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Abstract

There is a widely-held view that as demand for travel goes up, this decreases
not only speed but also the capacity of the road system, a phenomenon known
as hypercongestion. We revisit this idea in the context of highway bottlenecks.
We propose an empirical test using an event study design to measure changes in
highway capacity at the onset of queue formation. We apply this test to three
highway bottlenecks in California for which detailed data on traffic flows and
vehicles speeds are available. We find no evidence of a reduction in highway
capacity at any of the three sites during periods of high demand. Across
sites and specifications we have sufficient statistical power to rule out even
small reductions in highway capacity. This lack of evidence of hypercongestion
stands in sharp contrast to most previous studies and informs core models in
urban and transportation economics.
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1 Introduction

The relationship between the number of vehicles on the road and the speed at which

they travel is fundamental to transportation and urban economics. To anyone who

has driven in traffic, it is clear that traffic congestion decreases speed. But there is

also a view that as demand for travel goes up, this decreases not only speed but also

the capacity of the road system, a phenomenon known as hypercongestion.

Our paper revisits this idea in the context of highway bottlenecks. We propose an

empirical test using an event study design to measure changes in highway capac-

ity at the onset of queue formation. Event study designs have become ubiquitous

in empirical microeconomics and finance (see, e.g. Duggan et al., 2016; Dobkin et

al., 2018; Freyaldenhoven et al., 2019), but they are novel in our context. As we

discuss later, event study designs have several advantages relative to the empirical

approaches used in the existing literature.

We apply our empirical test to three highway bottlenecks in California. For each

study site, we observe highly-detailed data on traffic flows and vehicle speeds at

several locations before and after the bottleneck. Although the three sites have

different features, all have bottlenecks that generate long queues during weekday

afternoons.

We find no evidence of hypercongestion at any of the three sites. Vehicle speeds

decrease sharply from above 50 miles-per-hour to below 20 miles-per-hour at the

onset of queueing. However, we find that the rate at which vehicles flow through the

bottleneck, measured in vehicles per five minutes, is essentially constant throughout

1



the period of queue formation. Results are similar across all three sites and a range of

alternative specifications, with no discernible reduction in highway capacity during

periods of high demand.

This lack of evidence of hypercongestion stands in sharp contrast to most previous

studies. Banks (1990, 1991); Hall and Agyemang-Duah (1991); Persaud et al. (1998);

Cassidy and Bertini (1999); Bertini and Malik (2004); Zhang and Levinson (2004);

Chung et al. (2007); Oh and Yeo (2012) all find evidence of “capacity drop”, “flow

breakdown”, or the “two capacity phenomenon” at bottlenecks, referring to a drop

in roadway capacity upon queue formation.

The absence of evidence of hypercongestion is not due to a lack of statistical precision.

Whereas many previous studies use data only from a single day or small handful of

days, our event study approach aggregates information from hundreds of days. Given

the modest fluctuations in observed flows during peak periods, this size of data

set yields sufficient statistical power to rule out even small reductions in highway

capacity. Throughout the analysis we report standard errors and 95% confidence

intervals and show that we can reject economically significant capacity reductions,

including those of the magnitudes suggested in the existing literature.

Our findings directly inform several core models and concepts in urban and trans-

portation economics. The bottleneck model is a canonical model in the field (Vickrey,

1969; Small, 1982; Arnott et al., 1990, 1993, 1994). In this model drivers face a trade-

off between time delays and schedule inflexibility and optimize their departure times

accordingly. The question of whether bottlenecks have variable or constant capacity

2



has important welfare and policy implications, but it is fundamentally an empirical

question, which our study answers.

We also discuss the policy implications of our results. Starting from an unregulated

equilibrium, marginal damages are clearly lower without hypercongestion. However,

at the social optimum there is less driving during peak times, so marginal damages

are lower and typically queueing is avoided altogether (see, e.g. Arnott et al., 1993).

Thus whether or not hypercongestion exists likely has minimal impact on the how

taxes are set in the optimal Pigouvian solution. Without hypercongestion the welfare

gains from optimal congestion pricing are smaller, however, as total social costs are

lower in the unregulated equilibrium.

Our paper is germane to a growing empirical literature on the formation of traffic

congestion. For example, Couture et al. (2018) develops an econometric methodology

for estimating city-level supply curves for trip travel, and constructs travel speed

indices for large U.S. cities. Yang et al. (forthcoming) uses variation from driving

restrictions to estimate the marginal external cost of traffic congestion in Beijing.1

Russo et al. (2019) uses public transportation strikes as an instrument for traffic

density in estimating the marginal external cost of traffic congestion in Rome.2 Akbar

and Duranton (2017) uses travel surveys and other data from Bogotá, Colombia to

1Beijing’s driving restrictions are based on the last digit of the license plate and only 2% of vehi-
cles have a license plate ending in “4”. Yang et al. (forthcoming) use this as an instrument for traffic
flows, finding that the marginal external cost of traffic congestion is $0.30 per vehicle-kilometer. In
their empirical analysis they focus on ordinary congestion, but highlight hypercongestion as a key
priority for future research.

2Public transportation strikes are common in Rome, and Russo et al (2019) use strikes as well
as hour-of-week fixed effects to instrument for traffic density. They estimate that the marginal
external cost of road congestion is $0.22 per vehicle-kilometer, with about one-fourth of these costs
borne by bus travelers.
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estimate the deadweight loss of traffic congestion.3

Before proceeding, we note two important caveats. First, our study focuses on high-

ways, not arterial street networks. Highways are a vital component of the road

network, accounting for the majority of vehicle miles traveled in the United States

(Lomax et al., 2018). Indeed, all of the transportation engineering papers that we cite

above focus on highways. Highway geometry, however, differs fundamentally from

arterial road geometry because highways lack conflicting cross traffic. Our results do

not speak to whether hypercongestion occurs on a dense street network with conflict-

ing directions of traffic. Second, our study focuses on standard bottlenecks in which

the queue does not obstruct other upstream routes. Particularly in dense urban

networks, a queue from a bottleneck on one route may sometimes spill over onto a

different route that does not traverse the bottleneck, blocking that route and creating

a “triggerneck” (Vickrey, 1969). Our results do not apply to triggernecks.

2 Background

2.1 Conventional Wisdom Regarding Hypercongestion

It is clear that traffic congestion reduces speed. But there is a widespread view

among transportation engineers and economists that as demand for travel goes up,

3Farther afield, there are also a number of studies by economists that examine the effect of
building highways on traffic congestion, suburbanization, and other outcomes (see, e.g. Baum-
Snow, 2007; Duranton and Turner, 2011). In other related work, Hanna et al. (2017) shows that
elimination of high-occupancy vehicle lanes in Jakarta worsened traffic and Kreindler (2018) uses
data from a smartphone app to study traffic congestion in Bangalore, India, finding at the city-level
an approximately linear relationship between traffic volume and travel time.
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this decreases not only speed but also the capacity of the road system. There are

two primary forms of hypercongestion, both involving bottlenecks.

In the first form of hypercongestion, there is a “spillover” from one bottleneck to

other routes. This occurs when the queue behind a bottleneck grows so long that

it blocks or impedes some other route. These “queue spillovers” or “triggerneck”

situations are particularly prevalent in dense urban networks, with gridlock as an

extreme example, but they can also occur on highways, for example when a queue

on a highway backs up far enough to block upstream exits. Several economic analyses

have examined hypercongestion in such contexts, often with an emphasis on dense

urban networks (see, e.g. Small and Chu, 2003; Arnott, 2013; Fosgerau and Small,

2013; Small, 2015). Arnott (2013), for example, proposes a “bathtub” model of

hypercongestion for downtown areas in which capacity decreases at high levels of

traffic density. As we previously noted, our analysis and results do not speak to this

type of hypercongestion.

In the second form of hypercongestion, the capacity of the road system decreases

at the onset of queue formation. Unlike the first form of hypercongestion, this

second form of hypercongestion does not require there to be multiple bottlenecks,

nor for there to be “spillovers” of any kind across routes. Instead, the idea is that

bottlenecks intrinsically have two different capacity levels, one when there is no

queue, and then another, lower capacity level, after a queue has formed. Accordingly,

the literature has sometimes referred to this form of hypercongestion as the “two

capacity phenomenon” or “capacity drop”. This decrease in capacity is in addition

to the standard externality caused by the lengthening of the queue, and the literature
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has generally been clear that this capacity drop refers to a change in traffic flows,

measured in vehicles per unit of time, crossing through the bottleneck.

This capacity drop feature of bottlenecks is viewed as firmly established in the trans-

portation engineering literature. For example, the first sentence of Jin et al. (2015)

reads, “Since the 1990s, the so-called two-capacity or capacity-drop phenomenon of

active bottlenecks, in which ‘maximum flow rates decrease when queues form’, has

been observed and verified at many bottleneck locations.” Yuan et al. (2015) ex-

plains “Traffic jams reduce the capacity of the road. This phenomenon is called the

capacity drop. Because of capacity drop, traffic delays increase once congestion sets

in.” Leclercq et al. (2016) writes, “Effective capacity is referred [to] in some papers

as the queue discharge rate. Experimental findings show that capacity drops are

often observed at merges even if downstream traffic conditions are in free-flow. The

magnitude of the capacity drops is mentioned to be between 10% and 30% of the

maximal observed flow.” And from Lamotte et al. (2017), “Indeed, most real-world

bottlenecks have reduced passing rates [i.e. capacity] for highly congested conditions.

This phenomenon is known in transportation economics as hypercongestion.”4

A growing economics literature explores the policy and welfare implications of the

capacity drop phenomenon. Most recently, it appears in a pair of innovative papers by

economist Jonathan Hall. These papers apply hypercongestion to a bottleneck model

4Relatedly, Sugiyama et al. (2008) and Tadaki et al. (2013) performed a pair of remarkable field
experiments in which college students drove vehicles around a circle in an outdoor area and indoor
baseball field, respectively. Varying the number of vehicles driving in the loop, the researchers
demonstrate a pronounced decrease in vehicle flows as vehicle density increases. While they inter-
pret this as evidence of low-speed, low-flow observations even without a bottleneck, an alternative
interpretation would be that the loop effectively simulates the experience of being permanently in
a queue, as the loop never empties into an uncongested “drain”.
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and show that highway pricing can generate a Pareto improvement when agents are

heterogeneous, even before redistributing toll revenues (Hall, 2018, forthcoming).

Motivated by both forms of hypercongestion (queue spillovers and capacity drop),

these papers use a model in which highway capacity drops by 10% or more once a

queue develops. For example, Hall (forthcoming), Table 5, reports welfare effects

of congestion pricing for capacity drops of 10%, 17.5%, and 25%. Central to these

analyses is the use of “Lexus Lanes”, i.e. a subset of lanes that are tolled while others

remain free. Pricing these lanes can increase capacity by eliminating queues, and the

remaining free lanes provide an option to inflexible, lower-income drivers.

Most papers attribute the capacity drop to lane-changing behavior. Before a queue

forms, motorists at a merge are better able to fill in gaps between vehicles and

use all available highway capacity. However, once a queue forms, vehicles must slow

down considerably or even come to a complete stop before merging. When a motorist

merges in after a previous vehicle, they often leave a gap between vehicles. If they are

not able to accelerate quickly to fill the gap, this space ends up being lost capacity.

In addition, when there is a queue motorists often perform what transportation

engineers refer to as a “destructive lane change”, which means they force their way

into the other lane while moving slowly, often leaving a gap in front of them.5

5Hall (2018) explains that once a queue forms, vehicles “need to change lanes” and that “when
traffic is heavy, doing so is difficult; there will typically be a vehicle that comes to a stop before
merging and, rather than waiting for a gap, will force its way over.” Similarly, Srivastava and
Geroliminis (2013) attributes the capacity drop to, “lane changing maneuvers, vehicles entering a
merge at slow speeds, and heterogeneous lane behavior”. Leclercq et al. (2016) explains, “The main
physical explanations for such a phenomenon are lower speeds for merging vehicles combined with
bounded acceleration, and the impacts of driver behaviors. In a nutshell, slower vehicles create voids
in front of them that locally reduce the available capacity and lead to temporal flow restrictions.”
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2.2 Empirical Studies of Capacity Drop

Table 1 summarizes the existing empirical literature on capacity drop at highway

bottlenecks. All 14 studies that we reviewed find evidence of a capacity drop. Es-

timates range as high as 16.3%, and the median capacity drop is about 10%. Hall

(2018) performs a similar review of this literature, reporting that 16 out of 17 pa-

pers find evidence of a capacity drop, with estimates ranging as high as 25%, and a

median capacity drop of 10%.6

This literature has been widely read and is influential. For example, the papers in

Table 1 have been cited over 2,700 times, collectively, according to Google Scholar.

In this section we describe several of the studies in more detail. The 14 studies

use a variety of different study sites, data sources, and empirical approaches. We

explain why this setting is particularly challenging for making causal statements, and

we point to several recurring identification concerns which motivate our empirical

analyses.

One of the first and most influential studies is Banks (1990). Using an approach

that is typical in the broader literature, Banks (1990) plots nine days of data on

traffic flows on I-8 in San Diego. It then uses “visual inspection” of detector data

and videotapes to mark the moment of queue formation, based upon a heuristic

combination of speeds, vehicle spacing, and lane use. It finds an average decrease in

flows of 2.8% at the onset of queue formation. Banks (1990) describes this as the

6The one paper reviewed by Hall (2018) that does not find evidence of capacity drop is Hurdle
and Datta (1983), a somewhat older paper that is not focused explicitly on capacity drop but that
includes figures describing traffic flows before and after a queue forms on three mornings in May
1977 at a highway bottleneck near Toronto, Canada.
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“two capacity phenomenon”, evoking the idea that highways have one capacity when

there is no queue, and then another, lower capacity, after a queue has formed.

Another influential study in this literature is Persaud et al. (1998). This paper mea-

sures capacity drops at multiple sites in Toronto, finding capacity drops ranging from

10.6% to 15.3%. Like Banks (1990), this paper uses visual inspection of speeds and

flows to identify the exact moment of queue formation. It also uses visual inspection

to determine the exact time period over which the flow average is calculated, with a

view toward selecting a pre-queue period with an unusually high flow level.7

A potential concern with these analyses is selection bias on the part of the researcher.

Traffic flows vary widely from minute to minute. For example, some vehicles are

driven faster than others. Consequently, an approach based on visual inspection

of flows risks attributing to capacity drop what may actually be high-frequency

variability in flows. Said differently, when presented with a noisy time series on traffic

flows it is relatively easy for a researcher to find moments in which flows decrease

suddenly, but this is not the same as identifying the causal impact of queueing.

Neither Banks (1990) or Persaud et al. (1998) have a direct measure of queueing, so

they approach causality from the other direction, looking for a moment in time when

traffic flows decrease, and then inferring that a queue formed in that moment.

Selection bias can occur in subtle ways. For example, Zhang and Levinson (2004)

reports capacity drops ranging from 2% to 11% based on data from multiple bottle-

7Specifically, Persaud et al. (1998) explains that the beginning of the pre-queue period, Td, was
selected explicitly so that the pre-queue flow average would be systematically higher than the post-
queue flow average (Qd). From p. 65, “Once again, visual inspection was employed. Td was taken
as the time at which Qd was continually exceeded in the pre-queue period.”
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necks in the Twin Cities area in Minnesota. They use density thresholds to deter-

mine whether locations are congested or uncongested. However, they then use visual

inspection to determine which periods to include when calculating the pre-queue av-

erage flow. Like Persaud et al. (1998), they explicitly select pre-queue periods with

unusually high flow levels.8 Again, the concern with selecting a pre-queue period

with unusually high flow levels is that it may introduce selection bias; average flows

will tend to decrease due to mean reversion following an interval conditioned on

having abnormally high flows.

Later studies that emphasize cumulative vehicle counts (Bertini and Leal, 2005; Cas-

sidy and Rudjanakanoknad, 2005) are subject to similar concerns about selection

bias. By plotting cumulative vehicle counts from multiple detectors it becomes pos-

sible to see queues emerge, visible as a reduction in flow at further downstream detec-

tors relative to upstream detectors. While initially this might appear to mitigate the

problem of selection bias, it actually suffers from identical concerns. In particular, it

continues to be difficult to separate capacity drop from the usual minute-to-minute

variability in traffic flows.9 In both cases a researcher uses visual inspection based

in part on the dependent variable to infer when a queue forms.

8From p. 126, “Therefore, τs [the beginning of the pre-queue period] is determined by the
interval in which the flow at a freeway section exceeds its long-run queue discharge flow.”

9For example, Bertini and Leal (2005) use data from a single day of traffic on the M4 in Lon-
don, and a single day of traffic on the I-494 in Minneapolis. Plotting cumulative vehicle counts
for consecutive traffic detectors, they use visual inspection to determine the moment of queue for-
mation, and then visual inspection to determine the exact time periods to use for calculating pre-
and post-queue flow averages (the slope in cumulative vehicle counts). On the M4, for example,
they mark the queue’s start at 6:45 a.m., noting, “Excess vehicle accumulations occurred between
[upstream] Detectors 6 and 7 subsequent to flow reductions observed at [downstream] Detectors 7
and 8 around 6:44 and 6:45 a.m., respectively.” (p. 399) Since the dependent variable is discharges
from downstream detectors (7 and 8), it is unsurprising that they find evidence of a capacity drop.
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Selection bias can occur even when researchers use alternatives to visual inspection.

For example, Oh and Yeo (2012) critiques previous studies on the basis that the

“visual inspection” approach is “arbitrary”, but then proceeds to measure pre-queue

flow using the “maximum 5-minute flow before bottleneck activation was observed.”

(p.115) Even without visual inspection, this approach can still introduce selection

bias because average flows will tend to decline following a period selected to have

unusually high flows.10 As with the other studies, the fundamental challenge is that

traffic flows are highly variable, so any ex post selection based in part or whole on

this variable can lead a researcher to mechanically find evidence of capacity drop due

to mean reversion.

3 Our Empirical Test

In this section we describe our empirical test of whether highway capacity decreases

when a queue forms. Our test takes the form of a standard event study regres-

sion.

The test is designed to be applied in highway settings with a single bottleneck —

locations where some physical feature of the highway serves to restrict traffic flow

during periods of high demand. The most lucid example, and one that directly evokes

the idea of the “neck” of a bottle, is a setting in which there is a sharp decrease in

the number of lanes available for travel. We do not envision applying these tests to

10In a related example, Hall and Agyemang-Duah (1991) uses statistical significance in flow
differences as a factor in deciding when capacity drop has occurred. Although this rule may be less
arbitrary, the approach still introduces selection bias because it leads the researcher to focus on a
non-random subset of periods in which large decreases occurred.
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roadways with no spatial variation in capacity, which tend to have far fewer delays,

or to dense urban road networks, which tend to have multiple sequential bottlenecks,

queue spillovers, and alternative routing opportunities.

The event of interest in our context is the moment in time that the queue forms.

How we define and measure queue formation is critical for our analysis, but we defer

that discussion until later (Section 4.5), after introducing the study sites.

The event study regression allows us to assess whether there is a change in high-

way capacity at the onset of a queue. In particular, we estimate regressions of the

form:

traffic flowt =
16∑

k=−16

βk1[τt = k]t + ωt. (1)

The dependent variable in these regressions is traffic flow in 5-minute period t, mea-

sured downstream of the bottleneck. The independent variables of interest are a

vector of event-time indicator variables. In particular, we construct a variable τt

defined such that τ = 0 for the exact moment in which the queue forms, τ = −16

for 16 periods (i.e. 80 minutes) before the queue forms, τ = 16 for 16 periods (i.e.

80 minutes) after the queue forms, and so on. Our estimates of βk summarize how

traffic flows vary before and after the queue forms. We include no additional control

variables, so although we estimate the regression using least squares (or, in the case

of median regressions, least absolute deviations), it is equivalent to taking conditional

averages in event time. Some event studies drop the indicator for τ = −1 to avoid
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perfect colinearity, but we instead suppress the regression intercept. This choice does

not affect inference, but it enables us to easily generate figures mapping out traffic

flows or traffic speeds in event time. We cluster our standard errors by date, allowing

for arbitrary serial correlation in the dependent variable within a day.11

The event study analysis focuses on the transition between no queue and queue. We

do not restrict the sample to include only observations in which there is a queue,

as that would omit observations before τ = 0. Nevertheless, in our empirical ap-

plications we tend not to see large increases in flow leading up to queue formation,

suggesting that flow is near capacity for an extended period of time prior to queue

formation, and we refer to the dependent variable in these regressions as capacity,

rather than flow.

Before introducing our study sites, we highlight three advantages of the event study

approach relative to the empirical approaches used in the existing capacity drop

literature (Section 2.2).

First, the event study provides a natural approach for aggregating information from

multiple days. In contrast, many previous studies examine data one day at a time and

must contend with minute-to-minute variability in traffic flows. Aggregating across

hundreds of days reduces the influence of minute-to-minute fluctuations, reducing

the risk of spurious findings and increasing statistical precision.

Second, the event study approach forces us to adopt an objective, standardized rule

for identifying the moment of queue formation. Whereas previous studies use visual

11Serial correlation across days is not a concern for standard errors because the independent
variables, by construction, are perfectly balanced (i.e. uncorrelated) across days.
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inspection or other ad hoc approaches, we can estimate and demonstrate a “first-

stage” relationship directly, and identify queue formation based on measuring traffic

speeds — and not flows — thereby mitigating concerns about selection bias.

Third, the event study approach lends itself well to statistical inference. In the

capacity drop literature, few studies report standard errors, and we were not able to

find a single study that reports standard errors that account for serial correlation.

In contrast, it is straightforward with the event study regression in Equation (1) to

construct confidence intervals and perform formal statistical tests that account for

potential dependence in the errors.

Despite its strengths, our event study approach also has limitations. In particular,

while we focus our analysis on times of day when a queue typically forms due to high

demand, we cannot rule out the possibility that some queues may form in response

to roadway incidents that restrict capacity. Our event study analysis thus could

have some bias towards finding capacity drops — reverse causality might result in

a roadway capacity drop generating a queue, rather than vice versa. We therefore

view our estimates as upper bounds on the magnitude of capacity drop at our study

sites.

4 Empirical Application

We apply our empirical test using data from three study sites. All three sites are in

California, allowing us to use high-quality, comparable data from a single source, the

California Department of Transportation (Caltrans). In particular our data come
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from Caltrans’ statewide network of “loop detectors”, which record information on

both traffic flows and average vehicle speed.12 In this section we describe the study

sites (Section 4.1) and present descriptive statistics on traffic flows (Section 4.2)

and vehicle speeds (Section 4.3) before turning to measuring the onset of the queue

(Section 4.5).

4.1 Site Selection

We selected three sites based on several criteria. Most importantly, we wanted sites

with a single, clearly identified bottleneck. In all three of our study sites there is a

specific location where traffic slows and the queue forms, followed by a downstream

location where traffic generally returns to full speed. We did not want sites with

multiple bottlenecks, as it becomes difficult to assess the impact of any individual

bottleneck. In addition, we wanted sites with good data coverage. We dropped sev-

eral promising sites because loop detectors were not available. We have not performed

a comprehensive survey of all potential sites in California, but with over 380,000 total

lane-miles of highway in the state and nearly 40,000 installed loop detectors, there

are almost certainly other study sites in California that would satisfy the criteria of

having a clearly-identified single bottleneck and good data coverage.

12Loop detectors are small insulated electric circuits installed in the middle of traffic lanes. Loop
detectors measure the rate at which vehicles pass, e.g. vehicles crossing per five-minute period. In
addition, loop detectors measure average vehicle speed by sensing how long it takes each vehicle to
pass over the detector. These loop detectors are maintained by the California Department of Trans-
portation (Caltrans), and data are made publicly available through the Performance Measurement
System (PeMS) at http://pems.dot.ca.gov/.
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4.1.1 Site 1

Our first study site is the westbound direction of California State Route 24 (SR-24)

at the Caldecott Tunnel. SR-24 connects suburban Contra Costa County, to the

east, with the cities of Oakland and San Francisco, to the west. This site is a classic

bottleneck, with the number of lanes decreasing as traffic approaches the tunnel.

Traffic delays are common at this location; indeed, transportation engineers have

repeatedly studied this exact site (Chin and May, 1991; Chung and Cassidy, 2002;

Chung et al., 2007). During the study period the tunnel featured two reversible lanes

that operated westbound in the morning and eastbound in the afternoon and evening.

We focus on weekday afternoons and evenings from 2005 to 2010, a period and set of

hours during which the Caldecott Tunnel was operated such that westbound vehicles

merged from four lanes to two as they approached the tunnel.13

Figure 1 depicts the study site. Approximately 3,000 feet before the tunnel, the

number of lanes merges from four down to two. This is the key feature of our

study site and the location where the vehicle queue typically begins. The figure also

indicates, using small circles, the locations of loop detectors. We observe a set of

two loop detectors after the merge but before the tunnel, as well as a series of loop

13Rather than a single wide tunnel, the Caldecott consists of multiple “bores”, each with two
lanes carrying traffic in a single direction. Although the tunnel was expanded to four bores (eight
total lanes) in 2013, we study the period from 2005 to 2010 when the tunnel still had only three
bores and construction had not yet begun on the fourth bore. During this period, the middle bore
operated westward during morning hours, as commuters drove toward Oakland and San Francisco,
and eastward during afternoon and evening hours, as commuters drove toward suburban Contra
Costa County. Afternoon westbound traffic is lighter than eastbound traffic, but with only a
single bore open in the westbound direction, the bottleneck was more than sufficient to generate
significant traffic delays on weekday afternoons. We do not use the eastbound morning bottleneck
in our analysis because it features traffic merging from multiple directions.
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detectors upstream of the merge.14 For westbound travelers there is no reasonable

alternative to traversing the tunnel.15

4.1.2 Site 2

Our second study site is the southbound direction of Interstate 15 (I-15) northeast of

San Diego. I-15 connects suburban San Diego County, to the north, with the city of

San Diego and I-5, to the south. We focus on afternoon hours at the location where

I-15 crosses I-805, another major north-south highway. As Figure 1 illustrates, I-15

southbound has five lanes prior to crossing I-805. However, while crossing I-805,

I-15 reduces to only two lanes, before widening to three lanes. As we show, this

bottleneck results in frequent queuing during afternoon hours. We focus in particular

on afternoon hours between 2015 and 2018, years during which the relevant loop

detectors were online and functioning reliably.

Of our three study sites, I-15 is the most complicated. As the figure suggests, there

are significant flows both to and from I-805. For visual clarity the figure does not

include all entrances and exits, but there are also entrances and exits at Adams

Avenue, El Cajon Boulevard, and University Avenue. We examined loop detector

data from these entrances and exits, as well as changes in net flows on I-15, and found

14The first upstream detector is approximately 1,000 feet from the bottleneck. This spacing
introduces some delay between the formation of the queue and its detection. Detectors at other
sites — in particular at Site 2 — are located closer to their respective bottlenecks. Reassuringly,
the estimates from our event study analysis are similar across all three sites, suggesting that our
results are not driven by the particular spacing of the detectors at any one particular site.

15For visual clarity the figure does not include exits and entrances. One of the advantages of this
study site is that there are relatively few exits and entrances nearby. The last highway entrance
prior to the bottleneck is approximately 9,000 feet (1.7 miles) east of the tunnel; the entrance at
Gateway Blvd did not connect to any through roads. Subsequent to our sample dates, the Gateway
Blvd exit was renamed Wilder Rd.

17



that these entrances and exits involve flows that are small compared to the flows

coming on and off of I-805. Nevertheless, it is important to corroborate results from

Site 2 with results from the other two sites where there is less scope for substitution

to alternative routes.16

4.1.3 Site 3

Our third study site is the eastbound direction of California State Route 12 (SR-

12). SR-12 runs through Sonoma, Napa, and Solano Counties, before merging with

Interstate 80 (I-80), at which point drivers continue north toward Sacramento. We

focus on afternoon hours at a location just west of I-80. As Figure 1 illustrates, at

this location SR-12 merges from two lanes down to one lane.17 As we show later, this

merge results in queues that are often very long. This site is a classic bottleneck with

no reasonable alternatives for eastbound drivers. We focus on 2017 and 2018, years

during which the relevant loop detectors were online and functioning reliably.

In summary, all three sites contain specific locations where the number of lanes de-

creases sharply. An alternative bottleneck type would have been one in which a high-

way entry ramp from a surface street or a highway junction merges into the highway

lanes. Highway entry ramps are a common form of bottleneck, but also tend to result

in less predictable queueing behavior than the locations we consider. As we show

below, at our three sites queues form predictably almost every weekday afternoon,

16One advantage of the Site 2 site is that the first upstream detector, at I-805, is located only
300 feet from the bottleneck. This proximity means that any queue is detected almost immediately,
since even emergency braking from freeway speeds requires up to 200 feet to stop.

17The first upstream detector, W of Red Top Rd, is located approximately 700 feet from the
bottleneck. This spacing is closer than on Site 1 but further than on Site 2.
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and once formed, tend to last for an hour or more. These features make our sites

particularly amenable for empirical analysis. Nevertheless, it would be interesting in

future work to apply our event study design to highway entry ramps.

4.2 Traffic Flows

Figure 2 plots average traffic flows by hour-of-day for our three study sites. Each data

series describes a different loop detector location. The legend orders detectors in the

direction of traffic flow such that for each site, the last detector in the list corresponds

to the farthest downstream detector (past the bottleneck). The unit of observation

in the underlying data is a five-minute period. Throughout the analysis we average

across lanes at a given detector location. In general, traffic flows and speeds tend to

be highly correlated across lanes, as drivers arbitrage any differences.

Morning and afternoon commuting patterns are visible for all three sites. Total vehi-

cle traffic peaks in the morning at Site 1, but as noted earlier we focus on afternoons

when the middle bore of the Caldecott Tunnel was operated in the opposite direction.

In the afternoons vehicles merge from four lanes to two as they approach the tunnel,

resulting in average vehicle flows per lane that are approximately twice as high at

the downstream location (Fish Ranch Rd) as compared to upstream locations.

At Sites 2 and 3, total vehicle traffic peaks in the afternoon. As with Site 1, the

downstream detectors (S of I-805 and Red Top Rd respectively) register higher flows

per lane as traffic enters the “neck” of the bottle. With Site 3, the downstream flows

per lane (at Red Top Rd) are approximately twice as high as flows at the upstream
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location, reflecting the merge from two lanes to one lane.

4.3 Vehicle Speeds

Figure 3 plots average vehicle speeds by hour-of-day for our three study sites. Dur-

ing afternoon hours there are dramatic decreases in average speeds at all three sites.

Speeds tend to decrease the most at detectors just upstream of the bottleneck. For ex-

ample, at Site 1 the detector immediately upstream of the bottleneck (Gateway Blvd)

exhibits average speeds below 40 miles-per-hour between about 3pm and 6pm. At

Site 2 all six detectors experience large decreases in speed during afternoon hours. Fi-

nally, Site 3 has the most severe afternoon decreases in speed, with several upstream

detectors exhibiting average speeds below 30, or even below 20, miles-per-hour.

Speeds tend to decrease much less at downstream detectors. At Site 1, for example,

average speeds immediately upstream (Gateway) and downstream (Fish Ranch) track

each other closely throughout most of the day. Between 3pm and 6pm, however,

there is a significant divergence; upstream speeds slow to below 20 miles-per-hour,

while downstream speeds remain above 40 miles-per-hour. Similarly, at Site 3, the

upstream locations (W of Red Top and E Miners) slow down to below 20 miles-per-

hour, while the downstream location (Red Top Rd) maintains average speeds above

40 miles-per-hour.
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4.4 Conventional Measures of Capacity Drop

Before defining the queue onset and estimating our main results, we reproduce the

generic capacity-drop result from the existing literature. To estimate the “conven-

tional” capacity-drop model we compare observed flows for 10 minutes prior to queue

formation with observed flows for 20 minutes following queue formation. For this

exercise we follow Zhang and Levinson (2004), coding a queue as forming if aver-

age occupancy (the fraction of time that a detector has a vehicle above it) exceeds

25%.18 In addition, we condition the sample to only contain queues for which the

maximum observed flow rate in the 10-minute period prior to queue formation ex-

ceeds the long-run (60-minute) flow rate from the bottleneck by approximately 5%.

This conditioning is similar to the sample-selection criteria used in several previous

capacity-drop studies, including Persaud et al. (1998), Zhang and Levinson (2004),

and Oh and Yeo (2012).

Appendix Table A1 reports results from this exercise. For each site, we choose a

random sample of 50 days that meet the criteria described above, for 150 site-days in

total. Columns (1) and (2) report the average traffic flows 10 minutes prior to queue

formation and 20 minutes after queue formation, respectively.19 Column (3) reports

the change in traffic flows after queue formation, i.e. the difference between Columns

(1) and (2). In all columns we normalize the measure to represent vehicle flows (or

18We choose Zhang and Levinson (2004) as a template for several reasons. First, their loop-
detector data are similar in nature to ours, and they cover a wide variety of sites. Second, their
overall approach is broadly representative of strategies that a number of capacity drop studies have
implemented. Third, their exact methodology is less ad hoc than some of the other studies, and
relies less on difficult-to-document methods of “visual inspection.”

19Following Zhang and Levinson (2004), we restrict the pre-queue measurement period to be
shorter than the post-queue measurement period.
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change in vehicle flows) per lane per five minutes, irrespective of site geometry or

measurement window length. Negative changes indicate a decrease in capacity.

The vast majority of days at all sites reveal negative changes, implying capacity

drops. The estimated magnitudes of the mean capacity drops are 5.3%, 6.8%, and

5.0% at Sites 1, 2, and 3 respectively. These values fall within the range reported in

existing studies (see Table 1) and are similar in magnitude to the average capacity

drop (5%) found in Zhang and Levinson (2004).

In summation, applying conventional capacity-drop models to our data reveals evi-

dence of capacity drop at all three sites. Nevertheless, the sample-selection criteria

used in many conventional models is, we believe, sensitive to mean reversion. The

results in Appendix Table A1 suggest that, if our models generate different conclu-

sions than conventional models, this divergence is due to differences in our approach

for defining and measuring queues rather than differences in data types or bottleneck

study sites.

4.5 Measuring the Onset of the Queue

We now turn to focus explicitly on the formation of the queue. Aggregate patterns

of traffic flows and vehicle speeds imply that there is significant queuing of vehicles

during afternoon hours at all three sites. With a mild assumption we can use our data

to measure the presence of vehicle queues more directly. As a baseline, we assume

that a queue is present whenever traffic is moving at under 30 miles-per-hour at the

upstream detector closest to the bottleneck. This threshold is arbitrary, but we show
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that our results are robust to alternative definitions. This assumption provides an

objective, standardized rule for determining whether a queue is present, and with

this rule we determine the time each day when the queue initially forms.

Figure 4 plots for each site the percentage of hours with a queue present, using our

30 miles-per-hour preferred threshold. During morning hours, there are almost never

queues at any of the three sites. Then, during afternoon hours, queues become much

more common. The exact pattern varies across sites, but by 6pm there are queues

during almost 100% of weekdays at Sites 1 and 3, and during about 50% of weekdays

at Site 2. Queues then dissipate at all three sites between 7pm and 8pm, with almost

no queueing after 9pm at any site.

Figure 5 presents for each site a histogram of the time-of-day at which the queue

begins each day. For each day, we selected the longest continuous period of time

with a queue, and we defined the start of the queue as the beginning of that period.

Queues at all three sites tend overwhelmingly to begin between 2:30pm and 6pm.

There is variation across sites and days. At Sites 1 and 2, the queue sometimes starts

before 3pm, but on many days does not start until after 5pm. For Site 3 there is less

variation, with the queue frequently starting between 2:30pm and 3:00pm.

We conduct subsequent analyses in “event time”, or time in minutes relative to the

onset of the queue. We normalize event time so that the longest-duration afternoon

queue begins at time zero on each day. For each weekday in our data, we identify

the longest continuous period of queuing, and then take the first five-minute interval

within that period to mark the onset of the queue. To focus on afternoon peak hours
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we exclude queues that do not start between 2:15pm and 7:00pm. Queues during

other hours of the day at these sites are more likely to be the result of construction,

accidents, and other relatively unusual factors.

Figure 6 plots median vehicle speeds by event time. To construct this figure we esti-

mated an event study regression as in Equation (1), but we specified our dependent

variable as speed rather than flow. At all three sites speeds decline quickly over a

relatively short time horizon near the onset of the queue. For example, at Site 1,

median speeds exceed 55 miles-per-hour until shortly before queue formation, and

then decrease sharply to below 20 miles-per-hour. Results are similar when we use

means rather than medians (see Appendix Figure A2).

The sharp speed decrease observed at all three sites is important because it suggests

that the queue formation is a reasonably discrete event and that our results will not

be unduly sensitive to the 30 miles-per-hour threshold. Indeed, later in the paper

we assess the sensitivity of our results to alternative thresholds for defining a queue,

and whether we use 25 miles-per-hour, 30 miles-per-hour, or 35-miles-per-hour, the

results are quite similar.

Sites 1 and 3 exhibit sustained speed decreases for the full 80 minutes following

queue formation. Site 2, in contrast, exhibits speeds that recover approximately 40

to 50 minutes following queue formation, implying that the longest queue of the day

at this location tends to last less than one hour. Appendix Figure A3 plots queue

presence by event time and confirms this interpretation — queues generally persist

for at least 80 minutes at Sites 1 and 3, but often dissipate in less than 80 minutes
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at Site 2. These shorter duration queues pose no specific issue for the event study

analyses that follow, but they do imply that average flows after queue formation will

tend to fall below capacity over time at Site 2.

5 Main Results

5.1 Visual Evidence

Figure 7 presents our main results. The figure plots coefficients from our event study

regression, Equation (1). The horizontal axis measures event time. The event study

analyses reveal no evidence of a decrease in capacity. For all three sites, capacity

is essentially flat throughout, with no discontinuous change near the moment the

queue forms. Figure 7 also includes 95% confidence intervals, and these intervals are

narrow enough to rule out even modest changes in capacity. To illustrate this, we

include a simulated 10% capacity drop at queue onset in each panel. The 10% drop

was chosen arbitrarily, but it is well within the range of estimates in the existing

literature. The discordance between the two series indicates that we can rule out a

capacity drop of this magnitude, or even considerably smaller magnitude.

Sites 1 and 3 demonstrate sustained flows near the observed maximum for a full

80 minutes following queue formation. At Site 2, average flows begin to fall below

the observed maximum approximately 40 minutes after the queue forms. We do not

interpret this decrease as capacity drop. Instead, as discussed earlier, queues at Site

2 tend to last less than 80 minutes, resulting in average flows that fall somewhat

below capacity over time.
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5.2 Baseline Estimates

Table 2 reports estimates and standard errors that correspond with Figure 7. As

with Figure 7, these estimates are based on three separate event study regressions,

one for each site. In Column (1) we report the change in capacity between the five

minutes prior to queue formation and the five minutes after queue formation. That

is, we calculate the difference between the last estimated β before queue formation

(β̂−1) and the first estimated β after queue formation (β̂0). Columns (2), (3), and

(4) expand the comparison to consider 20-, 30-, and 40-minute symmetric windows,

respectively. In these columns we calculate the difference between the average esti-

mated β coefficients before and after queue formation, in order to report the implied

change in capacity per five minutes. For example, Column (2) takes the difference

between (β̂−1 + β̂−2)/2 and (β̂0 + β̂1)/2. Positive (negative) estimates indicate an

increase (decrease) in capacity.

Across study sites and specifications the estimates are tightly clustered around zero.

Consistent with the visual evidence in Figure 7, Table 2 reveals no evidence of a

decrease in capacity when the queue forms. For example, for Site 1 in Column (1)

we find that queue formation is associated with a capacity increase of 1.2 vehicles

per five minutes. This is less than one percent of average capacity. Results are

similar with alternative windows and for the other sites — there is a mix of positive

and negative estimates, but all are negligible relative to average capacity. For all

twelve estimates in Table 2 we can rule out a 5% capacity drop or larger with 99%

confidence. If we average the estimates in each column across the three sites, we can

reject an average capacity drop across sites of 1% or larger with 99% confidence in

26



Columns (1) and (2) and 95% confidence in Columns (3) and (4).

There are tradeoffs to using a shorter or longer estimation window (e.g. 10, 20,

30, or 40 minutes). In a canonical event study design, a shorter estimation window

minimizes the potential for bias due to secular time trends, but it comes at the cost

of lower precision. In our context, the queue formation event is sudden but not

instantaneous. Thus, in addition to the traditional bias-variance tradeoff, we also

face the possibility that the queue formation event may not be fully captured in a

10-minute window. It is therefore reassuring that our estimates across all columns

in Table 2 are close to zero in magnitude, implying that our conclusions are robust

to estimation-window width.

5.3 Robustness Checks

To further establish the robustness of our results, we consider a trimmed sample

in which average speeds drop by over 20 miles-per-hour in less than 20 minutes.

By construction this trimmed sample drops days on which the queue forms more

gradually. Appendix Figure A4 plots the median speed by event time for each site,

after applying this trimming rule. For Site 1 (SR-24) this constraint makes the drop

in speeds even sharper, while for the other two sites the constraint is essentially non-

binding. Appendix Figure A5 and Appendix Table A2 present analogous results for

traffic flows when trimming the sample to days on which average speeds drop by over

20 miles-per-hour in less than 20 minutes. There is again no evidence of a capacity

drop at queue onset.
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Appendix Tables A3 and A4 report regression estimates using alternative thresh-

olds to define a queue. Whereas our baseline estimates define a queue to be present

whenever traffic is moving at under 30 miles-per-hour, these alternative specifica-

tions adopt thresholds of 25 miles-per-hour and 35 miles-per-hour. With the more

restrictive threshold (25 miles-per-hour), 11 of 12 point estimates move closer to zero.

With the less restrictive threshold (35 miles-per-hour) half the point estimates move

further from zero, and half are unchanged or closer to zero.

Appendix Table A5 reports results from alternative event study analyses in which we

estimate the specification used in Table 2 with median regressions. These estimates

address the potential concern that our results are driven by large outliers, in either

the positive or negative directions. Consistent with our baseline event study results,

the median regression estimates are again close to zero, providing no evidence of a

drop in capacity when the queue forms. Six of the twelve estimates are positive, and

in all cases we can reject a 5% capacity drop or larger.

5.4 Effect Size Magnitudes

Across specifications, the event study analyses demonstrate no evidence of a decrease

in highway capacity upon queue formation. To put these results in context, Figure

8 plots a histogram of all of our estimates. We include all coefficient estimates from

Table 2, as well as from alternative analyses in Appendix Tables A2, A3, A4, and

A5 (60 coefficients in total). These estimates summarize the results from our test

across three sites and a rich variety of specifications.
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All of our estimates are clustered tightly around zero. To illustrate this fact we

include in Figure 8 two vertical lines. The righthand vertical line corresponds to the

average observed capacity across all sites and tables — 149 vehicles per lane per five

minutes. The lefthand vertical line corresponds to a hypothetical 10% decrease in

capacity (14.9 vehicles per lane per five minutes). Even the most negative of our 60

estimates fall well short of this 10% threshold, and the vast majority of estimates

are either positive or represent less than a 2% decrease in average capacity.

6 Discussion

6.1 Policy Implications

We consider the policy implications of our results in the context of a rich existing

literature that has examined the implications of hypercongestion using variations of

the “bottleneck” model, in which drivers face a tradeoff between time delays and

schedule inflexibility and optimize their departure times accordingly.

Economists have long recognized that traffic congestion represents a negative exter-

nality (Pigou, 1920; Vickrey, 1963, 1969). When a motorist drives on a congested

road, she decreases the average speed of all drivers, imposing an external cost. Our

results imply, however, that at least in the context of isolated highway bottlenecks,

this externality does not appear to be exacerbated by an additional decrease in ca-

pacity. Driving reduces average speeds, but we find no evidence at our three sites of

a drop in capacity at the onset of queueing. Thus our results imply that the marginal

damages from driving are lower than would be implied by a supply curve exhibiting
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hypercongestion.

It is less clear what our results imply for optimal “Pigouvian” congestion pricing.

Starting from an unregulated equilibrium, marginal damages are clearly lower with-

out hypercongestion. However, at the social optimum there is less driving during

peak times, so marginal damages are lower and typically queueing is avoided alto-

gether (see, e.g. Arnott et al., 1993). Thus whether or not hypercongestion exists

likely has minimal impact on the how taxes are set in the optimal Pigouvian solution,

as there may be no congestion at all at the optimum.

This intuition is borne out in the existing literature. Arnott et al. (1993), for example,

describes a model with a continuum of identical drivers facing a tradeoff between time

delays and schedule inflexibility. In the optimal Pigouvian solution, drivers pay a

time-varying tax that makes them indifferent between all departure times. This tax

depends on drivers’ tastes for arriving early or late, but there is no queueing at the

social optimum, so whether or not hypercongestion exists is irrelevant for setting the

tax. With hypercongestion the welfare gains from optimal congestion pricing are

larger, however, as total social costs are higher in the unregulated equilibrium.

Two recent papers by Jonathan Hall find that introducing driver heterogeneity does

not change this basic intuition (Hall, 2018, forthcoming). For example, Hall (forth-

coming) structurally estimates drivers’ preferences and then solves for optimal con-

gestion pricing outcomes with different levels of hypercongestion. Counterfactual

analyses (e.g. Table 5) show that gains from congestion pricing are larger when

there is more hypercongestion, again because total social costs in the unregulated
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equilibrium increase with hypercongestion.

Finally, it is worth emphasizing that even without hypercongestion, the standard

negative externality from traffic congestion can be very large. For example, the

queues in our three study sites routinely reach one hour or more in length. Thus

when a motorist decides to drive these routes during peak periods they impose a

delay on other drivers equal to a total of up to one hour or more. Our paper is

not focused on this standard negative externality, but we bring this up because

our evidence on the lack of evidence of one form of hypercongestion should not be

interpreted as suggesting that this standard externality does not exist or is small in

magnitude.

7 Speed-Flow Curves

Before concluding, we perform one additional graphical analysis. In the transporta-

tion and economics literatures it is common to plot “speed-flow” curves depicting

the locus of speed-flow observations over some time period at a particular location.

Figure 9 shows eight examples.20 In all cases, the horizontal axis measures traffic

flow and the vertical axis measures speed.

The upper part of the speed-flow curve typically exhibits a negative correlation be-

tween speed and flow. Speeds are high at low flow levels and then decrease at higher

flow levels. The lower part of the curve is more surprising, however — this part

20From the transportation literature, Drake and Schofer (1966); Allen et al. (1985); May (1990);
Ni (2015); Transportation Research Board (2016). From the economics literature, Keeler and Small
(1977); Newbery (1989); Mun (1999). Also see Russo et al. (2019).
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exhibits a positive correlation between speed and flow. Particularly striking are the

observations with both very low speeds and very low flows. The Highway Capacity

Manual explains that this lower region of the speed-flow curve exhibits “flow break-

down” and “oversaturated flow”, with severe decreases in speed as well as decreases

in capacity, and flow rates falling well below the observed maximum. This backward-

bending curve is described as one of the “basic relationships” in traffic.

Early economic analyses interpreted this speed-flow curve as a causal relationship.

Walters (1961) and Johnson (1964), for example, interpreted the relationship as a

supply curve for travel, and used parametrized versions to derive efficient congestion

prices. More recent economic analyses, however, have argued conceptually that this

relationship should not be interpreted as a supply curve. For example, Small and

Chu (2003) argues that “hypercongestion occurs as a result of transient demand

surges and can be fully analyzed only within a dynamic model.”21 Similarly, Lindsey

and Verhoef (2008) summarizes an “emerging view” that these low-speed, low-flow

observations occur “in queues upstream of a bottleneck”. (p. 421)

We provide empirical support for the view that low-speed, low-flow observations

represent queuing and have no direct implications regarding capacity. Figure 10

presents two speed-flow curves for Site 1. This site works well for constructing speed-

flow curves because the downstream loop detector is located well past the bottleneck

21This article, titled “Hypercongestion”, notes that the standard “engineering relationship” has
a backward-bending region known as hypercongestion. It then presents a series of dynamic models
for straight uniform highways and dense street networks in which transient demand surges cause
long vehicle queues, resulting in large travel time increases. It stresses the importance of studying
hypercongestion using dynamic models, “Hypercongestion is a real phenomenon, potentially cre-
ating inefficiencies and imposing considerable costs. However, it cannot be understood within a
steady-state analysis because it does not in practice persist as a steady state.” (p. 342).
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and there is no intervening merging traffic.22

The top panel of Figure 10 uses data from the detector that is just upstream of

the bottleneck. With hundreds of days of data measured at 5-minute intervals,

each scatterplot includes many observations, so we use colors to reflect the density

of observations in each cell. The basic pattern is similar to the speed-flow curves

that appear in Figure 9. There is a large mass of observations at 60 miles-per-hour

or faster, and speeds decrease modestly with flow rates along the top part of the

speed-flow curve. But then, as is typical in speed-flow curves, there are also large

numbers of low-speed, low-flow observations which make the curve bend backward.

Particularly striking are the observations with both very low speeds and very low

flows. For example, there is a considerable mass of observations with speeds below

10 miles-per-hour and flow rates below 250 vehicles per five minutes.

The bottom panel of Figure 10 is identical to the top panel, except it is constructed

using data from the downstream detector. The pattern in this second panel is quite

different. In particular, there are very few observations with below 250 vehicles per

five minutes and speeds below 40 miles-per-hour. The divergence between the two

panels suggests a simple explanation: the low-flow, low-speed observations represent

traffic waiting in the queue. At the downstream detector, where queues rarely form,

there are virtually no low-flow, low-speed observations, but at the upstream detector

they are numerous. Indeed, the entire region which the Highway Capacity Manual

refers to as “flow breakdown” or “oversaturated flow” essentially does not exist in

22In contrast, Site 2 is a merge with another major highway, so downstream traffic includes
vehicles from both highways, and at Site 3 the downstream loop detector is quite close to the
bottleneck, so vehicles are still accelerating as they pass the detector.
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the bottom panel.

This simple comparison provides a simple illustration of why speed-flow curves should

not be interpreted as causal relationships. Low-flow, low-speed observations mea-

sured upstream of a bottleneck do not provide evidence for or against capacity drop

or hypercongestion. These observations occur in the queue so do not provide infor-

mation about the rate of flow through the bottleneck.

8 Conclusion

The concept of hypercongestion has influenced transportation economics models for

over five decades. Our paper proposes an empirical test of hypercongestion at high-

way bottlenecks. Our test is designed for highway bottlenecks with a single, well-

defined bottleneck — not dense urban areas or locations with multiple bottlenecks

and queue spillovers. Consequently, our results speak only to one of the two forms

of hypercongestion that have been discussed in the literature.

Our test is novel in the literature but uses standard event study methodologies that

have been widely used in other contexts. We apply our test to high-quality data from

three highway bottlenecks in California. We document significant speed decreases

at all three sites during weekday afternoons. However, we find no evidence of a

decrease in traffic flows at the onset of queue formation. Results are similar across

all three sites and a range of alternative specifications, with no evidence of a drop in

capacity.

How can this be? To anyone who has been stuck in heavy traffic, it certainly feels
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as if the capacity of the roadway is being restricted in these moments. We suspect,

however, that this feeling is largely about speed rather than capacity. There is no

question that as more vehicles crowd onto the road, speed decreases. But speed

and capacity are not equivalent. Speed is readily apparent to drivers, but capacity

requires careful measurement.

On highways the feeling of being trapped in heavy traffic often occurs in a queue,

waiting to pass a bottleneck. By definition the capacity per lane must drop when

approaching a bottleneck, as the number of lanes decreases. Nevertheless, we find

that the capacity of the bottleneck itself — the rate at which vehicles pass through

the bottleneck — does not drop when the queue forms.

Our findings imply that marginal damages at highway bottlenecks are much lower

than implied by supply curves exhibiting hypercongestion. Nevertheless, conges-

tion taxes should not be zero. To the contrary, even without hypercongestion, the

marginal damages from traffic congestion can be very large. Starting from zero — the

level at which most roadways are currently taxed — leaves considerable headroom

for increases.
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Figure 1: Study Sites
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Figure 2: Average Traffic Flows
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Figure 3: Average Vehicle Speeds (in Miles-Per-Hour)
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Figure 4: Percentage of Hours With a Queue Present
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Figure 5: Time-of-Day that the Queue Begins Each Day, Histogram
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the queue as the beginning of that period.



Figure 6: Median Vehicle Speeds at Queue Onset

A. Site 1

0
20

40
60

Sp
ee

d 
(m

ph
)

-80 -60 -40 -20 0 20 40 60 80
Event time (minutes relative to queue start)

B. Site 2

0
20

40
60

Sp
ee

d 
(m

ph
)

-80 -60 -40 -20 0 20 40 60 80
Event time (minutes relative to queue start)

C. Site 3

0
20

40
60

Sp
ee

d 
(m

ph
)

-80 -60 -40 -20 0 20 40 60 80
Event time (minutes relative to queue start)

Notes: These event study figures plot median vehicle speeds in the 80 minutes before and after queue formation.
Time is normalized so that the longest-duration afternoon queue begins at time zero on each day. Speed is measured
at the nearest detector upstream of the bottleneck.



Figure 7: Traffic Flows by Time of Queue Onset
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Notes: These event study figures plot average vehicle flows in the 80 minutes before and after queue formation. Time
is normalized so that the longest-duration afternoon queue begins at time zero on each day. The solid line plots
average capacity, with the shaded area representing a 95% confidence interval, constructed using standard errors that
are clustered by day-of-sample. The dashed line plots what average capacity would look like if there were a capacity
drop of 10% at queue onset, simulated by a drop from 5% above observed flows to 5.5% below observed flows at
event time zero.
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Figure 9: Speed-Flow Curves

Sources: Transportation Research Board (2016), Drake and Schofer (1966), Keeler and Small (1977), Allen et al.
(1985), Newbery (1989), May (1990), Mun (1999), and Ni (2015).



Figure 10: Observed Speed–Flow Curves
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Notes: This figure plots traffic flows and vehicle speeds from Site 1. The unit of observation is a speed-flow pair
averaged over five minutes. The first panel plots observations from the last upstream detector before the bottleneck,
and the second panel plots observations from the first downstream detector after the bottleneck. We plot data for
weekdays between 1 pm and 11:55 pm (a period when the lane reduction is in effect) and restrict the sample to be
identical in both panels. Colors represent the number of observations in each cell, as indicated in the legend.



Table 1: Previous Studies of Capacity Drop at Highway Bottlenecks

Paper Capacity Drop (%) Location

Banks (1990) 2.8 I-8, San Diego

Hall and Agyemang-Duah (1991) 5.8 Queen Elizabeth Way, Toronto

Banks (1991) -1.2 to 3.2 Multiple Sites, San Diego

Persaud et al. (1998) 10.6 to 15.3 Multiple Sites, Toronto

Cassidy and Bertini (1999) 7.4 to 8.7 Multiple Sites, Toronto

Bertini and Malik (2004) 4.0 US-169, Minneapolis

Zhang and Levinson (2004) 2.0 to 11.0 Multiple Sites, Twin Cities, MN

Bertini and Leal (2005) 9.7 M4, London
12.0 I-494, Minneapolis

Cassidy and Rudjanakanoknad (2005) 11.7 I-805, San Diego

Chung et al. (2007) 12.3 I-805, San Diego
6.2 SR-24, San Francisco Bay Area
5.8 Gardiner Expressway, Toronto

Guan et al. (2009) 15.0 Fourth Ring Road, Beijing

Oh and Yeo (2012) 8.9 to 16.3 Multiple Sites, California

Srivastava and Geroliminis (2013) 15.0 US-169, Minneapolis

Jin et al. (2015) 10.5 I-405, Irvine, CA

Notes: Similar tables appear in Oh and Yeo (2012) and Hall (2018).



Table 2: Estimated Change in Highway Capacity at Queue Formation

(1) (2) (3) (4)
Dependent Variable: 10-Minute 20-Minute 30-Minute 40-Minute
Vehicles / 5 minutes / lane Window Window Window Window

A. Site 1
1.23 1.17 1.24 1.40

(0.36) (0.35) (0.37) (0.37)
In-window mean 168.5 168.8 169.1 169.4
Number of days 706 706 706 706

B. Site 2
0.76 0.34 -1.68 -3.11

(0.43) (0.40) (0.39) (0.39)
In-window mean 142.0 142.9 144.2 145.0
Number of days 694 694 694 694

C. Site 3
-1.88 -2.42 -2.68 -1.30
(1.09) (0.86) (0.72) (0.66)

In-window mean 133.7 133.8 134.4 134.2
Number of days 247 247 247 247

Notes: This table reports twelve estimates of the change in highway capacity at queue formation, defined as the
moment when average speed falls below 30 mph. These estimates are based on coefficients from three separate event
study regressions, one for each site. The dependent variable in all regressions is traffic flow (in vehicles per five minutes
per lane), which we refer to as capacity because we focus on periods of queue formation when these bottlenecks operate
at close to capacity. In Column (1) we report the change in capacity between the five minutes before queue formation
and the five minutes after queue formation. Columns (2), (3), and (4) expand the comparison to consider 20-, 30-, and
40-minute symmetric windows (10, 15, and 20 minutes in each direction), respectively. Standard errors are clustered by
day-of-sample.



Online Appendix

Figure A1: Detector Health by Month-of-Sample
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Notes: These plots report detector health for detectors in our analysis. Each dot represents one month at one
detector. The y-axis measures the fraction of intervals in the month, including weekends and holidays, for which the
detector reported speed for all lanes. At each site, detector names are ordered from upstream to downstream.



Online Appendix

Figure A2: Average Vehicle Speeds at Queue Onset
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Notes: These event study figures are identical to Figure 6 in the paper except we plot means rather than medians.
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Figure A3: Presence of Queue Before and After Queue Onset
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Notes: These event study figures plot the proportion of all observations with a queue present during the 80 minutes
before and after the onset of the longest-duration afternoon queue. Queue presence is measured at the nearest
detector upstream of the bottleneck.
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Figure A4: Median Vehicle Speeds at Queue Onset, Fast-forming Queues
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Notes: These event study figures plot median vehicle speeds in the 80 minutes before and after queue formation.
Time is normalized so that the longest-duration afternoon queue begins at time zero on each day. Only days on
which the average speed drops more than 20 mph in less than 20 minutes (around queue onset) are retained. Speed
is measured at the nearest detector upstream of the bottleneck.
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Figure A5: Traffic Flows by Time of Queue Onset, Fast-forming Queues
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Notes: These event study figures plot average vehicle flows in the 80 minutes before and after queue formation. Time
is normalized so that the longest-duration afternoon queue begins at time zero on each day. Only days on which
the average speed drops more than 20 mph in less than 20 minutes (around queue onset) are retained. The solid
line plots average capacity, with the shaded area representing a 95% confidence interval, constructed using standard
errors that are clustered by day-of-sample. The dashed line plots what average capacity would look like if there were
a capacity drop of 10% at queue onset, simulated by a drop from 5% above observed flows to 5.5% below observed
flows at event time zero.
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Table A1: Changes in Highway Capacity at Queue Formation, Conventional Ap-
proach

(1) (2) (3)
Date: Pre-queue flow Post-queue flow Change in flow

A. Site 1
11-1-2005 190.5 185.8 -4.8
12-5-2005 178.5 175.6 -2.9
12-7-2005 177.2 165.2 -12.0
1-11-2006 190.2 183.0 -7.2
1-20-2006 165.8 165.1 -0.6
3-10-2006 169.0 161.5 -7.5
4-7-2006 180.5 157.5 -23.0
7-31-2006 187.2 178.0 -9.2
8-3-2006 131.5 83.0 -48.5
8-4-2006 171.2 169.2 -2.0
12-28-2006 180.2 179.1 -1.1
1-3-2007 178.2 172.0 -6.2
1-5-2007 175.2 168.2 -7.0
2-27-2007 147.8 143.1 -4.6
4-23-2007 179.2 174.0 -5.2
6-13-2007 165.8 161.8 -4.0
7-5-2007 179.0 174.9 -4.1
8-7-2007 177.2 175.8 -1.5
10-19-2007 185.8 182.9 -2.9
11-13-2007 178.8 175.4 -3.4
11-19-2007 176.8 172.2 -4.5
11-27-2007 185.2 180.2 -5.0
1-16-2008 139.8 117.2 -22.5
1-23-2008 185.2 174.9 -10.4
2-6-2008 169.8 167.8 -2.0
3-11-2008 164.8 172.9 8.1
4-9-2008 174.2 170.2 -4.0

Notes: This table reports the change in highway capacity at queue formation over 50 days at
each site, calculated using an approach that is representative of the existing literature. See notes
at table end for details.
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(1) (2) (3)
Date: Pre-queue flow Post-queue flow Change in flow

4-17-2008 145.5 127.8 -17.8
4-28-2008 175.2 173.6 -1.6
5-23-2008 184.0 172.4 -11.6
6-16-2008 179.2 175.4 -3.9
10-23-2008 173.2 163.2 -10.0
11-14-2008 173.2 168.5 -4.8
11-17-2008 179.8 170.6 -9.1
12-4-2008 188.8 180.8 -8.0
2-2-2009 184.2 171.2 -13.0
3-27-2009 170.2 171.4 1.1
5-18-2009 183.0 183.6 0.6
6-8-2009 176.5 179.2 2.8
7-14-2009 182.0 171.2 -10.8
8-5-2009 134.2 159.5 25.2
8-6-2009 156.0 154.6 -1.4
11-2-2009 179.8 174.8 -5.0
11-4-2009 149.2 122.6 -26.6
11-16-2009 174.8 171.6 -3.1
11-20-2009 169.2 165.1 -4.1
1-14-2010 166.5 74.1 -92.4
2-8-2010 168.8 159.5 -9.2
3-29-2010 125.8 80.8 -45.0
5-18-2010 161.5 156.1 -5.4

Mean values 171.3 162.3 -9.0
Percentage change -5.3

Notes: This table reports the change in highway capacity at queue formation over 50 days at
each site, calculated using an approach that is representative of the existing literature. See notes
at table end for details.
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(1) (2) (3)
Date: Pre-queue flow Post-queue flow Change in flow

B. Site 2
2-6-2015 141.5 122.6 -18.9
2-26-2015 163.8 151.1 -12.8
5-7-2015 151.0 141.0 -10.0
5-27-2015 147.7 139.2 -8.5
6-1-2015 150.2 152.4 2.2
6-25-2015 157.7 155.7 -2.0
10-5-2015 147.5 145.7 -1.8
10-13-2015 151.8 149.1 -2.8
10-29-2015 149.5 142.2 -7.2
11-24-2015 148.2 129.1 -19.1
12-9-2015 143.0 139.1 -3.9
12-11-2015 144.7 144.0 -0.7
12-17-2015 142.5 135.6 -6.9
12-18-2015 152.0 129.2 -22.8
2-19-2016 152.5 134.5 -18.0
3-16-2016 155.8 146.6 -9.3
6-30-2016 123.3 102.5 -20.8
7-6-2016 158.0 154.9 -3.1
7-26-2016 155.0 122.1 -32.9
10-12-2016 146.8 137.2 -9.7
11-2-2016 160.3 152.7 -7.7
12-22-2016 116.8 114.6 -2.2
1-10-2017 160.7 125.7 -35.0
3-8-2017 151.7 147.0 -4.7
3-14-2017 156.7 152.8 -3.8
5-10-2017 134.2 103.2 -30.9
6-16-2017 171.7 132.8 -38.9
6-21-2017 119.0 105.0 -14.0
6-29-2017 160.3 155.3 -5.0
8-9-2017 139.3 123.7 -15.7

Notes: This table reports the change in highway capacity at queue formation over 50 days at
each site, calculated using an approach that is representative of the existing literature. See notes
at table end for details.
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(1) (2) (3)
Date: Pre-queue flow Post-queue flow Change in flow

8-31-2017 124.7 128.2 3.5
9-29-2017 131.7 122.8 -8.8
10-23-2017 152.0 149.1 -2.9
12-6-2017 147.0 144.0 -3.0
1-19-2018 130.2 124.5 -5.7
2-8-2018 127.5 109.3 -18.2
3-2-2018 157.7 151.3 -6.3
4-30-2018 152.8 131.4 -21.4
5-16-2018 150.5 132.8 -17.7
5-22-2018 155.5 139.1 -16.4
6-21-2018 159.5 154.1 -5.4
7-27-2018 152.7 148.8 -3.9
8-3-2018 153.2 149.5 -3.7
8-9-2018 151.3 148.2 -3.2
8-22-2018 161.7 156.9 -4.7
9-20-2018 136.5 133.7 -2.8
10-5-2018 154.2 151.1 -3.1
10-23-2018 162.5 156.9 -5.6
11-20-2018 135.3 138.7 3.3
12-20-2018 135.8 125.2 -10.7

Mean values 147.7 137.6 -10.1
Percentage change -6.8

Notes: This table reports the change in highway capacity at queue formation over 50 days at
each site, calculated using an approach that is representative of the existing literature. See notes
at table end for details.
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(1) (2) (3)
Date: Pre-queue flow Post-queue flow Change in flow

C. Site 3
1-10-2018 147.5 138.8 -8.8
1-26-2018 141.0 142.0 1.0
1-29-2018 142.0 144.8 2.8
2-8-2018 142.0 125.2 -16.8
2-12-2018 136.0 133.2 -2.8
2-13-2018 140.5 136.5 -4.0
2-16-2018 133.5 123.5 -10.0
3-13-2018 153.0 137.2 -15.8
4-3-2018 140.5 132.0 -8.5
4-13-2018 148.0 131.2 -16.8
4-16-2018 153.5 146.0 -7.5
4-17-2018 147.0 140.5 -6.5
5-1-2018 140.5 133.0 -7.5
5-2-2018 145.0 135.8 -9.2
5-9-2018 143.5 142.0 -1.5
5-23-2018 143.0 137.5 -5.5
6-1-2018 135.5 134.0 -1.5
6-13-2018 151.5 136.5 -15.0
7-2-2018 141.0 124.0 -17.0
7-10-2018 138.5 128.2 -10.2
7-24-2018 144.5 135.2 -9.2
8-8-2018 139.5 131.5 -8.0
8-27-2018 143.0 139.0 -4.0
9-5-2018 127.5 138.5 11.0
9-12-2018 141.0 135.0 -6.0
9-18-2018 156.0 133.8 -22.2
9-20-2018 134.0 131.2 -2.8
9-26-2018 149.5 130.5 -19.0
10-2-2018 146.5 145.2 -1.2
10-3-2018 151.5 140.0 -11.5

Notes: This table reports the change in highway capacity at queue formation over 50 days at
each site, calculated using an approach that is representative of the existing literature. See notes
at table end for details.
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(1) (2) (3)
Date: Pre-queue flow Post-queue flow Change in flow

10-4-2018 126.0 124.5 -1.5
10-24-2018 140.0 131.2 -8.8
10-26-2018 130.5 117.5 -13.0
11-1-2018 148.0 140.5 -7.5
11-6-2018 135.5 131.5 -4.0
11-14-2018 141.5 123.5 -18.0
11-28-2018 130.5 131.0 0.5
12-5-2018 144.5 131.5 -13.0
1-2-2019 151.5 138.5 -13.0
1-10-2019 117.5 120.0 2.5
1-11-2019 148.5 141.8 -6.8
1-14-2019 143.5 137.0 -6.5
1-15-2019 116.5 111.5 -5.0
2-13-2019 125.0 125.5 0.5
2-15-2019 123.0 124.2 1.2
2-20-2019 131.5 129.8 -1.8
3-1-2019 148.0 136.2 -11.8
3-4-2019 141.0 141.0 0.0
3-6-2019 143.0 136.8 -6.2
3-28-2019 117.5 113.5 -4.0

Mean values 140.0 133.0 -7.0
Percentage change -5.0

Notes: This table reports the change in highway capacity at queue formation over 50 days at
each site, calculated using an approach that is representative of the existing literature. For each
site and day we select the longest continuous queue of the day, where queues are assumed to
be present whenever the average lane occupancy upstream of the bottleneck exceeds 25%. We
then require in determining the moment of queue formation that the maximum observed flow
rate in the 10 minutes preceding queue formation is at least 5% higher than the average long-run
(60-minute) downstream flow following queue formation. The capacity measure at all sites is
traffic flow in vehicles per five minutes per lane. In Columns (1) and (2) we report the average
capacity in the 10 minutes before queue formation and the 20 minutes after queue formation,
respectively. Column (3) reports the change in capacity, i.e. the difference between Columns (1)
and (2).
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Table A2: Alternative Event Study Analyses, Fast-forming Queues

(1) (2) (3) (4)
Dependent Variable: 10-Minute 20-Minute 30-Minute 40-Minute
Vehicles / 5 minutes / lane Window Window Window Window

A. Site 1
1.44 1.33 1.27 1.28

(0.51) (0.54) (0.58) (0.59)
In-window mean 166.9 167.3 167.8 168.2
Number of days 417 417 417 417

B. Site 2
1.00 0.70 -1.44 -2.96

(0.47) (0.43) (0.41) (0.41)
In-window mean 141.6 142.5 143.9 144.8
Number of days 619 619 619 619

C. Site 3
-1.16 -2.10 -2.37 -0.87
(1.15) (0.92) (0.76) (0.68)

In-window mean 133.6 133.9 134.5 134.3
Number of days 226 226 226 226

Notes: This table reports twelve estimates of the change in highway capacity at queue formation, defined as the moment
when average speed falls below 30 mph. Only days on which the average speed drops more than 20 mph in less than 20
minutes (around queue onset) are retained. These estimates are based on coefficients from three separate event study
regressions, one for each site. The dependent variable in all regressions is traffic flow (in vehicles per five minutes per
lane), which we refer to as capacity because we focus on periods of queue formation when these bottlenecks operate
at close to capacity. In Column (1) we report the change in capacity between the five minutes before queue formation
and the five minutes after queue formation. Columns (2), (3), and (4) expand the comparison to consider 20-, 30-, and
40-minute symmetric windows (10, 15, and 20 minutes in each direction), respectively. Standard errors are clustered by
day-of-sample.
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Table A3: Alternative Event Study Analyses, 25-Miles-Per-Hour Queue Threshold

(1) (2) (3) (4)
Dependent Variable: 10-Minute 20-Minute 30-Minute 40-Minute
Vehicles / 5 minutes / lane Window Window Window Window

A. Site 1
0.46 1.00 1.20 1.26

(0.37) (0.33) (0.36) (0.36)
In-window mean 168.8 169.1 169.5 169.7
Number of days 723 723 723 723

B. Site 2
0.67 0.70 -0.52 -2.04

(0.43) (0.40) (0.41) (0.40)
In-window mean 141.8 142.1 143.0 144.0
Number of days 660 660 660 660

C. Site 3
0.65 -0.92 -1.20 -0.85

(1.09) (0.80) (0.65) (0.60)
In-window mean 132.7 133.7 134.2 134.2
Number of days 250 250 250 250

Notes: This table reports twelve estimates of the change in highway capacity at queue formation, defined as the
moment when average speed falls below 25 mph. These estimates are based on coefficients from three separate event
study regressions, one for each site. The dependent variable in all regressions is traffic flow (in vehicles per five minutes
per lane), which we refer to as capacity because we focus on periods of queue formation when these bottlenecks operate
at close to capacity. In Column (1) we report the change in capacity between the five minutes before queue formation
and the five minutes after queue formation. Columns (2), (3), and (4) expand the comparison to consider 20-, 30-, and
40-minute symmetric windows (10, 15, and 20 minutes in each direction), respectively. Standard errors are clustered by
day-of-sample.
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Table A4: Alternative Event Study Analyses, 35-Miles-Per-Hour Queue Threshold

(1) (2) (3) (4)
Dependent Variable: 10-Minute 20-Minute 30-Minute 40-Minute
Vehicles / 5 minutes / lane Window Window Window Window

A. Site 1
0.89 1.10 0.95 0.98

(0.37) (0.39) (0.41) (0.41)
In-window mean 168.3 168.6 168.9 169.1
Number of days 706 706 706 706

B. Site 2
1.01 -0.41 -2.71 -3.87

(0.43) (0.40) (0.39) (0.39)
In-window mean 142.4 143.7 145.0 145.7
Number of days 721 721 721 721

C. Site 3
-3.42 -3.02 -2.19 -1.23
(1.05) (0.91) (0.75) (0.67)

In-window mean 133.4 134.0 134.2 134.1
Number of days 241 241 241 241

Notes: This table reports twelve estimates of the change in highway capacity at queue formation, defined as the
moment when average speed falls below 35 mph. These estimates are based on coefficients from three separate event
study regressions, one for each site. The dependent variable in all regressions is traffic flow (in vehicles per five minutes
per lane), which we refer to as capacity because we focus on periods of queue formation when these bottlenecks operate
at close to capacity. In Column (1) we report the change in capacity between the five minutes before queue formation
and the five minutes after queue formation. Columns (2), (3), and (4) expand the comparison to consider 20-, 30-, and
40-minute symmetric windows (10, 15, and 20 minutes in each direction), respectively. Standard errors are clustered by
day-of-sample.
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Table A5: Alternative Event Study Analyses, Median Regressions

(1) (2) (3) (4)
Dependent Variable: 10-Minute 20-Minute 30-Minute 40-Minute
Vehicles / 5 minutes / lane Window Window Window Window

A. Site 1
1.50 1.75 2.00 2.25

(0.33) (0.29) (0.24) (0.23)
In-window median 171 171.5 171.5 171.5
Number of days 706 706 706 706

B. Site 2
1.33 1.50 -0.33 -1.75

(0.54) (0.47) (0.41) (0.36)
In-window median 146 146.3 147.3 148
Number of days 694 694 694 694

C. Site 3
-2.00 -2.50 -2.67 -1.25
(1.23) (0.84) (0.70) (0.63)

In-window median 136 136 136 136
Number of days 247 247 247 247

Notes: This table reports results from alternative event study analyses in which everything is identical to the specification
used in Table 2, except we use median (least absolute deviation) regressions.


