15
85%
$5.00

0.5

$21.60
$8.00–$65.50

1.8

2.5 mph
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Homogeneous 
Driving Speed

Heterogeneous 
Driving Speed

Outcomes
Avg Delay for Drivers 0.50 mins/mile 0.50 mins/mile

Avg Delay for Rail Passengers 0.50 mins/mile 3.19 mins/mile
    (if  they chose to drive)
Avg Delay for Bus Passengers 0.50 mins/mile 2.47 mins/mile
    (if  they chose to drive)
Effect of  Ceasing Transit on Average Delay 0.032 mins/mile 0.189 mins/mile

Avg Consumer Surplus for Rail Passengers $0.08/mile $0.24/mile
Avg Consumer Surplus for Bus Passengers $0.04/mile $0.11/mile

Calibration Parameters
Share of  Population within 2 miles of  Rail Line 51% 30%

Average Bus Line Spacing in Residential Areas 0.4 miles 0.5 miles
Notes: Average delay is chosen to match Parry and Small (2009). Calibration parameter
values are the values necessary to equate predicted ridership with observed ridership.

Table 2: Model Calibration Results

No Strike During Strike No Strike During Strike

Lanes 3.3 3.3 3.2 3.2
(1.4) (1.4) (1.5) (1.5)

Total Flow 4,619 4,604 4,401 4,355
(vehicles per hour) (2,602) (2,531) (2,730) (2,674)

Average Speed (mph) 53.3 49.3 52.8 48.3
(15.9) (17.4) (16.6) (17.9)

Delay Relative to 55 mph 0.35 0.52 0.37 0.55
(minutes per mile) (0.83) (1.05) (0.81) (1.01)

Delay Relative to 60 mph 0.39 0.57 0.41 0.61
(minutes per mile) (0.85) (1.07) (0.83) (1.04)

Delay Relative to 65 mph 0.43 0.62 0.45 0.66
(minutes per mile) (0.87) (1.09) (0.85) (1.05)

Average Share of  Time 0.101 0.115 0.110 0.125
Occupied (0.072) (0.082) (0.071) (0.080)

Detectors in Service 720 640 720 640

Sample Size 509,946 110,844 509,946 110,844

Table 3:  Summary Statistics

Notes: The observation is the detector-hour. Parentheses contain standard deviations. See text for
description of  weights.

VMT-Weighted StatisticsUnweighted Statistics
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Dependent Variable: Average Delay (in minutes per mile)

(1) (2) (3) (4) (5) (6)

Strike 0.194 0.332 0.218 0.190 0.357 0.125
(0.041) (0.076) (0.052) (0.051) (0.128) (0.042)

Date -0.004 -0.003 -0.002 -0.003 -0.005 -0.005
(0.002) (0.003) (0.002) (0.002) (0.004) (0.002)

Date*Strike 0.007 0.006 -0.001 0.007 0.012 0.007
(0.002) (0.003) (0.002) (0.003) (0.007) (0.002)

Average Delay Pre-Strike 0.409 0.369 0.264 0.357 0.600 0.434

Freeways All 101 105 110 & 710 10 Other

Parallel Transit Line Red Line Green Line Blue Line Rapid 720

Sample Size 178,549 15,854 31,058 19,152 15,357 97,128
Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered
by detector i)*(average pre-strike traffic flow over detector i). The observation is the detector-hour, and the sample is
limited to weekdays from 7-10 am and 2-8 pm within 28 days of the strike's beginning. Parentheses contain clustered
standard errors that are robust to within-day and within-detector serial correlation. All regressions include day-of-week
and detector fixed effects.

Table 4: Effect of  Strike on Delays During All Peak Hours
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Dependent Variable: Average Delay (in minutes per mile)

(1) (2) (3) (4) (5) (6)

Strike 0.314 0.482 0.283 0.189 0.619 0.258
(0.075) (0.148) (0.090) (0.073) (0.179) (0.079)

Date -0.003 -0.003 0.003 -0.002 -0.013 -0.003
(0.003) (0.005) (0.002) (0.004) (0.009) (0.004)

Date*Strike 0.000 -0.005 -0.012 0.008 0.010 0.001
(0.005) (0.007) (0.004) (0.006) (0.012) (0.005)

Average Delay Pre-Strike 0.472 0.392 0.268 0.485 0.953 0.464

Freeways All 101 105 110 & 710 10 Other

Parallel Transit Line Red Line Green Line Blue Line Rapid 720

Sample Size 58,380 5,210 10,136 6,214 5,074 31,746

Table 5: Effect of  Strike on Delays During AM Peak Hours

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered
by detector i)*(average pre-strike traffic flow over detector i). The observation is the detector-hour, and the sample is
limited to weekdays from 7-10 am within 28 days of the strike's beginning. Parentheses contain clustered standard
errors that are robust to within-day and within-detector serial correlation. All regressions include day-of-week and
detector fixed effects.
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Dependent Variable: Average Delay (in minutes per mile)

(1) (2) (3) (4) (5) (6)

Strike 0.157 0.266 0.213 0.197 0.279 0.085
(0.040) (0.064) (0.061) (0.056) (0.132) (0.049)

Date -0.005 -0.004 -0.005 -0.004 -0.004 -0.006
(0.002) (0.003) (0.002) (0.002) (0.005) (0.002)

Date*Strike 0.010 0.011 0.005 0.007 0.017 0.011
(0.002) (0.004) (0.002) (0.002) (0.008) (0.002)

Average Delay Pre-Strike 0.384 0.361 0.274 0.300 0.401 0.431

Freeways All 101 105 110 & 710 10 Other

Parallel Transit Line Red Line Green Line Blue Line Rapid 720

Sample Size 120,007 10,575 20,922 12,938 10,283 65,289

Table 6: Effect of  Strike on Delays During PM Peak Hours

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered
by detector i)*(average pre-strike traffic flow over detector i). The observation is the detector-hour, and the sample is
limited to weekdays from 2-8 pm within 28 days of the strike's beginning. Parentheses contain clustered standard
errors that are robust to within-day and within-detector serial correlation. All regressions include day-of-week and
detector fixed effects.
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Dependent Variable: Average Share of  Time Detector Is Occupied

(1) (2) (3) (4) (5) (6)

Strike 0.013 0.023 0.019 0.016 0.022 0.008
(0.003) (0.006) (0.004) (0.004) (0.009) (0.003)

Date 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Date*Strike 0.000 0.000 0.000 0.000 0.001 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Average Share of  Time Detector 0.112 0.121 0.097 0.115 0.129 0.110
     Is Occupied Pre-Strike
Freeways All 101 105 110 & 710 10 Other

Parallel Transit Line Red Line Green Line Blue Line Rapid 720

Sample Size 179,680 16,222 31,112 19,152 15,668 97,526

Table 7: Effect of  Strike on Freeway Occupancy

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered
by detector i)*(lanes at detector i). The observation is the detector-hour, and the sample is limited to weekdays from 7-
10 am and 2-8 pm within 28 days of the strike's beginning. Parentheses contain clustered standard errors that are robust
to within-day and within-detector serial correlation. All regressions include day-of-week and detector fixed effects.
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Dependent Variable: Hourly Traffic Flow per Lane

(1) (2) (3) (4) (5) (6)

Strike -31.3 -68.2 -9.4 -1.4 -61.1 -29.4
(9.7) (17.3) (11.7) (18.1) (19.6) (9.0)

Date 0.81 0.79 0.91 0.46 1.14 0.83
(0.40) (0.58) (0.62) (0.94) (0.88) (0.33)

Date*Strike -1.85 -2.50 -1.29 -2.46 -2.45 -1.53
(0.61) (0.85) (0.73) (1.07) (1.06) (0.60)

Average Hourly Flow Pre-Strike 1,399 1,576 1,349 1,403 1,455 1,353

Freeways All 101 105 110 & 710 10 Other

Parallel Transit Line Red Line Green Line Blue Line Rapid 720

Sample Size 179,680 16,222 31,112 19,152 15,668 97,526

Table 8: Effect of  Strike on Traffic Flows

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered
by detector i)*(lanes at detector i). The observation is the detector-hour, and the sample is limited to weekdays from 7-
10 am and 2-8 pm within 28 days of the strike's beginning. Parentheses contain clustered standard errors that are robust
to within-day and within-detector serial correlation. All regressions include day-of-week and detector fixed effects.

41



Dependent Variable: Average Delay (in minutes per mile)

Falsification Sample:
(1) (2) (3) (4) (5) (6)

Strike 0.024 0.025 0.026 0.060 0.082 0.045
(0.027) (0.037) (0.037) (0.042) (0.054) (0.064)

Date 0.000 -0.001 0.000 -0.002 -0.002 -0.003
(0.001) (0.003) (0.002) (0.002) (0.003) (0.002)

Date*Strike 0.004 0.000 0.006 0.005 0.002 0.007
(0.002) (0.003) (0.003) (0.003) (0.003) (0.004)

Average Delay Pre-Strike 0.205 0.170 0.219 0.433 0.539 0.386

Hours All Peak AM Peak PM Peak All Peak AM Peak PM Peak

Sample Size 13,149 4,296 8,853 177,572 59,532 118,034

Table 9: Effect of  Placebo Strikes on Delays

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered by
detector i)*(average pre-strike traffic flow over detector i). The observation is the detector-hour, and the sample is limited
to weekdays from 7-10 am and 2-8 pm within 28 days of the strike's beginning. Parentheses contain clustered standard
errors that are robust to within-day and within-detector serial correlation. All regressions include day-of-week and detector
fixed effects. In Columns (1)-(3) the strike variable is defined normally but the sample contains detectors in neighboring
counties not subject to the strike. In columns (4)-(6) the strike variable equals zero prior to October 12, 2004 and unity after
October 12, 2004.

Orange and Ventura Counties October/November 2004
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Travel Response Parameter

Implied generalized 
travel cost elasticity 

of  VMT

Lightly-
affected 
freeways

Average 
freeway

Heavily-
affected 
freeways

Lightly-
affected 
freeways

Average 
freeway

Heavily-
affected 
freeways

Panel A: Delay Multiplier = 1.8, Arterial Congestion
Fuel price elasticity of  VMT = -0.15 -0.67 -2.5% -3.9% -6.7% 63% 62% 56% $2.6 billion

Fuel price elasticity of  VMT = -0.34 -1.5 -3.3% -5.2% -8.9% 51% 49% 45% $2.1 billion

London Congestion Charge Response -2.0 -3.6% -5.7% -9.7% 46% 45% 40% $1.9 billion

Panel B: No Delay Multiplier, No Arterial Congestion
Fuel price elasticity of  VMT = -0.15 -0.67 -0.8% -1.5% -2.5% 87% 85% 81% $1 billion

Fuel price elasticity of  VMT = -0.34 -1.5 -1.3% -2.1% -3.7% 80% 79% 74% $1 billion

London Congestion Charge Response -2.0 -1.5% -2.5% -4.3% 77% 75% 70% $1 billion

Long-run equilibrium travel demand reduction Long-run effect as a % of  short-run effect
Table 10: Potential Long-run Effects

Notes: Panel A applies a delay multiplier of  1.8 to time spent in traffic and assumes an effect of  transit on arterial congestion that is similar to the estimated effect of  transit on 
freeway congestion. Panel B applies no delay multiplier and assumes transit has no effect on arterial congestion.

Long-run 
annual 

congestion 
relief  benefit
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Baseline
Low Ridership 

Growth
High Bus 
Ridership

"Extreme" 
VMT Elasticity

Fixed Parameters
2001 Ridership (Red, Green, Blue Lines) 69 million - - -
2010 Ridership (Red, Green, Blue Lines) 85 million - - -
Share of  Ridership that is Peak Hour 57% - - -
2010 Rail Operating Subsidy ($2003) $115 million - - -
Annual Real Wage Growth 1% - - -
Real Discount Rate 5% - - -
Short-run Congestion Relief  Benefit per Peak Mile $2.50 - - -
Varying Parameters
Annual Ridership Growth (to max of  175 million) 1.7 million 0.9 million - -
Share Riders Retained if  Replacing Rail with Bus 26% - 50% -
2010 Operating Subsidy if  Replacing Rail with Bus $126 million - $215 million -
VMT Elasticity wrt Total Travel Costs -1.5 - - -2.0
Long-run Congestion Relief  Benefit per Peak Mile $1.61 - - $1.50

Total Costs and Benefits
Capital Cost of  Rail System $7.1 billion $7.1 billion $7.1 billion $7.1 billion
Present Value of  Gross Benefits $13.7 billion $11.8 billion $12.3 billion $12.7 billion
Present Value of  Net Benefits $6.6 billion $4.8 billion $5.2 billion $5.7 billion

Table 11: Capital Investment Benefits

Notes: Cell entry of "-" indicates cell contains same value as baseline column. All dollar figures are expressed in 2003
dollars for comparability. Ridership figures and operating subsidies come from LACMTA reports. Real wage growth
comes from US Dept. of  Labor (2006), and real discount rate comes from US Dept. of  Transportation (2003).
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ONLINE APPENDIX (NOT FOR PRINT PUBLICATION) 

A1. MATHEMATICAL APPENDIX 

Distance to nearest bus line: Suppose that bus lines are placed in a grid pattern of 

width 2a, that the population is uniformly distributed across space, and that people cannot 

walk diagonally across city blocks. Further suppose that bus stops are placed at locations at 

which bus lines cross (this assumption simplifies notation but can be relaxed with minimal 

effect on our conclusions). Then accessing the nearest bus stop requires walking U miles 

north/south and V miles east/west, where U and V are independent and each is distributed 

uniform (0, a). The random variable X = U + V measures the distance to the nearest bus 

stop and follows a triangular distribution with density f(x) = x/a2 for x ϵ (0, a) and density 

f(x) = 2/a – x/a2 for x ϵ (a, 2a). 

Proof: 

First note that ! !, ! = !(!) ⋅ !(!) = !
!!. 

Thus for x ϵ (0, a), ! ! < ! = ! ! + ! < !  

= !
!! !" !"

!!!
!

!
! = !!

!!!. 

Therefore f(x) = x/a2 for x ϵ (0, a). 

By symmetry f(x) = 2/a – x/a2 for x ϵ (a, 2a). 

Transit rider consumer surplus: Without loss of generality, we consider only rail 

commuters. Let A denote the set of commuters that choose to take rail. Let CSi denote the 

consumer surplus from using rail for commuter i in the set A. In this context we calculate 

CSi as commuter i’s willingness to pay for the rail option minus the current fare; alternatively, 

it is the difference in generalized cost between the rail option and the driving option for 

commuter i. Rearranging the inequality for the heterogeneous driving delay scenario in 

Section 3.1, we have: 

!!! = !! ! !! + !!" − !!" − !! + !
!!
−!
!!

+! !! − !!  
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Note that the homogeneous driving delay scenario is a special case of the heterogeneous 

driving delay scenario in which wdi = wd for all commuters. We calculate average consumer surplus for 

rail commuters as: 

!!! = 1
!!

!"!
!∈!

 

where Nr denotes the number of rail commuters. Average consumer surplus per mile is 

!!!/!. 

We calculate consumer surplus for bus passengers in a similar manner but replace rail 

parameters with bus parameters. 

A2. SENSITIVITY OF MODEL CALIBRATION RESULTS 

In this section we test the sensitivity of our calibration results to alternative parameter 

choices. In our baseline calibration we choose parameter values that tend to lower the cost 

of transit and increase the cost of driving. These choices are conservative in that they lower 

the predicted effect of ceasing transit service under the heterogeneous driving delay model. 

However, in several cases the parameter choices do not have clear implications for the 

relative cost of driving versus transit. These cases include the delay multiplier (which applies 

to driving delays, transit wait, and transit access time), the wage multiplier, and trip length. 

Table A1 tests the sensitivity of our predictions to reasonable variations in these three 

parameters. Column (1) reproduces the predictions from our baseline calibration for 

comparison purposes. In the baseline calibration, the heterogeneous driving delay model 

predicts a congestion impact from ceasing transit service that is 5.9 times greater than the 

homogeneous driving delay model’s prediction. Columns (2) and (3) test sensitivity to 

variations in the delay multiplier, which is set at c = 1.8 in our baseline calibration (a delay 

multiplier of 1.8 implies that individuals value time spent waiting in traffic, waiting for transit, 

or walking to transit at 1.8 times their normal value of time). Under a high delay multiplier (c 

= 2.3), the ratio of the heterogeneous model prediction to the homogeneous model 

prediction increases to 7.7. Under a low delay multiplier (c = 1.3), the ratio decreases to 3.4. 

Columns (4) and (5) test sensitivity to variations in the value of time. Under a high value of 

time (60% of the average wage), the ratio of the two models’ predictions increases to 7.6. 

Under a low value of time (40% of the average wage), the ratio decreases to 4.1. Columns (6) 

and (7) test sensitivity to variations in trip length. Since long and short trips are less common 

than average-length trips, we calibrate the model in these two columns so that predicted 
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transit share is half the overall transit share. This reduces the predicted impact of ceasing 

transit service under either model (homogeneous or heterogeneous), but it has little impact 

on the ratio of the two predictions (which is the object of interest). On long trips (a 10-mile 

rail trip or a 7-mile bus trip), the ratio of the two predictions is 6.1. On short trips (a 5-mile 

rail trip or a 3-mile bus trip), the ratio of the two predictions is 3.6. 

Table A2 tests the sensitivity of our predictions to different assumptions about 

transportation alternatives and sorting behavior. Column (1) reproduces the predictions 

from our baseline calibration for comparison purposes. Column (2) introduces a mode-

specific error term to the utility function. The error term multiplies the value of time applied 

to the transit commute, on the assumption that some people find time spent walking or 

inside transit vehicles to be more or less enjoyable than time spent driving. The 

multiplicative error term ranges from about 0.6 to 1.6 and is positively correlated with transit 

access time, since it seems likely that people with an intrinsic preference for transit will 

choose to live closer to transit stops. The ratio of the heterogeneous model’s prediction to 

the homogeneous model’s prediction falls to 4.6, but the overall predicted effect on 

congestion remains high. Column (3) calibrates the homogeneous and heterogeneous models 

under the assumption that one-third of the bus riders are “captive” riders who do not own 

cars; this is an extreme case of mode-specific preferences in which some commuters will not 

choose to drive under any conditions. Under this assumption the predicted impact of ceasing 

transit service falls in both models because captive riders do not switch to driving. 

Nevertheless, the ratio of the two models’ predictions is nearly unchanged at 6.1. Column (4) 

calibrates the two models under the assumption that access time and driving delays are 

negatively correlated (i.e., people living far from transit experience fewer driving delays). This 

modification captures the possibility that denser areas have better transit access and more 

congestion. The ratio of the two predictions increases to 6.5. Column (5) calibrates the two 

models under the assumption that access time and value of time are positively correlated (i.e., 

wealthy neighborhoods are farther from transit). This modification captures the possibility 

that low-income individuals choose to live closer to transit. The ratio of the two predictions 

decreases to 4.6. Column (6) replaces the triangular distribution of bus access times with a 

smoother gamma distribution. The ratio of the two predictions decreases modestly to 5.4. 

Two patterns emerge from the sensitivity analyses in Tables A1 and A2. First, in all 

cases the heterogeneous driving delay model predicts a much greater increase in congestion 

from ceasing transit service than the homogeneous driving delay model. The minimum ratio 

between the two models’ predictions is 3.4, and the maximum ratio is 7.7. Second, despite 

47



!

!

the consistent qualitative finding that a model incorporating heterogeneous driving delays 

predicts much greater congestion impacts, the magnitude of the predictions varies 

substantially with different parameter values. Thus it is infeasible to make an accurate 

quantitative prediction about the effect of ceasing transit service without additional data or a 

natural experiment. 
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(1) (2) (3) (4) (5) (6) (7)
Parameter Modification: None High Delay Low Delay High Value Low Value Long Trip Short Trip

Multiplier Multiplier of  Time of  Time (Rail = 10 miles, (Rail = 5 miles,
(c = 2.3) (c = 1.3) (60% avg wage) (40% avg wage) Bus = 7 miles) Bus = 3 miles)

Outcomes
Effect of  Ceasing Transit on Average Delay 6.3% 6.4% 6.4% 6.3% 6.3% 3.1% 3.1%
     (Homogeneous Driving Delay Model)
Effect of  Ceasing Transit on Average Delay 37.1% 49.3% 21.5% 47.8% 25.8% 18.9% 11.2%
     (Heterogeneous Driving Delay Model)
Ratio of  Heterogeneous Model Effect 5.9 7.7 3.4 7.6 4.1 6.1 3.6
     to Homogeneous Model Effect

Calibration Parameters (Heterogeneous Model)
Share of  Population within 2 miles of  Rail Line 30% 30% 27% 32% 25% 15% 30%

Average Bus Line Spacing in Residential Areas 0.5 miles 0.5 miles 0.5 miles 0.3 miles 0.7 miles 0.6 miles 0.6 miles

Table A1: Model Calibration Results Under Different Parameter Values

Notes: Average delay is chosen to match Parry and Small (2009). Calibration parameter values are the values necessary to equate predicted ridership with observed ridership in
the model with heterogeneous driving delays. The effect of ceasing transit under the homogeneous model is smaller in columns (6) and (7) than other columns because
observed ridership for long/short trips is assumed to be half  the observed ridership for the average trip. 
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(1) (2) (3) (4) (5) (6)
Parameter Modification: None Mode-specific error 1/3 of  bus riders Access time and delays Access time and value Bus access time

in utility function are "captive"  negatively correlated  of  time positively distributed
correlated gamma

Outcomes
Effect of  Ceasing Transit on Average Delay 6.3% 6.1% 4.7% 6.3% 6.2% 6.2%
     (Homogeneous Driving Delay Model)
Effect of  Ceasing Transit on Average Delay 37.1% 28.2% 28.6% 41.0% 28.5% 33.7%
     (Heterogeneous Driving Delay Model)
Ratio of  Heterogeneous Model Effect 5.9 4.6 6.1 6.5 4.6 5.4
     to Homogeneous Model Effect

Calibration Parameters (Heterogeneous Model)
Share of  Population within 2 miles of  Rail Line 30% 9% 30% 28% 22% 30%

Average Bus Line Spacing in Residential Areas 0.5 miles 0.9 miles 0.5 miles 0.5 miles 0.7 miles 0.5 miles

Table A2: Model Calibration Results Under Different Parameter Values

Notes: Average delay is chosen to match Parry and Small (2009). Calibration parameter values are the values necessary to equate predicted ridership with observed ridership in the model with 
heterogeneous driving delays. The effect of  ceasing transit under the homogeneous model is smaller in column (2) than other columns because the "captive" riders do not switch to driving when transit 
service ceases.
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Dependent Variable: Hourly Traffic Flow per Lane

(1) (2) (3) (4) (5) (6)

Strike -1.9 -13.3 14.3 14.0 -11.1 -5.0
(6.0) (8.1) (7.3) (13.0) (9.5) (6.3)

Date 0.04 -0.16 0.09 -0.03 0.20 0.08
(0.22) (0.27) (0.44) (0.71) (0.47) (0.18)

Date*Strike -0.85 -1.10 -0.65 -1.15 -0.95 -0.71
(0.43) (0.51) (0.52) (0.81) (0.63) (0.47)

Average Hourly Flow Pre-Strike 1,016 1,133 990 1,004 1,059 987

Freeways All 101 105 110 & 710 10 Other

Parallel Transit Line Red Line Green Line Blue Line Rapid 720

Sample Size 463,848 41,819 80,290 49,433 40,673 251,633

Table A3: Effect of  Strike on Traffic Flows over Entire Day

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway covered
by detector i)×(average pre-strike traffic flow over detector i). The observation is the detector-hour, and the sample is
limited to weekdays within 28 days of the strike's beginning. Parentheses contain clustered standard errors that are
robust to within-day and within-detector serial correlation. All regressions include day-of-week and detector fixed
effects.
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