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1 Introduction

Athletic spending at National Collegiate Athletic Association (NCAA) Division I schools exceeded
$7.9 billion in 2010, and only 18% of athletic programs at the 120 Football Bowl Subdivision
(FBS) schools covered their operating costs (Fulks 2011). At the same time, college football
attendance reached 49.7 million spectators (Johnson 2012). This scale of expenditures, subsidy,
and attendance is internationally unique and has generated a spirited debate within and across
schools about the appropriate level of athletic spending (Thomas 2009a,b; Drape and Thomas
2010).

High spending is justified partly on the basis that big-time athletic success, particularly in foot-
ball and basketball, attracts students and generates donations. An extensive literature examines
these claims but reaches inconsistent conclusions. A series of papers find positive effects of big-
time athletic success on applications and contributions (Brooker and Klastorin 1981; Sigelman and
Bookheimer 1983; Tucker and Amato 1993; Grimes and Chressanthis 1994; Murphy and Trandel
1994; Mixon Jr et al. 2004; Tucker 2004, 2005; Humphreys and Mondello 2007; Pope and Pope
2009), but a number of other studies find mixed evidence or no impact of big-time athletic suc-
cess on either measure (Sigelman and Carter 1979; McCormick and Tinsley 1987; Bremmer and
Kesselring 1993; Baade and Sundberg 1996; Rhoads and Gerking 2000; Turner et al. 2001; Litan
et al. 2003; Meer and Rosen 2009). A central issue confronting all studies is the non-random as-
signment of athletic success. Schools with skilled administrators may attract donations, applicants,
and coaching talent (selection bias), and surges in donations or applications may have a direct im-
pact on athletic success (reverse causality). It is thus challenging to estimate causal effects of
athletic success using observational data.

This article estimates the causal effects of college football success using a propensity score
design. Propensity score methods are difficult to apply because researchers seldom observe all of
the important determinants of treatment assignment. Treatment assignment is thus rarely ignorable
given the data at the researcher’s disposal (Rosenbaum and Rubin 1983; Dehejia and Wahba 1999).

We overcome this challenge by exploiting data on bookmaker spreads (i.e. the expected score



differential between the two teams) to estimate the probability of winning each game for NCAA
“Division I-A” (now “FBS”) football teams. We then condition on these probabilities to estimate
the effect of football success on donations and applications. If potential outcomes are independent
of winning games after conditioning on bookmaker expectations, then our estimates represent
causal effects.

We face two complications when estimating these effects. First, the treatment — team wins —
evolves dynamically throughout the season, and the propensity score for each win depends on the
outcomes of previous games. We address this issue by independently estimating the effect of wins
in each week of the season. However, this introduces the second complication: a win early in
the season is associated with a greater than one-for-one increase in total season wins because the
winning team has (on average) revealed itself to be better than expected. We address this issue in
two manners. First, we combine an instrumental variables-type estimator with the propensity score
estimator. Under an assumption of additively separable treatment effects this estimates a weighted
average of team-specific treatment effects. Second, we estimate the effects of an entire season of
wins and losses using a sequential treatment effects model.

Applying these estimators we find robust evidence that football success increases athletic dona-
tions, increases the number of applicants, lowers a school’s acceptance rate, increases enrollment
of in-state students, increases the average SAT score of incoming classes, and enhances a school’s
academic reputation. The estimates are twice as large as comparable estimates from the previous
literature. There is less evidence that football success affects donations outside of athletic programs
or enrollment of out-of-state students. The effects appear concentrated among teams in the six elite
conferences classified as “Bowl Championship Series” (BCS) conferences, with less evidence of
effects for teams in other conferences.

The paper is organized as follows. Section 2 describes the data, and Section 3 discusses the
propensity score framework and estimation strategies. Section 4 presents estimates of the causal re-

lationships between football success, donations, and student body measures. Section 5 concludes.



2 Data

Approximately 350 schools participate in NCAA Division I sports (the highest division of intercol-
legiate athletics). Enrollment at these schools totals 4.5 million students, or 65% of total enrollment
at all NCAA schools (NCAA 2014; most public or nonprofit 4-year degree-granting institutions
are part of the NCAA). Within Division I schools, 120 field football teams in the Football Bowl
Subdivision (FBS, formerly known as “Division I-A”). Participation in Division I sports in gen-
eral, and the FBS in particular, requires substantial financial resources; average athletic spending
in 2010 was $46.7 million at FBS schools and $13.1 million at other Division I schools (Fulks
2011). Since participation in Division I requires scale, most schools are not in Division I, but the
majority of 4-year undergraduate students attend Division I schools.

Teams in the FBS play 10 to 13 games per season and are potentially eligible for post-season
bowl games. Games between teams in this subdivision are high-profile events that are widely
televised. We gathered data on games played by all FBS teams from 1986 to 2009 from the website
Covers.com. Data include information on the game’s date, the opponent, the score, and the spread,
or expected score differential between the two teams.

We combined these data with data on alumni donations, university academic reputations, ap-
plicants, acceptance rates, enrollment figures, and average SAT scores. Donations data come from
the Voluntary Support of Education survey (VSE), acceptance rate and academic reputation data
come from a survey of college administrators and high school counselors conducted annually by
US News and World Report, and application, enrollment, and SAT data come from the Integrated
Postsecondary Education Data System (IPEDS). Reporting dates for these measures range from
1986 to 2008.

Within the FBS there is a subset of six conferences known informally as “Bowl Championship
Series” (BCS) conferences. The six BCS conferences are the Atlantic Coast Conference (ACC),
Big East (now American Athletic Conference), Southeastern Conference (SEC), Big Ten, Big

Twelve, and Pac-10 (now Pac-12).! Until 2014 winners of these conferences were automatically

'There is spatial clustering in conference membership. ACC and Big East teams are on the

East Coast, SEC teams are in the Southeast, Big Ten teams are in the northern Midwest, Big
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eligible for one of ten slots in five prestigious BCS bowl games, and only five non-BCS conference
teams had ever played in a BCS bowl game.> Membership in a BCS conference is a signal of
prestige for a football program, and we expect that success may have larger effects for BCS teams
than for non-BCS teams. We thus estimate separate effects for BCS and non-BCS teams, and we
code a team as BCS if it was in a BCS conference at the beginning of our sample.?

Table 1 presents summary statistics for key variables by BCS status. Each observation repre-
sents a single season for a single team. For BCS teams, actual (expected) season wins are 5.9 (5.8)
games per season out of an average of 10.8 games played. Non-BCS schools win (expect to win)
only 4.6 (4.7) games per season since the two types of teams regularly play each other. In both
cases we exclude post-season games (bowl games) when calculating wins as participation in these
games is endogenously determined by regular season wins, and we do not observe the propensity
score of post-season participation.* Alumni donations to athletic programs average $4.0 million
per year at BCS schools and $0.7 million per year at non-BCS schools, and total alumni donations
(including both operating and capital support) average $27.6 million per year at BCS schools and

$5.4 million per year at non-BCS schools. The average BCS (non-BCS) school receives 16,815

Twelve teams are in the southern Midwest and Texas, and Pac-10 teams are on the West Coast.
Nevertheless, there is geographic overlap between different conferences; the eastern most Big Ten

school — Penn State — lies east of several ACC and Big East schools.
2Starting in 2014, the NCAA has switched to a system in which performance in playoff games

— which previously did not exist — determines participation in major bowl games.
*In only one case during our sample period did a BCS team move from a BCS conference to a

non-BCS conference; in 2004 Temple University transitioned from the Big East to independent sta-
tus (and later to the Mid-American Conference) due to poor attendance and non-competitiveness.
In several cases, however, non-BCS teams joined BCS conferences. Cincinnati, Louisville, and

South Florida joined the Big East in 2005, and UConn joined the Big East in 2002.
“When interpreting our regular season results, post-season participation is a potential channel

through which the effects may operate. Thus, while our results correctly estimate the average effect
of a regular season win, it is possible that the effect of winning may be larger when a regular season

win induces a team to participate in a post-season bowl game, and smaller when it does not.



(9,660) applicants every year and accepts 67% (76%) of them. A typical incoming BCS (non-
BCS) class contains 3,849 (2,611) students and has a 25th percentile SAT score of 1,101 (984).°
In general, BCS schools have more resources, larger student bodies, and more qualified students
than non-BCS schools; these differences corroborate our choice to estimate results separately for

BCS and non-BCS teams.

3 The Propensity Score Design
Consider linear regressions of the form

AYiiry = Bo+ BiWi + BoWig—a) + B3Si + BaSii—2) + 1 + €ier) (D

where Y, 1) represents an outcome for school i in year ¢ +1 (e.g. alumni donations, applicants,
or acceptance rate), WW;; represents school i’s football wins in year ¢, S;; represents school i’s
football games played in year ¢, A is a two-period differencing operator (i.e. AY;, = Y, — Yj_9)),
and ¢, represents a year fixed effect that controls for aggregate time trends. The coefficient of
interest is ;. We lag the win measure by one year relative to the outcome measure because the
college football season runs from September to December, so the full effects of a winning season
on donations or applications are unlikely to materialize until the following year.® Nevertheless,
W;: may affect Y;; towards the end of the year, so we difference over two years rather than one
year to avoid attenuating the estimates of (3.

Differencing models control for unobserved factors that vary across units but are constant over

time. Nevertheless, time-varying unobservables correlated with treatment assignment may con-

SIPEDS reports 25th and 75th percentile SAT scores; using the 75th percentile instead of the

25th percentile does not affect our conclusions.
®In the case of outcomes measured on a fiscal year basis (e.g. donations), there could be no

causal effect from contemporaneous wins; for most schools the 2012 fiscal year ends before the
2012 football season begins. Failing to lag the win measure severely attenuates many of the results,
which supports our hypothesis that effects do not — and in many cases cannot — materialize until

the following calendar year.



found fixed effects or differenced estimates (Lal.onde 1986). In our context changes in donations
or admissions could be related to changes in wins through reverse causality, and trends in other
factors (e.g. coaching talent) might be related to both sets of variables. One way to improve the re-
search design is to condition on observable factors that determine football wins, but two problems
arise in this context. First, we do not have data on a wide range of factors that plausibly determine
whether a team wins. Second, even if such data were available, conditioning on a large number of
factors introduces dimensionality problems and makes estimation via matching or subclassification
difficult.

In cases with binary treatments conditioning on the propensity score — the probability of treat-
ment given the observable characteristics — is equivalent to conditioning on the observables them-
selves (Rosenbaum and Rubin 1983; Dehejia and Wahba 1999). Conditioning on the propensity
score, or the probability of a win, is attractive in our case for two reasons. First, it is readily
estimable using bookmaker spreads. Second, it is of low dimension.

The treatment W, however, is not binary but can instead realize integer values from O to 12.
Furthermore it is dynamically determined — each game occurs at a different point in the season,
and the outcome of a game in week s may affect expectations about the outcome of a game in

week s+ 1.7 We address these issues in three ways. First, we exploit the conditional independence

"Hirano and Imbens (2004) and Imai and van Dyk (2004) extend propensity score methods to
cases with categorical and continuous treatments. Since the distribution of a bounded random
variable is defined by its moments, we could in principle calculate the conditional expectation,
variance, and skewness of W;; and condition on these quantities if we could observe them at the
beginning of each season. In practice, however, we cannot calculate these conditional moments
because bookmaker spreads are updated throughout the season. Importantly, bookmaker spreads
in week s are a function of the team’s performance in weeks 1 through s — 1. Bookmaker spreads
are thus endogenously determined by the treatment itself. One manifestation of this issue is that
a regression of a team’s total wins during a season on the sum of its weekly propensity scores
generates a regression coefficient that is significantly greater than one. If the weekly propensity

scores were calculated only using information determined at the beginning of the season — such



assumption to conduct nonparametric tests of the sharp null hypothesis that wins in year ¢ do
not affect outcomes in subsequent years. Second, we add an assumption of additively separable
treatment effects that, when combined with the conditional independence assumption, allows us
to estimate the causal effects of wins in a framework that combines instrumental variables and
propensity score estimators. Third, we adopt an inverse probability weighting approach exploiting
sequential conditional independence assumptions from the literature on sequential treatment effects
(STE); this approach allows us to relax the additively separable treatment effects assumption in

exchange for a stronger common support assumption.

3.1 Conditional Independence Tests

Angrist and Kuersteiner (2011) develop causality tests in the context of monetary policy shocks
that rely on a propensity score model and have the correct size regardless of the model determining
the outcomes. We conduct tests of the sharp null hypothesis of no causal effect using the same
identifying assumptions as Angrist and Kuersteiner (2011), albeit in a very different context. The
key insight in both papers is that the conditional independence assumption generates a testable
prediction under the sharp null: outcomes in periods ¢ + 1 and beyond should be independent of
treatment assignment in period ¢ after conditioning on the probability of treatment in period .

To set notation, let team ¢ play S games in season (year) t. The 1 x .S row vector Wj; contains
the outcome of each game for the entire season, with the sth element, IV, equal to unity if the
team wins in week s and zero otherwise. Let 1;;, denote the sum of elements in Wj;, or total wins
for team ¢ in season t. Denote a potential sequence of wins and losses as the 1 x .S row vector
w € W, with w representing the sum of the elements of w. The potential outcome Y;(1)(W)
is the value of outcome Y for school 7 in year ¢t 4+ 1 as a function of the entire series of wins
and losses in season t. There are 2° potential outcomes for team i in season ¢; in general 2°
ranges from 1,024 to 4,096. A causal effect compares two potential outcomes, Yi(t+1)(w) and

25

Yi(t+1)(W'), so there are (2

) causal effects that we might consider. Note that Yi(tﬂ)(w) need

as the previous season’s wins — then this regression would generate a coefficient equal to one in

expectation.



not equal Y;41)(w’) even if w = w’; different sequences with the same number of wins may
generate different outcomes. For generality we express our assumptions, propositions, and proofs
in terms of a generic potential outcome Y4 1)(W), but in our empirical results we use AY;41) as
the outcome to increase precision.?

Our test relies on the standard ignorability assumption. Let X represent the set of observable
characteristics, measured in week s of year ¢, that determine ;. Denote the history of observable
characteristics from weeks 1 through s as X, = [Xi¢ ... Xist]- These observables include the

history of wins and losses through week s — 1. In our context the ignorability assumption requires

the following:
Assumption 1 Strong Ignorability of Treatment Assignment:
L Yy (W) LWig | Xigp = X4ty VWEW, Vs:se{l,.,S}, Vi:te{l,. . ,T—-1}

2. 0<P<Wzst:1 ‘ Xistzzist) < 1, \V/ Kist Eiist, V S:.8 €& {1,...,5}7
Vi:te{l,. ,T—-1}

The first part of the assumption is the standard conditional independence assumption; it implies
that in each week s of the season, winning in week s is independent of the potential outcomes
Y;(+1)(w) when conditioning on the history of observables and wins and losses through week s.
The second part of the assumption is the standard common support assumption.

The conditional independence assumption has two unique features in our study. First, X,
represents the set of covariates observed by bookmakers in week s of year ¢ rather than set of co-
variates available to us the researchers. Second, there is a strong economic reason to believe that
X, contains all of the important observables. If there were an observable characteristic x7,, that
predicted W;,, and were not included in X, then professional bettors could use z},, to form pre-

dictions of P(W;s = 1) that were superior to those formed by the bookmakers. This discrepancy

$Define AY141)(W) to be Yy1)(W) — Yie—1). Itis trivial to see that if Yj;41)(W) is condi-
tionally independent of Wy, then AY;(H_U(W) is conditionally independent of Wyy; Yj;_1) is an
observable, so it must be conditionally independent of Wj;. Thus conditional independence of

Yi(+1)(w) and Wy implies conditional independence of AYj1)(w) and Wi.
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would represent an arbitrage opportunity, and over time bookmakers would go bankrupt if they did
not condition their spreads on z7,,. Thus, unlike in many data sets, we have a compelling reason
to believe that the conditional independence assumption holds. Studies of betting markets support
this conjecture in that it has proven difficult to build models that outperform bookmakers’ spreads
by an economically meaningful margin (Glickman and Stern 1998; Levitt 2004; Stern 2008). In
our setting, the conditional independence assumption would fail if school alumni or applicants
conditioned their decisions on some variable z;,, that affected team performance and was observ-
able to them but not to bookmakers. This seems unlikely. Nevertheless, as a robustness check we
reestimate the effects later in the season when team quality becomes well known to all observers,
and we find similar results (see Section 4.2).

Denote the conditional probability of winning as P(W;ss = 1 | Xi¢ = Xist) = P(Xist). For
binary treatments the ignorability assumption implies that conditioning on the probability of treat-

ment, or propensity score, is sufficient to guarantee independence between treatment assignment

and potential outcomes (Rosenbaum and Rubin 1983):
Yri(“’l) (W) J‘ WiSt ‘ p(zist% v w, Sat (2)

Under the sharp null hypothesis the treatment has no effect and all potential outcomes are
identical. Thus under the null Y;(;, 1) (w) = Yi(4+1) V' w. This fact generates the testable implication
that Y1) L Wig | p(X;s,) under the null. Tests of the sharp null based on this implication should
have the correct size regardless of the model generating Y;(Hl).g

In practice we test whether Cov(Yj¢41), Wist | p(Xi;)) = 0. If we reject this hypothesis, then
Wis must have a causal effect on Yj;11). To implement the test we first estimate the propensity
score. This requires translating the bookmakers’ “point spread” — or predicted margin of victory —
into the probability of a win. To allow flexibility in the relationship we estimate a logistic regression

of Wj on a fifth-order polynomial of the point spread.!® The results are highly significant; a

°The power will of course depend on the alternative hypothesis and the specific test statistic.
"Previous research has shown that the margin of victory in National Football League (NFL)

games is approximately normal, allowing a simple translation from point spreads to win probabil-

ities (Stern 1991). However, these results may not apply directly to NCAA football games.
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likelihood ratio test of the hypothesis that all five coefficients equal zero produces a x? statistic of
11,333. We use the fitted values from the logistic regression, p;s, as the propensity score. The
minimum and maximum estimated propensity scores are 0.005 and 0.994 respectively.'!

After forming p;4, in each week s € {1, ..., 12} we condition on p;, via subclassification and
estimate regressions of AYj,1) on W;,,. We then test whether the average of those 12 regression
coefficients is significantly different than zero. These tests, the p-values from which we report in
Tables 2 through 7, rely only on strong ignorability (Assumption 1). They do not depend on the
data generating process for Y;;,1) or the potentially dynamic process generating W,;. However,

to estimate the magnitude of any causal effects we must impose an additional assumption.

3.2 Instrumental Variables Estimator

Since we separately estimate the effect of a win in each week s for s = 1, ..., 12, it is tempting to
average the 12 effects to compute the average effect of a win. However, the outcome of a game in
week s may reveal information about team quality and affect expectations about the outcomes of
games in weeks s + 1 and beyond. A win in week s thus correlates with a greater than one unit
change in total season wins, w;;, even when conditioning on p(X;,, ). The coefficient in a regression
of Yj41) on Wiy (while conditioning on p(X;s¢)) thus overstates the causal effect of winning in
week s because it includes the effects of an increased likelihood of winning in subsequent weeks
as well.

We employ two strategies to estimate the causal effects of wins. The first strategy estimates the
effects of a win during each week of the season separately and applies an instrumental variables
type estimator to account for the fact that a win early in the season reveals additional information

about the quality of the team. The intuition underlying this estimator is straightforward: a win in

TRecent papers by Graham et al. (2012) and Imai and Ratkovic (2014) suggest using inverse
probability tilting or covariate balancing propensity scores to ensure more exact covariate balance
than may be achieved via propensity score matching or weighting. In our case, however, these
methods are less relevant, because we do not observe the actual covariates being used to form

bookmaker expectations and the corresponding propensity scores.
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week s is uncorrelated with potential outcomes (after conditioning on p(x;,)) and correlated with
total wins, thus satisfying the two conditions of a valid instrument. The strength of this approach
is that it is straightforward to ensure common support across observations, but the downside is that
we must assume that winning in week s does not modify the causal effect of winning in week s+ 1
(and vice versa). An alternative strategy, presented in Section 3.3, models the entire sequence of
wins during a season.

The causal effect on Y41y of a sequence of wins w relative to an alternative sequence w’ is
Yi(t+1)(W) — Yi41)(W’'). Conditional on wins and losses in other weeks, the causal effect of a win

in week s for school 7 in year ¢ is the difference between the two potential outcomes:

5ist(wi(fs)t) = Yz‘(t+1)(wi1t, -5 Wi(s—1)t5 L, Wi(s41)ty -+ wiSt)

— Y1) (Wites ooy Wigs—1)t> 0, Wigs 1)t - Wist )

The vector wj_g)¢ contains team ¢’s wins in weeks prior to and following week s. There is
an asymmetry between wins in weeks prior to s and wins in weeks subsequent to s. Wins in
weeks prior to s are predetermined, and we can treat them as we would any other predetermined
covariate. Wins in weeks subsequent to s are potentially endogenous and may be affected by W,;,.
In particular, W;; could have a causal effect on W1y, or the realization of W, could reveal
information that affects expectations of W(,1y,. The data imply that one or both of these factors is
present; winning in week s is associated with a higher probability of winning in later weeks, even
after conditioning on p(X;y)-

To estimate the causal effects of wins we assume that the effects of wins across different weeks
of the same season are additively separable. This reduces the dimensionality of the parameter
space that we consider to a manageable degree, as 3;,; is no longer a function of w;_s). Let O be

a 1 x S row vector containing zeroes and 3;; be a .S x 1 column vector containing [3;5 in row s.
Assumption 2 Additively Separable Treatment Effects: Yi41)(W) = Yi11)(0) + wB;s.

Assumption 2 allows the effect of winning to vary arbitrarily by team, season, and week, but it
does not allow for interactions of these effects across different weeks. This assumption is a form of

the Stable Unit Treatment Value Assumption (SUTVA; Rubin 1980) in that a team’s performance
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in week s is assumed not to modify the causal effect of its performance in week s. It would be
violated if, for example, the effect of winning in week 2 depended on whether a team won in week
1. While Assumption 2 is not guaranteed to hold, it is less restrictive than the linear functional form
assumptions imposed when interpreting regression coefficients, as is standard in this literature. If
Assumption 2 applies, then we can define an instrumental variables (IV) estimator that converges
to a weighted average of treatment effects in different games.

We define our IV estimator as follows. First estimate the “reduced form” effect of winning in

week s on Y1)

Tp(xiet) — E[Yi(tﬂ) | Wist = 1,p(X36¢)] — E[Yi(tﬂ) | Wist = 0, p(X¢)] (3)

If there were no relationship between winning in week s and winning in future weeks, then
Tp(x,,,) Would represent the causal effect of winning in week s under Assumption 1. However, we
must account for the fact that winning in week s is associated with a higher probability of winning
in future weeks. Thus we estimate the “first stage” relationship between winning in week s and
winning in future weeks:

S
Vo) = D [PWige = 1| Wiat = 1, p(Xse0)) = P(Wige = 1| Wit = 0, p(xse0))] (4)

Jj=s+1
Finally, combine the two estimates to generate:

7T-P(iist)
= e (5)
1 + fyp(iist)

Bp(siae)

This estimator is identical to an IV estimator in which W, is the instrument (which is exoge-
nous after conditioning on p(x;)), and Zfzs Wi;¢ 1s the endogenous treatment to be instrumented.
The IV estimator is valid regardless of whether the correlation between current wins and future
wins arises because W, has a causal effect on W;j;, (for j > s) or because the realization of
Wi« reveals information that affects expectations of W;;,. Nevertheless, when interpreting the
IV estimator it is helpful to draw a formal distinction between these two possibilities. Using the

language of Angrist et al. (1996) we define “compliers” as teams for whom winning in week s has

a (positive) causal effect on winning in week j, changing W;;; from zero to one. Let p§; denote
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the share of teams that are week j compliers. All other teams are “noncompliers” in the sense that
winning in week s has no causal effect on winning in week j. As is standard, we rule out “defiers”

(i.e. losing in week s cannot cause a team to win in week 7).

Proposition 1 Let C (NC) denote the event that team i in year t is (is not) a complier for weeks s
and j (j > s). Assume that the causal effect of W5, on Wi, is weakly positive. Under Assumptions

1 and 2,

ElYiwi1y | Wise = 1,p(Xie)] — E[Yig41) | Wist = 0, p(Xie)]
S

= Bl | P& + Y (05EBije | p(Xiat), €l + (1 = p%) E[Bije |p(Xser), NC
Jj=s+1

: {P(VVth =1 | I/Vist = ]-7p<X )7NC) - P(Wijt =1 | Wist = Ovp(zist)aNC)})

ist

Thus,
S ¢ c
Tp)  ElBist | PXise)] + 2251 (05 B Bije | P(Xist), €] + (1 — pg; ) isje B[ Bije |p(Xi6¢), NC])
- S C C ’
1+ Vp(xiet) 1+ Zj:s+1(st + (1 - st)ﬂisjt)
where

Hisjt = P(VVijt =1 ’ VVist = 17p<§ist)7NC) - P(Vvijt =1 ‘ Wist = O>p(§ist)7NC)'

Proof: See Appendix A.

In this weighted average of treatment effects, the weight si;.;; represents the increase in the
probability of winning in week j that is associated with a win in week s (conditional on p(x;))-
These weights are higher for two types of teams: compliers and teams with greater uncertainty
about their quality. For compliers ji;4j: is set to one by definition because winning in week s
causes IW;;; to change from zero to one. For noncompliers ji;5;; will be greater if a win reveals
more information about team quality, and it typically decreases with s because wins late in the
season reveal less new information about team quality than wins early in the season. Compliers
receive a higher weight than noncompliers, but unlike in a typical IV setting the noncompliers
do not receive zero weight. If winning in prior weeks never has a causal effect on winning in

subsequent weeks, then there are no compliers, pg; = 0, and the sum of weights simplifies to
S
1+ Zj:s—l—l Hisjt-
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The mechanics of the IV estimator are straightforward. For simplicity suppose that wins in all
weeks have an equal effect, 5. In that case we may rescale the observed effect of winning in week
s by the average increase in total season wins associated with winning in week s. For example,
if a win in week 3 is associated with an average of 1.5 additional wins during the entire course

of a season (including the week 3 win itself, and after conditioning on p(x;)), then we would

ist
rescale the estimated effect of a win in week 3 by 1/1.5 = 0.67. In reality effects may vary by
school, season, and week, and in that case the IV estimator converges to a weighted average of
heterogeneous treatment effects.

Estimation proceeds in three steps. First, for each game we estimate the propensity score
p(X;s ) using the published bookmakers’ spread (see Section 3.1). To ensure common support
we trim all observations with p;s less than 0.05 or greater than 0.95. Next, for each week s
we stratify the sample into 12 bins based on the estimated propensity score (Dehejia and Wahba
1999).!2 Within each bin we estimate two linear regressions: a regression of the outcome Yi+1)

. . . t
on W, and a regression of the expected number of wins for the remainder of the season (ply =

Zf:s +1P(X556)) on Wi The first regression estimates the “reduced form” coefficient 7y, ,)
(Equation 3), and the second regression estimates the “first stage” coefficient 7, . ,) (Equation
4). We include the estimated propensity score as a control in both regressions to eliminate any
remaining imbalance within bins. Finally, we combine the estimates to form By, ) = fp(x,..)/ (1+
Yp(x,.,)) (Equation 5). We then compute B as the weighted average of Bp(&st) across all 144 bin-

by-week combinations (12 bins per week by 12 weeks per season), weighting each estimate by the

relevant sample size.!> Appendix B provides implementation details.

2We experimented with greater numbers of bins (e.g. 20) and found generally similar results.
A larger number of bins is attractive in that it allows a more flexible relationship between the
estimated propensity score and the outcome. However, the statistical precision of our “first stage”
regressions relating total season wins to winning in week s becomes poor as the number of bins

increases (see discussion in Appendix B). Thus we limited the number of bins to 12.
3An alternative way to condition on the estimated propensity score is to weight treated ob-

servations by y/1/p and untreated observations by /1/(1 — p). Hirano et al. (2003) show that
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3.3 Sequential Treatment Effects Model

The additively separable treatment effects assumption (Assumption 2) accommodates arbitrary
treatment effect heterogeneity by school, season, and week. Nevertheless, it does not accommo-
date the possibility that the effects of winning in week s may depend on whether or not a team wins
in week j (j # s). To accommodate this possibility we consider a dynamic model of sequential
treatment effects (Lechner 2009; Lechner and Miquel 2010). This model allows us to relax As-
sumption 2; its downside is that given the long series of treatments within a season, it is impractical
to guarantee common support across observations.

Recall that the row vector w represents a potential sequence of wins and losses in a season,
and the quantity w represents the sum of the elements of w (i.e. total season wins). There are
25 potential outcomes for team i in season ¢, Yi(+1)(w), and (225 ) causal effects that we might
consider. For tractability we focus on the average potential outcome for the set of sequences that

contain w = k wins,

LS Bl (W) ©)

r
k wow=k

In this expression 7y is the number of unique possible sequences with exactly £ wins. Equation
(6) allows for heterogeneity in the average outcome for different sequences with the same number
of wins, but it does not attempt to separately estimate the average outcome for each sequence.

Estimating the average outcome for each sequence would be infeasible with our data, as the number

weighting leads to efficient estimation of the average treatment effect. We apply an inverse prob-
ability weighting estimator in our sequential treatment effects model in Section 3.3. However, the
weighting estimator does not apply directly to our IV estimator because we need to estimate and
combine two separate coefficients, both of which may vary with the propensity score. In particular,
the weighting estimator does not allow us to estimate different coefficients for different values of
the propensity score. If we simply estimate the “reduced-form” effect of W, on Y;(;41) (i.e. we do
not adjust for the fact that winning in week s is associated with more than one additional win over
the course of a season), then we get qualitatively similar results if we stratify on the propensity

score as described above or if we apply the weighting estimator.
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of potential outcomes exceeds the number of observations in our data set.

Estimating Equation (6) for £ = 0, ..., 12 requires the weak dynamic conditional independence
assumption (W-DCIA). W-DCIA includes a conditional independence assumption, applied to the
case of a dynamically determined sequence of treatments, and a common support assumption. If

we assume that the history of observable characteristics through week s, X, ,, includes previous

ist>
wins and losses (which it almost surely must, as these quantities are readily observable and are
clearly informative about team quality), then W-DCIA is equivalent to the ignorability assumption
(Assumption 1).'4

Under random assignment of wins we could estimate Equation (6) using the simple average

_ _ Zi,t Yigpn - H{Wir = k}
Yi(t+1)k = Zi,t Wy = k)

To address selection we apply inverse probability weights (IPW) to construct estimators of the

form

~ 1 Yirn) - W = k} Wy =k}

Yi k= = ;o qie(k) = N (7
15 D Dy ) = 2 =

The weights p(w;) represent the estimated probability of observing sequence wjg, and if W-DCIA

holds then the IPW solve the selection problem (Lechner 2009). The ¢;:(k) terms normalize the

weights to sum to one. Following Robins et al. (2000) and Lechner (2009) we express the joint

“Following Lechner (2009), W-DCIA in our context requires:

L. Y;(Hl)(w) L Wi | Xizg =%i1e VWeEW;
)/i(t-‘rl) (W) 1 Wist | Kist = Xist» Wilt = Wilty --- Wi(s—l)t = wi(s—l)t \v/ w € W
Vs:se{2..,5}

22.0< PWiy =1 | Xing =xi1e) <1V Xia¢ € Xy 3
0< P(Wise =1 | Xigt = Xiep, Wine = Wity -, Wis—1y¢ = wi(sfl)t) <1V x4 € Xy
Vs:se{2..,5}

These conditions follow from Assumption 1 as long as X, includes Wiy, ..., Wi_1y;.
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probability that W;; = wy, as the product of the sequential transition probabilities:
p(wie) = P(Winy = winy | Xine = Xine) - P(Wiar = wint | Xigy = Xiag, Wire = wine)

st

- P(Wise = wist | Xige = Xieg> Wite = Wit -, Wigs—1)t = Wi(s—1)t)

This formulation concurs with our data in that for each week of the season we observe the estimated
probability of winning conditional on the events that occur up until that week. It is thus straight-
forward to construct 1/p(wj ), our estimated IPW, and estimate Equation (7) for & = 0, ..., 12.
We exploit Equation (7) to generate estimates in two ways. First, we estimate nonparametric
local polynomial regressions of AY;1) on W, weighting each observation by 1/p(wi;). We
present these estimates graphically. Then, to summarize these local polynomial regressions, we
estimate linear regressions of AYj;,1) on W, again weighting each observation by 1 /D(Wig):
AYiory = Bo+ BiWie + BoWig—a) + B3Si + BaSit—2) + 41 + Sie+1), )
b
P(Wit) '

We present the results of these regressions in our tables. Although the IPW solve the selection

with weights a; =

problem, the regression results represent minimum mean squared error linear approximations to the
potentially nonlinear dose-response function relating AY;( ) and W, (represented in the figures).

The key issue in applying our sequential treatment effects model is that for many potential
outcomes we observe little or no data. There are 2° possible sequences — in most seasons 2°
lies between 1,024 and 4,096 — and less than 2,000 observations. For the majority of sequences
w € W, the set of observations with wi; = W is empty or a singleton. Furthermore, with so
few observations per sequence it is unlikely that the common support assumption holds when,
for example, comparing an observation with a sequence with one win to an observation with a
sequence with ten wins. Thus, although we trim observations with extreme weights to help induce
common support, our estimates are best interpreted as the average effect of a marginal change
in win percentage.!”> The estimated dose-response relationships do not necessarily indicate what

would happen to a team that exogenously changes from one win to ten wins.

15Specifically, we trim all observations with IPW that are above the 90th percentile. Trimming

at the 95th percentile instead generates qualitatively similar results.
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4 Propensity Score Results

Table 2 presents results demonstrating balance in pre-treatment outcomes between winning and
losing teams when conditioning on the propensity score. Each row reports the results for a different
dependent variable. The first set of columns in Table 2 present results from our IV model (Equation
5). To match the main specification we use in our results we specify the outcome in differences
(AYj(t4+1))- However, instead of estimating the relationship between wins in year ¢ and outcomes
in year t + 1, we estimate the relationship between wins in year ¢ + 2 and outcomes in year ¢.'°
Significant results in Table 2 would imply that current trends in outcomes predict future wins, even
after conditioning on the propensity score. This would represent a violation of Assumption 1. The
results reveal no significant relationship between any outcome and future wins, nor a consistent
trend in the signs of the coefficients (seven of the ten coefficients are in the “negative” direction,
implying that an unfavorable trend in the outcome weakly correlates with future wins).

The second set of columns in Table 2 presents results from estimating the sequential treatment
effects models (Equation 8). Again we estimate the relationship between wins in year ¢ + 2 and
outcomes in year ¢ (while conditioning on the propensity score via inverse probability weights).
There is still no significant relationship between any outcome and future wins nor a consistent

trend in the signs of the coefficients. Overall the results in Table 2 suggest that winning and losing

schools are comparable in pre-trends after conditioning on the propensity score.

4.1 Baseline Results

Table 3 reports the results of estimating the effects of winning using all FBS (“Division 1-A”)
schools. In the first set of columns we estimate the IV model (Equation 5). We specify the outcome
in differences (AYj(;1)) instead of levels because differencing removes much of the unexplained

cross-school variation in Y1 1), generating more precise estimates. Furthermore, differencing can

6Recall that we use two year differences because some variables are measured on the academic
or fiscal year, while others are measured on the calendar year. Thus we set a two year gap between

wins and outcomes for the placebo tests as well.
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help eliminate any bias that remains after conditioning on the propensity score (Smith and Todd
2005). We report p-values that test the sharp null hypothesis of no relationship between wins in
year t and outcomes in year ¢ + 1. As noted in Section 3.1 the validity of these tests relies only on
strong ignorability (Assumption 1) and does not depend on the data generating process for Y;(;,1)
or the potential dynamics in the process generating W;.

Estimates from the IV model imply that an extra win increases alumni athletic donations by
$136,400. There are no statistically significant effects on non-athletic donations, total donations,
or the alumni giving rate, though we lack sufficient precision to rule out economically significant
effects. The point estimate on non-athletic donations is positive, however, suggesting that the
increase in athletic donations does not “crowd out” non-athletic donations. An extra win increases a
school’s academic reputation by 0.004 points (0.006 standard deviations) and increases the number
of applicants by 135 (1%). Acceptance rates decrease by 0.3 percentage points (0.4%), in-state
enrollment increases by 15 students (0.6%), and the 25th percentile SAT score increases 1.8 points
(0.02 standard deviations).

The large number of outcomes tested raises the issue of multiple hypothesis testing. We address
this issue by reporting “g-values” that control the False Discovery Rate (FDR) across all results
tables (Tables 3 through 7) alongside the standard per-comparison p-values. The False Discovery
Rate is the proportion of rejections that are false discoveries (type I errors). Controlling FDR
at 0.1, for example, implies that less than 10% of rejections should represent false discoveries.
To calculate FDR g-values we use the “sharpened” FDR control algorithm from Benjamini et al.
(2006), implemented in Anderson (2008). All of our significant results in Table 3 remain significant
when controlling FDR at the g = 0.10 level.

The second set of columns in Table 3 reports estimates from the sequential treatment effects
model (Equation 8). There is a reasonable degree of concordance between the IV model and STE
model results, which increases our confidence in both. The STE model estimates that an additional
win increases alumni athletic donations by $191,200 (¢ = 2.9). Focusing on other results for which
we can reject the sharp null hypothesis based on our conditional independence tests, we find that

academic reputation increases by 0.003 points, applications increase by 81 applicants, acceptance
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rates decrease by 0.3 percentage points, in-state enrollment increases by 13 students, and the 25th
percentile SAT score increases by 0.8 points. Most of these estimates are of similar magnitude to
our IV estimates; the two exceptions are effects on applicants (135 versus 81) and effects on the
25th percentile SAT score (1.8 versus 0.8). The confidence intervals for these results are wider, and
we would not be able to reject the null hypothesis if we only examined the STE model #-statistics.

An advantage of the STE model over the IV model is that we can consider the potential non-
linearity of the functions relating wins to outcomes. Figure 1 plots local polynomial regressions
relating outcomes to changes in wins. Each panel presents a different outcome, and we weight
each observation by its IPW to address selection. Panel 1 reveals a strong, generally linear rela-
tionship between wins and alumni athletic operating donations. The relationships for applicants
(Panel 6) and in-state enrollment (Panel 9) also appear approximately linear. The relationships for
the acceptance rate (Panel 7) and 25th percentile SAT score (Panel 10), however, display concavity,
although the confidence intervals are too wide to reach strong conclusions; in both cases a straight
line would fit within the regions defined by the confidence intervals. Nevertheless, it is notable that
SAT scores exhibit both the largest divergence between the IV and STE estimates and the strongest
evidence of concavity in the nonparametric regressions. This pattern suggests that for SAT scores,
the additive separability assumption (Assumption 2) may not be appropriate.

Tables 4 and 5 report IV and STE model results estimated separately for BCS teams and non-
BCS teams respectively. For most outcomes the estimated effect for BCS teams (Table 4) is larger
(or more positive) than the estimated effect for non-BCS teams (Table 5). However, for applica-
tions, in-state enrollment, and SAT scores, there is a larger effect among non-BCS schools than
among BCS schools in one or both models. All three of these measures pertain to attracting stu-
dents rather than satisfying alumni, and it is possible that winning seasons have a larger effect on

17

visibility for lower-profile non-BCS schools than for high-profile BCS schools."” Nevertheless,

the effects for non-BCS schools generally fail to achieve statistical significance, so it is difficult to

17 Another interesting stratification would be to compare results for public and private institutions.
However, there are too few private institutions playing FBS football (17) to reliably estimate the

propensity score design.
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draw any firm conclusions.

4.2 Effects Excluding Early Season Games

The propensity score design is particularly credible for games occurring later in the season. At
that point bookmakers have better knowledge of each team’s skill, and wins and losses are closer
to truly random after conditioning on bookmaker odds. It is also the case that early season games
tend to be against out-of-conference opponents that are specifically selected because they are weak
(Thamel 2006). As a robustness check we estimate the IV and STE models while excluding the
first month of the season. Table 6 reports these results.

In most cases the estimates change little relative to Table 3 when we exclude the first four
games of the season. Statistically significant effects remain for alumni athletic donations, academic
reputation, applicants, in-state enrollment, and SAT scores (the one exception is the acceptance
rate, which becomes statistically insignificant). Precision falls since there are now fewer games
used in the estimation sample, and several effects fail to achieve significance at the g = 0.10 level
after controlling FDR. Nevertheless, the similarity in the IV point estimates between Tables 3
and 6 for outcomes that are statistically significant in the baseline results is reassuring. There is
somewhat more variability in the STE point estimates; the effects for athletic operating donations,
academic reputation, and applicants fall by an average of 40%, while the effects for the acceptance
rate, in-state enrollment, and 25th percentile SAT score rise by an average of 84%. Nevertheless,
the overall average effect for these outcomes in the STE model is almost identical between Tables

3 and 6 (increasing 5%).

4.3 Unexpected Wins vs. Unexpected Losses

The effects that we estimate by definition represent the effects of unexpected wins and losses.
Prospect theory and previous research suggest that individuals may respond differently to unex-
pected losses and unexpected wins. For example, Card and Dahl (2011) find that domestic violence

increases following unexpected NFL losses but does not decrease following unexpected NFL wins.
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To explore this possibility we separately estimate Equation (5) for games in which the propensity
score is greater than 0.5 and games in which the propensity score is less than 0.5.'® In the former
case oddsmakers expect the team to win, while in the latter case they expect the team to lose.
Appendix Table Al presents results for these two separate samples. The first set of columns
estimates the effect of avoiding unexpected losses (the sample is limited to games in which the
propensity score exceeds 0.5), while the second set of columns estimates the effect of achieving
unexpected wins (the sample is limited to games in which the propensity score is less than 0.5).
There is no consistent pattern when comparing the two sets of estimates. Unexpected wins ap-
pear to have a larger impact on alumni measures, while avoiding unexpected losses may have a
larger impact on incoming student measures. The differences, however, are not statistically sig-
nificant. Overall there is little evidence suggesting that the effects of winning vary strongly with

expectations.

4.4 Persistent Effects

The baseline results demonstrate that wins in year ¢ affect outcomes in year ¢t + 1. If wins have
persistent effects, then wins in year ¢ may also affect outcomes in year ¢ 4 2 or beyond. Let IV,
be wins in year ¢ (i.e. Wy, = Zil Wig). It is tempting to estimate the effect of W;; on Yo
by simply replacing Y;(;,1) with Yj,9) in the “reduced-form” equation, Equation (3). However,
doing so overlooks the fact that winning in year ¢ is correlated with winning in year ¢t + 1, even
after conditioning on the propensity score. This occurs for the same reason that winning in week
s is correlated with winning in week s 4 1 even after conditioning on the propensity score — a win
in week s can reveal that a team has more talent than expected. Some of the estimated effect of
winning in year ¢ on Yj;,) may thus result from increased wins in year ¢ + 1, Wj(41).

We use the following procedure to estimate the effect of WW;; on Yj2) while controlling for

Wi(t+1)- First, we replace Yj(;4.1) with Y, 9) in Equation (3) and estimate our IV model. Denote

8]t makes less sense to estimate the sequential treatment effects model in this context because
the STE model estimates the effect of an entire sequence of wins and losses, rather than a single

win or loss.
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this estimate as 7,&; zﬁ estimates the “reduced-form” relationship between W;; and Y2 without
controlling for changes in Wj,1). Next, we estimate the relationship between W, and W1).
To do this we replace Y41y with Wj44) in Equation (3) and estimate our IV model. Denote
this estimate as ;\; )\ estimates the “reduced-form” relationship between Wy and Wj(;41) (after
conditioning on the propensity score). Finally, we calculate 0 = 1) — \j3, where {3 is the causal
effect of W;; on Yj;11) (estimated in Section 4.1). In short, we adjust the reduced-form effect of
Wit on Yj19) to account for the fact that W1 is increasing in W;; (i.e. 5\) and that Wi 1)
affects Yj(42) (ie. B).

The second set of columns in Table 7 reports estimates of 0, the effect of winning in year ¢ on
outcomes in year t 4+ 2. There is little evidence that winning has effects that persist for two years.
Most of the estimates are statistically insignificant and smaller than comparable estimates from
Table 3 (reproduced in the first set of columns). None are statistically significant at any level after

controlling FDR. The effects of winning in year ¢ appear to be concentrated in the following year.

5 Conclusions

For FBS schools, our results reveal that winning football games increases alumni athletic dona-
tions, enhances a school’s academic reputation, increases the number of applicants and in-state
students, reduces acceptance rates, and raises average incoming SAT scores. The estimates imply
that large increases in team performance can have economically significant effects, particularly in
the area of athletic donations. Consider a school that improves its season wins by three games (the
approximate difference between the median team and an 85th percentile team). Changes of this
magnitude occur approximately 20% of the time over a one-year period and 27% of the time over a
two-year period. This school may expect alumni athletic donations to increase by $409,000 (17%),
applications to increase by 406 (3%), the acceptance rate to drop by 0.9 percentage points (1.3%),

in-state enrollment to increase by 46 students (1.8%), and incoming 25th percentile SAT scores to
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increase by 2.4 points (0.2%)."

These estimates are approximately twice as large as comparable
estimates from the existing literature. For example, among studies that used fixed effects with
panel data, a 3-win increase in team performance was associated with a 1.5% to 1.7% increase in
applications (Murphy and Trandel 1994; Pope and Pope 2009), while our estimates suggest a 3%
increase.

Do these effects imply that investing in team quality generates positive net benefits for an FBS
school? Answering this question is difficult because we do not know the causal relationship be-
tween team investments and team wins. Nevertheless, we consider a simple back-of-the-envelope
calculation to establish the potential return on team investments.

Orszag and Israel (2009) report that a $1 million increase in “football team expenditures” is
associated with a 6.7 percentage point increase in football winning percentage (0.8 games). If
we interpret this relationship as causal, it implies that a $1 million investment in football team
expenditures increases alumni athletic donations by $109,000, increases annual applications by
108, and increases the average incoming SAT score by 0.6 points. These effects seem too modest
by themselves to justify the additional expenditures. However, if increases in team expenditures
generate commensurate increases in athletic revenue (another finding in Orszag and Israel (2009),
though a portion of this relationship is surely due to reverse causality), then the effects estimated
here represent a “bonus” that the school gets on top of the increased athletic revenue.

Two additional caveats apply when interpreting our results. First, we estimate the effects of
unexpected wins. If a school invests in its football program and improves its record, alumni and
applicant expectations will eventually change. In particular, increased expectations may diminish
the return to achieving any given level of success. The effects of a persistent increase in season
wins may therefore differ from the effects we estimate here.

Second, the effects we observe likely operate through two channels. One channel is team

quality; a team that plays well is more enjoyable to watch than a team that plays poorly, even

BFor the SAT score calculation we use the STE coefficient rather than the IV coefficient, as
there is suggestive evidence that the additive separability assumption (Assumption 2) fails for SAT

scores (see Section 4.1).
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holding constant the game’s outcome. This is in part why the NFL can charge much higher ticket
prices than competing leagues that employ less skilled players (e.g. the Arena Football League).
The second channel is winning itself; fans and alumni enjoy winning games regardless of how
well the team plays. Team records, however, are by definition a zero-sum game; one team’s win is
another team’s loss. The effects demonstrated here thus do not change the “arms race” nature of
team investment, as each team purchases its wins to the detriment of other teams. While improving
the overall level of play in the NCAA may attract more fans and alumni support through the first
channel, it cannot have any effect on the second channel. A simultaneous investment of $1 million
in each BCS football team will likely generate smaller effects on donations and applications than
the estimates presented in this paper.

These caveats notwithstanding, we demonstrate that big-time athletic success can attract do-
nations and students. We do so by extending the propensity score design to a dynamic setting in
which multiple treatments occur at different points in time. In this setting the propensity score for
any given treatment depends on the realized values of previous treatments. We apply this frame-
work in a context in which the ignorability assumption is likely to hold and in which previous
research has generated inconsistent conclusions. While the ignorability assumption does not apply

in many circumstances, in those that it does these tools may facilitate estimation of causal effects.
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Figure 1: Effects of Wins on Outcomes

Panel 1: Effect of Wins on Athletic Operating Donations Panel 2: Effect of Wins on Nonathletic Operating Donations
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