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Abstract

In familiar models, a decrease in the friction facing mobile factors (e.g., lowering their
adjustment costs) increases a coordination problem, leading to more circumstances where

there are multiple equilibria. We show that a decrease in friction can decrease coordination
problems if, for example, a production externality arises from a changing stock of knowl-
edge. In general, the relation between the amount of friction that mobile factors face and

the likelihood of multiple equilibria is non-monotonic.
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1 Introduction

The purpose of this paper is to extend our intuition about intersectoral migration models with
increasing returns to scale. Our chief contribution is to explain why multiplicity may be very
unlikely to arise in exactly the circumstances where previous models would suggest that it is
likely to occur.

In some circumstances, the payoff from migrating is higher if many other agents also mi-
grate. In this situation – i.e. where actions are strategic complements – there may be multiple
equilibria. For example, in Matsuyama (1991) and Krugman (1991)’s migration models, agents
decide whether to work in the Agricultural or Manufacturing sector. For some range of labor
allocations, an externality causes the benefit of working in a particular sector to increase with
the number of workers there. Agents’ decisions depend on their beliefs about what other agents
will do, rather than merely on exogenous economic fundamentals. This model has been used
to explain why similar countries might follow completely different development paths. In
this setting, a decrease in friction, which makes it possible for workers to change sectors more
cheaply, makes the multiplicity of equilibria “more likely”.

If it is very costly for agents to change previous decisions – i.e. if the amount of friction is
extreme – then there is little scope for their current decisions to depend on their beliefs about
what other agents will do. In this case, the multiplicity of equilibria is unlikely. If the cost of
changing previous decisions is negligible (and given that actions are strategic complements), it
is natural to think that beliefs are a greater factor in the decision-making process, making the
multiplicity of equilibria more likely. This type of reasoning leads to the conjecture that the
relation between friction and the likelihood of multiplicity is monotonic. We show that this
conjecture is not true in general.

We modify Krugman (1991)’s migration model by introducing learning-by-doing in Manu-
facturing (as in Matsuyama (1992)). Labor productivity in that sector increases as a result of
experience and decays in the absence of production. This description is probably more realis-
tic than the assumption that increasing returns to scale depend directly on the current level of
employment in the sector.1 More importantly, this generalization fundamentally changes the

1In another interpretation of this model, Manufacturing output creates pollution that damages an environmental
stock that determines labor productivity in Agriculture, as in Copeland and Taylor (1999). At a point in time the
wage differential depends only on the environmental stock and is therefore independent of the labor allocation.
Increased Manufacturing output lowers future labor productivity in Agriculture, via changes in the environmental
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intuition from the simpler model. We first describe our research question and results, and then
provide a brief literature review. The next two sections present the model and the results.

Research question and results Dynamic models with complementarities can give rise to two
or more stable steady states. To each of these steady states there exists a basin of attraction,
defined as the set of initial conditions from which there is an equilibrium trajectory that ap-
proaches the corresponding steady state. The intersection of two (or more) basins of attraction
is the “Region of Multiplicity”, or ROM. If the ROM is empty, there exists a unique equilib-
rium trajectory for all initial conditions. In this case, we regard the equilibrium as unique,
despite the existence of multiple steady states. (In our usage, “equilibrium” always refers to
a trajectory, not simply to a steady state.) If the ROM has positive measure, then there exists
a set of points (with positive measure) such that from any point in this set there are multiple
equilibrium trajectories. In this case, the model exhibits multiple equilibria (at least for some
initial conditions).

We are interested in a particular comparative statics question: How does a change in friction
in inter-sectoral labor adjustment (i.e., migration costs) affect the multiplicity of equilibria?
There are two ways to interpret the statement that a parameter change makes multiplicity “more
likely”:

Interpretation 1: The change increases the measure of the set of other parame-
ters for which multiplicity occurs.

Interpretation 2: The change increases the measure of the ROM, holding fixed
other parameters.

Interpretation 2 means that there are more initial conditions for which there exist multiple equi-
libria.

Our model has two state variables, the current fraction of labor in Manufacturing, L, and the
current stock of knowledge in Manufacturing, K. The wage differential between Manufactur-
ing and Agriculture depends only on K, rather than on L as in previous models. As the speed
of learning and knowledge decay is increased, the stock of knowledge tracks L closely, and in
the limit as this speed goes to infinity, knowledge (and thus the wage differential) is a function
of L. A limiting case of the two-dimensional model reproduces the standard one-dimensional
model in which the current wage differential depends on the amount of labor in Manufacturing.

stock, thereby changing the future wage differential.
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Figure 1: Phase space for different models. (a1) one state, unique equilibrium; (a2) two state,
unique equilibrium; (b1) one state, multiple equilibria; (b2) two state, multiple equilibria

Figure 1 illustrates the relation between the models with one and with two state variables,
and the distinction between the two interpretations of “more likely”. In the model with one
state variable (L), (illustrated by panels (a1) and (b1)) the state space is [0, 1]; there are two
steady states, L = 0 and L = 1 where, respectively, all labor is in Agriculture and all labor is
in Manufacturing. In the model with two state variables, (L,K) (illustrated by panels (a2) and
(b2)) the state space is the unit square [0, 1]x [0, 1]. There are two stable steady states, (0, 0)
and (1, 1). In the first, all labor is in Agriculture and there is no knowledge in Manufacturing.
In the second, all labor is in Manufacturing and knowledge is at its maximum level, equal to 1.

In Figure 1 (a1) and (a2) the basins of attraction for the steady states (in both the one-state
and the two-state models) are the sets A and B. (These sets are intervals in the one-state model
and regions in the two-state model.) The sets A and B have no intersection (except for the
boundary, which is of measure 0). A typical point a ∈ A (or b ∈ B) has a unique trajectory
to the steady state where all labor is in Agriculture (respectively, Manufacturing). Panels (a1)
and (a2) illustrate the situation where there the equilibrium is unique and there is hysteresis (the
steady state depends on the initial condition).

In contrast, in Figure 1 (b1) and (b2) the state space consists of three sets, A,B and C. The
basin of attraction for the steady state with all labor in Agriculture is A ∪ C and the basin of
attraction for the steady state with all labor in Manufacturing isB∪C. The intersection of these
two sets, C, is the ROM; this set has positive measure. For example, from point c ∈ C there
exist two trajectories, which approach different steady states. The equilibrium is not unique in
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the models represented by Figure 1 (b1) and (b2), since there is a set of initial conditions, with
positive measure, for which there are multiple equilibrium trajectories.

According to Interpretation 1, a decrease in friction makes multiplicity more likely if it
increases the measure of the set of parameters for which Figure 1 (b1) or (b2) rather than
Figure 1 (a1) or (a2) describes the dynamics. According to Interpretation 2, the decrease in
friction makes multiplicity more likely if it increases the measure of the ROM, C

The chief result from our two-dimensional model is that there is a non-monotonic relation
between the measure of the ROM and friction in the adjustment for labor. Thus, according
Interpretation 2, a decrease in labor adjustment costs may make multiplicity either more or less
likely. We also find that a decrease in labor adjustment costs does increase the set of other
parameter values for which the ROM is positive. Thus, according to Interpretation I, lower
adjustment costs make multiplicity “more likely”, just as in the standard one-state models.
Taken together, the two results imply that if labor adjustment costs are extremely small, the
measure of the ROM is positive for a wide range of parameter values, but the measure is always
extremely small. Multiplicity in this case is possible – but not very likely.

To understand the non-monotonic relation, suppose we hold constant the speed of adjust-
ment of the knowledge stock. If labor migration is very costly (i.e., if friction is large), then
the labor allocation will change slowly, if at all. In this case, the representative agent does
not need to consider the possibility of having very different labor allocations in the near- to
mid-term, regardless of the beliefs that other agents have. Because of discounting, the benefit
to this worker of migrating is therefore relatively insensitive to the beliefs that other agents
have. Since there is little scope for expectations to affect the equilibrium outcome, the ROM
has small or zero measure. A decrease in adjustment costs (i.e., lowering friction) means that
labor can move rapidly, making the equilibrium outcome sensitive to agents’ beliefs. This de-
crease in labor adjustment cost tends to increase the measure of the ROM, just as in the standard
(one-dimensional state variable) setting.

At the other extreme, suppose that labor adjustment costs are extremely small. In this case,
a worker bases her decision (whether to change sectors) almost entirely on the predetermined
stock of knowledge. She knows that regardless of what other agents do, it will be cheap for
her to change sectors in the future, in order to remain in the high-wage sector. In this case,
the measure of the ROM decreases as migration becomes cheaper. With extremely small ad-
justment costs, it is rational for agents to behave almost myopically for most initial conditions;
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expectations do not matter (much). Thus, the relation between the amount of friction and the
measure of the ROM is non-monotonic in the two-state model. This non-monotonicity requires
the existence of the second state variable (knowledge). In the one-state model, where the wage
differential is a function of the current labor allocation, the identification of the high wage sec-
tor depends on agents’ collective actions at a point in time. In this situation, an agent cannot
be sure of being in the high wage sector unless she knows what other agents are going to do in
the same period.

Literature review Previous literature, excepting Krugman (1991) and Fukao and Benabou
(1993), neglects the relation between parameters of the model and the measure of the ROM,
and concentrates on the relation between parameter values and the existence of a ROM with
positive measure. That is, the literature stresses Interpretation 1 and almost ignores Interpreta-
tion 2. There are two likely reasons for this emphasis. First, although it is sometimes relatively
straightforward to determine conditions under which the ROM has positive measure, the com-
parative statics of this measure are complicated. Second, intuition (supported by Krugman’s
model) may have encouraged the idea that the two senses in which a parameter change can
make multiplicity “more likely” are essentially the same. Multiplicity of equilibria arises when
there are increasing returns to scale, or some other feature that makes the economy non-convex.
Greater convexity of adjustment costs (more generally, increased friction) appears to convex-
ify the economy, offsetting the effect of increasing returns to scale. Therefore, a natural (but
incorrect) conjecture is that more convex adjustment costs make multiplicity less likely.

There is little empirical evidence regarding the type of multiplicity we described above.
Davis and Weinstein (2002) and Davis and Weinstein (2004) find that Japanese data is con-
sistent with increasing returns to scale, but that the data is inconsistent with the existence of
multiple stable steady states – a necessary condition for multiplicity of equilibria in this setting.
Moro (2003) estimates a multiple equilibrium model of wage inequality; Brock and Durlauf
(2001) and Brock and Durlauf (2002) discuss the estimation of discrete choice models with
social interactions, a situation that can lead to multiple equilibria.

There is a different type of multiplicity, often referred to as “indeterminacy”, that occurs
when there exists a continuum of equilibrium trajectories to a single steady state. Inde-
terminacy is an important topic in macro-economics, where the role of costs of adjustment
(friction) is significant. Benhabib and Farmer (1999) review this literature; recent contribu-
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tions include Cooper and Haltiwanger (1996), Cooper and Johri (1997), Benhabib, Meng, and
Nishimura (2000), Nishimura and Shimonura (2002), Wen (1998a), Wen (1998b), and Lubik
and Schorfheide (2004). A recurring question concerns the specification for which plausible
estimates of adjustment costs and returns to scale are consistent with indeterminacy. In these
models, lower costs of adjustment (less friction for the mobile factor) mean that indeterminacy
is more likely, using Interpretation 1. Since the analysis of these models (typically) examines
behavior in the neighborhood of the steady state, no attention is paid to Interpretation 2.

Recent theoretical papers show that changing an assumption of migration models may elim-
inate the multiplicity of equilibria. Frankel and Pauzner (2000) show that multiplicity disap-
pears in a variation of Matsuyama’s model where the wage differential is subject to Brownian
motion and there exist “dominance regions”. In another variation of this model, Herrendorf,
Valentinyi, and Waldman (2000) show that there is a unique equilibrium if agents are suffi-
ciently heterogeneous. We provide another explanation that might either increase or diminish
the importance of coordination problems.

2 The model

We begin by describing a continuous time, infinite horizon model, and then present the discrete
time finite horizon approximation of that model. The two types of models (continuous and
discrete time) serve different purposes, and we need both of them. We use the continuous time
model to establish clearly the link between the models with one and two state variables. We
need the (simpler) discrete time model to obtain our analytic results.

In the continuous time setting, our model with two state variables (labor allocation and
knowledge) collapses to the familiar model with one state variable (labor allocation) as the
speed of adjustment of knowledge approaches infinity. It is therefore clear that the two-state
model is a generalization of the one-state model, and not a fundamentally different model. This
fact is important, because our central point is that a significant conclusion from the familiar
model is not robust to a reasonable “perturbation”.

There is an obvious sense in which our discrete time formulation represents an approxima-
tion to the continuous time model, justifying our use of the discrete model for analysis. Define
a “provisional” steady state of knowledge as the steady state corresponding to a fixed value of
labor allocation. In the continuous time setting, adjustment to a provisional steady state can
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be made arbitrarily rapid, by increasing the speed of adjustment of knowledge. In contrast, in
the discrete time setting, adjustment of knowledge to a provisional steady state takes at least
one period, i.e. it always occurs with a lag. The two-state discrete time model therefore cannot
exactly reproduce the one-state model even if the second state variable adjusts very rapidly –
i.e., even if knowledge reaches its provisional steady state in only one period, the minimum
amount of time possible. A reader who has not seen the continuous time formulation might
doubt that our two-state model is a natural generalization of the familiar model (and not simply
a fundamentally different model). In view of the lagged adjustment, the discrete time two-state
model is never (exactly) a perturbation of the one-state model.

Karp and Paul (2005) study a version of the continuous time model described in the next
subsection; analysis of the continuous time model requires the use of numerical methods. The
advantage of the discrete time model studied here is that all results can be obtained analytically,
without any loss of intuition. The simulation results for the continuous time model and the
analytic results that we obtain below for the discrete time model are qualitatively the same.
Appendix A2 sketches a more general continuous time model. The discussion in the appendix
provides intuitive support for the claim (established numerically in Karp and Paul (2005)) that
the results we obtain in the discrete time setting survive in the continuous time setting.

2.1 The continuous time model

There are two sectors. Agriculture has constant returns to scale, and Manufacturing has increas-
ing returns to scale that are external to the firm. The stock of labor is normalized to 1 and at
time t the stock of labor in Manufacturing is Lt. We first review the familiar one state variable
model, and then present a two state variable generalization.

In the one state variable model, the constant wage in Agriculture is αA > 0 and the wage
in Manufacturing is αM + bLt, where b > 0 determines the extent of increasing returns to
scale. The Manufacturing-Agricultural wage differential is a + bLt, with a ≡ αM − αA. By
assumption, a < 0 and a + b > 0: if all workers are in the same sector, that is the high-wage
sector.

The flow of labor into Manufacturing is ut = L̇ ≡ dL
dt

. The social cost of migration is
u2t
2γ

. Migration services are competitively supplied, so the price of migration (the amount that
a migrant at time t pays in order to switch sectors) is |ut|

γ
. A higher value of γ, the speed of

adjustment parameter, means that adjustment costs are lower: there is less friction. An agent
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who decides to migrate pays the migration cost in the current instant, in order to be in a different
sector at the next instant. The instantaneous discount rate is r > 0.

Krugman shows that there are multiple rational expectations (perfect foresight) competitive
equilibrium (i.e., the ROM has positive measure) if and only if γ > r2

4b
. Thus, a decrease in

friction (larger γ) increases the range of other parameters (here r and b) for which there may
be multiple equilibria. Fukao and Benabou (1993) show how to calculate the ROM, which is
non-decreasing in γ (strictly increasing when the measure is between 0 and 1). Thus, for both
interpretations given in the Introduction, a decrease in friction makes multiplicity more likely.

In our two state variable generalization of this model, the increasing returns to scale in
Manufacturing depend on experience, not on the current size of the Manufacturing labor force.
It takes time for learning to be incorporated into greater productivity, and a higher wage. This
greater realism comes at the cost of greater complexity. This greater complexity fundamentally
changes the insight produced by the one-state variable model.

We assume that the average and marginal product of labor in Manufacturing depend on
knowledge, Kt, that resulted from previous industry-wide learning-by-doing. In the short run
both sectors operate under constant returns to scale, but there are long-run increasing returns in
Manufacturing. Manufacturing output equals bKtLt. In order to simplify notation, we hereafter
set b = 1 so the Manufacturing wage is Kt. The Agricultural wage is a constant, which we set
equal to 0.5, so the wage differential is Kt−0.5. Greater activity in Manufacturing (higher Lt)
increases the stock or knowledge, and this stock depreciates at a constant rate, g. The change
in the stock of knowledge is

K̇ = g (Lt −Kt) . (1)

The steady state stock of knowledge equals the steady state stock of labor in Manufacturing.
As above, the flow of labor into Manufacturing is L̇ = ut; the social cost of migration is u2t

2γ
,

so a person who migrates at time t pays the price |ut|
γ

. Again, there are two stable steady states.
If all labor is in Manufacturing, the knowledge steady state is K = 1 and the Manufacturing-
Agriculture wage differential is 0.5, so no worker wants to leave the Manufacturing sector. If
all labor is in Agriculture, the knowledge steady state is K = 0 and the wage differential is
−0.5, so no worker wants to leave Agriculture.

As in the one-state model, γ is inversely related to friction; γ is a speed-of-adjustment
parameter for labor. The parameter g determines the speed of adjustment of the knowledge
stock. When g is orders of magnitude larger than γ, the time scales over which the two state
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variables change are different: there are “slow-fast dynamics”.
Equation (1) can be rewritten as

K̇

g
= Lt −Kt. (2)

In the limit, as g →∞, equation (2) implies thatKt = Lt, which implies that the Manufacturing-
Agricultural wage differential in period t is Lt − 0.5. This formula for the wage differential is
the same as in Krugman’s setting, with a = −.5 and b = 1. (We adopt these two parameter
restrictions only to simplify the exposition.) More generally, when g is large (for fixed γ),
K adjusts rapidly, relative to the speed of adjustment of L. Therefore, for large g, the stock
of knowledge closely tracks L: K ≈ L for g large. Thus, it would appear that the one state
variable model should provide a good approximation to the two state variable model when the
second state adjusts rapidly. This conjecture is false.

When g is finite, current migration affects the second time-derivative of the wage differen-
tial,

d2 (K − 0.5)
dt2

= g (u− g(L−K)).

In contrast, in Krugman’s model (g =∞), current migration affects the first time-derivative of
the wage differential. The presence of the second state variable mediates migration’s effect on
the wage differential. In a discrete time setting, the presence of the second state variable causes
migration to affect the wage differential with a lag.

2.2 The discrete time model

Most of the insight from Krugman’s model can be obtained from a two-period model, in which
all migration occurs in the first period. The model with two state variables requires three time
periods; all migration occurs during the first two periods.

2.2.1 The two-period (one state variable) model

The initial stock of labor in Manufacturing is L and the measure of entrants into Manufac-
turing is u, so the amount of labor in Manufacturing in the next period is L + u. Using the
same notation as in the previous subsection, the present value (in the current period) of the
Manufacturing-Agriculture wage differential in the next period is β (a+ b(L+ u)); the dis-
count factor is β = e−r. As before, the price that an individual pays to move sectors depends
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on the total number of agents who move; this price is |u|
γ

. Agents who migrate incur this cost in
the current period. The present value of the benefit minus the cost of migrating to Manufacture
(u > 0) or to Agriculture (u < 0) is

n(L, u) ≡ 1
γ
(βγ (a+ b (L+ u))− u) . (3)

2.2.2 The three-period (two state variable) model

As in section 2.1, the wage in Manufacturing equals Kt and the wage in Agriculture equals 0.5.
(Again, we set b = 1, a = −0.5.) In period t+ 1 the stock of knowledge is

Kt+1 = Kt +G (Lt −Kt) , (4)

the discrete time analog of equation (1).
Migration decisions are made at t = 0 and at t = 1. At the beginning of period t, Lt and Kt

are predetermined, so the current wage is pre-determined. Current migration affects the stock
of labor only in the next period. In view of equation (4), knowledge in the next period (and
therefore the next period wage) is also pre-determined in the current period. Agents base their
migration decisions on their beliefs about wages in periods t = 1 and t = 2 and migration costs
in periods t = 0 and t = 1.

In the initial period, (t = 0) the state variables L0, K0 are given. Denote the amount
of migration to Manufacturing in period 0 as u (as in the one-period model) and the amount
of migration to Manufacturing in period 1 as v. Negative values mean that migration is into
Agriculture. The social cost of migration is quadratic in migration, and the price that an agent
(who migrates) pays is |u|

γ
in period 0 and |v|

γ
in period 1.

The (unstable) interior steady state is L = 0.5 and K = 0.5. In order to simplify notation,
we define the state variables as deviations from these values: lt ≡ Lt − 0.5 and kt ≡ Kt − 0.5.
By construction, kt equals the Manufacturing-Agricultural wage differential in period t. The
state space for the model is the square

−0.5 ≤ lt ≤ 0.5, − 0.5 ≤ kt ≤ 0.5, (5)

and the equation of motion for the transformed knowledge stock (equal to the wage differential)
is

kt+1 = kt +G (lt − kt) . (6)
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A parameter restriction Equations (1) and (4) both involve a single parameter, either g orG.
Suppose that we hold Lt in equation (1) constant for one unit of time and solve that equation, to
rewrite it in the same form as equation (4). Comparison of this solution and equation (4) shows
that the relation between the two parameters is G = 1 − e−g. As g → ∞ the environmental
stock adjusts instantaneously. Rapid adjustment of the environmental stock appears to lead to a
model that is “similar” to the one-state variable model. Rapid adjustment of the environmental
stock is an obvious justification for using the one-state model as an approximation. Therefore,
this case is of special interest.

Instantaneous adjustment in the continuous time model (g =∞) corresponds, in the discrete
time model, to complete adjustment within a single period (G = 1). This observation (and
the assumption that g > 0) suggests that the following parameter restriction is economically
reasonable

0 < G ≤ 1. (7)

Since our objective is to demonstrate and explain a counter-intuitive result, it is sufficient to
show that this result holds for reasonable – not for all – parameterizations.2 The special case
where G = 1 gives particularly sharp results, and we emphasize it below.

3 Results

We begin by showing that our two-period (one state variable) model reproduces most of the
results in Krugman’s continuous time model. We then present our chief results, using the
three-period (two state variable) model. Next, we compare the one and two state variable
models.

3.1 Results for the one state variable model

The function n (·) defined in equation (3) is the present value of the benefit minus the cost
of migrating to Manufacture (u > 0) or to Agriculture (u < 0). For bγβ < 1 actions are
strategic substitutes, since the net benefit of migration decreases with the number of other agents
migrating; here the equilibrium is unique. Agents play a coordination game (i.e. actions are

2If we did not impose the upper limit in equation (7), our proof of Proposition 1 requires distinguishing between
the two cases where G ≷ 1 +

√
γβ+1
γβ . The restriction G ≤ 1 means that we need consider only one of these two

cases.
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Figure 2: The ROM in a one period model with βγG > 1

strategic complements), and there are multiple equilibria, if and only if bγβ > 1, i.e. for
γ > er

b
. This inequality has the same characteristics as the condition for multiplicity in the

infinite horizon continuous time model, γ > r2

4b
.

Figure 2 graphs the migration constraints 0 ≤ L+ u ≤ 1 (the dotted lines) and the solution
to n = 0 for bγβ > 1 (the solid line). The L coordinates of the points of intersection between
the graph of n = 0 and the migration constraints (shown as heavy dots in Figure 2) define
the interval [1− (a+ b)βγ,−βaγ]. (This interval corresponds to the interval C in Figure 1
(b1).) In general, the ROM consists of the intersection of this interval and the set of feasible
initial conditions, [0, 1]. For an initial condition (a value of L) in the ROM, the value of u
that satisfies n(L, u) = 0 (i.e., a point on the solid line) is an unstable equilibrium.3 At initial
conditions inside the ROM there are two stable equilibria: all labor moves to Manufacturing
or to Agriculture. For example, at u = 1 − L, for L ∈ ROM the benefit of moving to
Manufacturing exceeds the cost (n(L, 1 − L) > 0) so it is a stable equilibrium for all labor to
move to Manufacturing. The length of the ROM is

Length of ROM = max {0,min {1,−βaγ})−max {0, 1− (a+ b)βγ}} . (8)

For both the infinite horizon continuous time and for the two-period version of the model,
the existence of multiplicity requires a combination of patience, a large externality, and low
adjustment costs (large values of β, b, γ). An increase in any of these factors increases the

3We use the standard notion of stability. At an interior equilibrium n = 0 and dn
du > 0. If a small measure of

agents “deviate” (e.g., they migrate to Manufacturing when their equilibrium action is to remain in Agriculture),
then other agents in would want to follow the deviation. The interior equilibrium is therefore unstable.
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length of the ROM when this is positive and less than 1. Thus, lower adjustment costs makes
multiplicity “more likely” in both senses described in the Introduction. This conclusion is
independent of the particular measure used to assess the likelihood of multiplicity; that is, it is
independent of the priors on the initial condition and on b and β. For example, an increase in
γ can cause initial conditions to enter the ROM but never cause initial conditions to leave the
ROM. Therefore, there is no loss in generality in using the length of the ROM to measure the
likelihood of multiplicity. This measure corresponds to a uniform prior over initial conditions.

3.2 Results for the two state variable model

Our principal results use the following definitions:

X (k0) = −φ
χ
k0 − 0.5γβ

2G−1
χ

Y (k0) = −φ
χ
k0 + 0.5

γβ2G−1
χ

(9)

where

χ = γβG (γGβ + 3 + β − βG−G) + 1

φ = γβ
¡
γβG+ 2.0− 1.0γβG2 − 3.0G+G2 − 2.0βG+ β + βG2

¢
.

The following Proposition summarizes our main results; the Appendix contains the proof.

Proposition 1 Suppose that inequality (7) holds in our two-period model. (i) β2Gγ > 1 is
necessary and sufficient for the ROM to have positive measure. Thus, an increase in γ (i.e.,
a decrease in friction) increases the range of other parameter values (β and G) for which the
ROM has positive measure. (ii) The ROM is defined by the following set.

ROM = {(k, l) : −.5 ≤ k ≤ .5 ∩ −.5 ≤ l ≤ .5 ∩ Y (k) ≤ l ≤ X(k)} .

(iii) For β2Gγ > 1, the area of the ROM is non-monotonic in γ.

The condition for the ROM to have positive measure, β2Gγ > 1, is essentially the same
as for the one-period model (with G playing a role analogous to b) except that the condition
involves β2 rather than β. This difference is due to the fact that migration in period t affects
the wage differential in period t+2 rather than in period t+1, as was the case in the one-period
model.
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Figure 3 shows an example of the ROM. (Compare to figure 1 (b2).) The lower line is the
graph of X and the upper line is the graph of Y , defined in equation (9). The area between
these two lines is the ROM. Restriction (7) and β2Gγ > 1 imply that χ > 0. (Details available
on request.) This fact, equation (9), and the assumption that γβ2G > 1 imply that X < Y .
For any k0, the vertical distance between Y and X is

M ≡ Y −X =
γβ2G− 1

χ
> 0. (10)

In general, we do not have a simple closed form expression for the area of the ROM. How-
ever, if Y (.5) < −0.5 or X(.5) > −0.5, then the ROM does not include the NW or SE corners
of state space, and the ROM is a parallelogram. If X(.5) > −0.5, the area of the ROM is
simply M .4

For general parameter values, the area of the ROM is equivalent to the likelihood that an
initial condition is in the ROM only under the assumption of uniform priors. For general
parameter values, a change in γ causes the ROM to rotate as its area changes. Therefore, for two
values of γ, γ1 and γ2 the inequality area(ROM(γ1)) > area(ROM(γ2) does not imply that
ROM(γ2) ⊂ ROM (γ1) WhenG = 1, the future wage differential is independent of k0, from
equation (6). Therefore, when G = 1 the ROM is flat; its boundaries are independent of k0.
For G = 1, the magnitude of γ affects only the vertical distance between the two lines in Figure

4If Y (.5) < −0.5 the measure of the ROM is the horizontal rather than the vertical distance between the lines
X and Y . If the ROM includes the corner of state space (i.e., if X(.5) < −0.5 < Y (.5)) then in computing its
area we need to account for the “missing triangles” at the corners, and the formula for the measure becomes more
complicated. It is easy to confirm any of these three configurations are possible, depending on parameter values.

14



Figure 4: For G = 1, measure of ROM is 0 below the dotted curve, increasing in γ between
curves, and decreasing in γ above solid curve.

3. In this case, area(ROM(γ1)) > area(ROM(γ2) does imply that Rom(γ2) ⊂ Rom (γ1).
Thus, for G = 1, a larger area of the ROM means that multiplicity is “more likely”, regardless
of the priors on the initial condition.

3.3 Comparison of one state and two state models

We noted that the presence of a second state variable (the stock of knowledge) changes the
relation between the amount of friction in labor adjustment and the likelihood of multiplicity
of equilibria, as captured by the measure of the ROM. There are two reasons why the special
case G = 1 is particularly useful for illustrating this difference. First, as noted above, in this
situation there is no loss in generality in using a uniform prior for initial conditions. Second,
the case G = 1 is of special interest because it leads to a model that appears to approximate
the one-state variable model. Recall that G = 1 corresponds to complete adjustment of the
knowledge stock, following changes in L, within a single period. That is, when G = 1 the
stock of knowledge adjusts very rapidly – precisely the situation where we might expect that a
one-dimensional model provides a good approximation to the two-dimensional model.

When G = 1 the area of the ROM is max {0,M}, with M = γβ2−1
γ2β2−1 ; γ > β−2 is necessary

and sufficient for the ROM to have positive measure when G = 1. For β = 1, M = 1
γ+1

which
is strictly decreasing in γ. For β < 1, M is first increasing in γ (in the neighborhood β−2)
and then decreasing. The measure reaches its maximum at γm ≡ 1

2β2

³
2 + 2

p
1− β2

´
and

thereafter decreases. The maximum point γm converges to β−2 as β → 1. Figure 4 shows the
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Figure 5: Meausure of ROM, β = G = b = 1. Solid curve for model with one state variable;
dotted curve for model with two state variables.

graph of γm (the solid curve) and of β−2 (the dotted curve). For values of γ below the dotted
curve, the measure of the ROM is 0; for values between the two curves, the measure of the
ROM is increasing in γ; and for values of γ above the solid curve, the measure is decreasing in
γ.

In presenting the model with two state variables we set b = 1 and a = −0.5. Therefore,
to compare the two models we need to use these values in the model with one state variable.
Here we also set β = 1, so that the necessary and sufficient condition for a positive measure
of the ROM is γ > 1 in both models. With these restrictions, Figure 5 graphs the measure of
the ROM in the two models, for γ > 1. This figure uses equations (8) and (10). The figure
shows that the friction parameter γ has the opposite effect on the measure of the ROM in the
two models.

4 Conclusion and discussion

Many dynamic models can be viewed as extensions of static models, obtained by introducing
a payoff-relevant state variable that adjusts slowly. There is usually more than a single way of
making a model dynamic. If we think that the friction in the adjustment of the mobile factor is
the single most important source of dynamics, it is essential to include the labor allocation as a
state variable. The additional complexity that comes from including a second state variable is
a powerful argument in favor of the one state variable model.

In addition, we may think that the single state variable model is adequate. For example,
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we might agree that increasing returns to scale is not literally associated with the current labor
allocation, and that instead it is associated with knowledge gained from experience in produc-
tion. If the stock of knowledge tracks the current labor allocation very closely, because both
learning and decay of knowledge occur rapidly, it might appear that there would be little loss
of economic insight in treating the stock of knowledge as equivalent to the current labor allo-
cation, i.e. in using a single state variable model. In a standard optimal control setting (i.e., a
game against nature), when the speed of adjustment of different state variables differs by orders
of magnitude (i.e., there are "slow-fast" dynamics), a higher dimensional problem can often be
well-approximated using a lower dimensional state space. In contrast, in an equilibrium prob-
lem involving agents with rational expectations, that kind of approximation may be misleading.
We used a simple model with two state variables to illustrate and explain this possibility.

When we ask how an increase in labor adjustment costs (friction) affects the likelihood of
multiplicity, we might have in mind two quite different relations. Friction affects the measure
of the set of (other) parameter values under which multiplicity is a possibility, and it affects the
measure of the set of initial conditions for which multiplicity actually occurs. In Krugman’s
model and in our two-period simplification of that model, the answer to the comparative statics
question is the same, regardless which of these two interpretations we have in mind. The
theoretical and empirical literature on indeterminacy emphasizes the first interpretation. There
is little discussion in the literature involving the second interpretation, which is arguably as
important as the first.

We showed that when the labor allocation affects the wage differential with a lag, either
because of learning-by-doing or some other (e.g. environmental) externality, then the answer
to the comparative statics question may differ, depending on which interpretation one adopts.
Under the first interpretation, a decrease in friction always makes multiplicity more likely in
our model, just as in the one state variable setting. Under the second interpretation the relation
is non-monotonic, unlike in the one state variable setting.

When it is harder for an agent to take an action, such as moving to a new sector, it seems
that there would be fewer initial conditions under at her decision would depend on beliefs
about what other agents will do. This conclusion is (by now) so well-established that it seems
obvious. However, when the current wage differential is sluggish, as occurs in our two state
variable model, the relation is reversed for low cost of labor adjustment. With low adjustment
costs, for most initial states the agent’s migration decision does not depend on what others do;
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whatever their actions, it is cheap for an agent to move in future periods in order to remain in
the high wage sector. That is, for most initial conditions, agents have a dominant strategy when
adjustment costs are low.

This theoretical point shows the danger of drawing conclusions about the importance of
multiplicity based on estimates of structural parameters of the model (i.e., based on Interpreta-
tion 1). Parameter estimates might suggest, for example, that there are significant increasing
returns to scale (or some other source of non-convexity); that factor adjustment costs are very
low; and that a one state variable model apparently provides a good approximation to the econ-
omy (because other state variables adjust rapidly). The conventional wisdom is that in these
circumstances the ROM is likely to have positive measure. Our results agree with this conclu-
sion, but also suggest that the measure of the ROM is likely to be very small, and therefore the
economy is unlikely to have multiple equilibria.

An economy that has multiple steady states but a unique equilibrium might evolve in very
different ways, depending on the initial condition. However, exogenous shocks or changes in
policies have predictable effects, given knowledge of the economic fundamentals. In contrast,
if the economy has multiple equilibria, the effect of policy changes depends on agents’ beliefs
as well as economic fundamentals. The policy problems in these two cases are qualitatively
different.
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A Appendix:

The Appendix contains the proof of Proposition 1 and the sketch of a general model in which
the measure of the ROM is non-monotonic in the amount of friction.

A.1 Proof of Proposition 1

We construct the equilibrium by working backwards, beginning with the agents’ problem in
period 1 (the last period during which they can migrate).

Using equation (6) and l1 = l0 + u, we write the present value at t = 1 of being in
Manufacturing in period 2, as

βk2 = β (k1 +G(l1 − k1)) = β(G(2−G)l0 + (G− 1)2k0 +Gu) ≡ f(u; k0, l0).

Our timing conventions imply that this value is predetermined at period 1. The equilibrium
for the subgame beginning in period 1 is therefore unique. Agents are indifferent between
migrating and staying in their current sector if and only if βk2 = v

γ
, i.e. if v = γf(u; l0, k0).

The speed of adjustment parameter affects the magnitude but not the sign of the quantity γf (·),
and f (·) is increasing in u for all G > 0.

Taking into account the labor supply constraint, the equilibrium value of v is

v(u) =

⎧⎪⎪⎨⎪⎪⎩
0.5− l0 − u if γf > 0.5− l0 − u

γf if −0.5− l0 − u ≤ γf ≤ 0.5− l0 − u

−0.5− l0 − u if γf < −0.5− l0 − u

⎫⎪⎪⎬⎪⎪⎭ . (11)

Figure 6 shows an example of the graph of v(u), given particular values l0 = 0 and k0 > 0.
The u coordinate of the left and the right kink in this graph are, respectively

left kink: p ≡ ρ(l0, k0)−
.5

1 + γβG

right kink: q ≡ ρ(l0, k0) +
.5

1 + γβG
,

using the definition

ρ(l0, e0) ≡
1

1 + γβG
(γβG(G− 2)− 1)l0 − γβ(G− 1)2k0).
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Figure 6: Equilibrium second period migration (v) as a function of first period migration (u)
for β = 0.8, γ = 2.5, G = 0.5, l0 = 0 and k0 = 0.2

For all l0 and k0, it is always the case that p < q. Inequality (7) implies that ρ is a decreasing
function of l0, so p and q are decreasing functions of l0 – a fact that we use below.

Using these definitions and equation (11) implies

dv(u)

du
=

⎧⎪⎪⎨⎪⎪⎩
−1 if u > q

βGγ if p < u < q

−1 if u < p

⎫⎪⎪⎬⎪⎪⎭ . (12)

Thus, an increase in u increases the equilibrium v, provided that v is interior. In contrast, an
increase in u decreases the equilibrium v when this variable is on the boundary of the labor
supply constraint, as Figure 6 illustrates.

In period 1 an agent is either indifferent between migrating and staying in her current sector
(at an interior equilibrium) or she strictly prefers to migrate (at a boundary equilibrium). Agents
with rational expectations understand this fact in period 0. Therefore, the benefit of migrating
to Manufacturing in period 0 is the present value of the wage differential in period 1 (βk1), plus
the present value of migration costs in period 1 (β v(u)

γ
).5 The present value of migrating to

Manufacturing in period 0 is therefore

β

µ
k1 +

v (u)

γ

¶
= β

µ
(1−G)k0 +Gl0 +

v (u)

γ

¶
.

5The agent who migrates in period 0 avoids paying the period 1 migration costs. If migration in period 1 is at
an interior level, period 1 migration costs equal the present value of the wage differential in period 2.
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If the value of this expression is negative, it’s absolute value is the value of migrating to Agri-
culture. For u > 0 the cost of moving to Manufacturing in period 0 is u

γ
; for u < 0, the cost of

moving to Agriculture is −u
γ

.
Define the difference between benefits and costs of moving to Manufacturing in the first

period as

h(u; l0, k0) ≡ β

µ
(1−G)k0 +Gl0 +

v(u)

γ

¶
− u

γ
. (13)

(Again, if h < 0, then −h is the value of moving to Agriculture.) Using equation (12), we
have

dh

du
=

⎧⎪⎪⎨⎪⎪⎩
−β−1
γ

if u > q
β2Gγ−1

γ
if p < u < q

−β−1
γ

if u < p

⎫⎪⎪⎬⎪⎪⎭ . (14)

Period 0 actions are always strategic substitutes for u < p and for u > q. For q < u < p

period 0 actions are strategic complements if and only if β2Gγ > 1. When actions are strategic
substitutes (for all values of the state variable) the equilibrium is generically unique; β2Gγ > 1

is therefore necessary for the ROM to have positive measure, as Part (i) of the Proposition
states.

Since we are interested in the measure of the ROM as a function of γ, we hereafter assume
that β2Gγ > 1. Given this condition, we want to characterize the ROM, i.e. the region of the
(k, l) plane such that if (k0, l0) is in this region, there are multiple equilibria in period 0.

An interior equilibrium requires that h = 0 and a stable interior equilibrium requires in
addition that dh

du
< 0, evaluated at the equilibrium. (See footnote 3.) Since we are interested

only in stable equilibria, equation (14) means that we can rule out the possibility of interior
equilibria where p < u < q. We are left with three possibilities: (i) The equilibrium is interior
with 0.5 − l0 > u > q, (ii) The equilibrium is interior with −0.5 − l0 < u < p, and (iii) The
equilibrium is on the boundary, i.e. u = −0.5− l0 or u = 0.5− l0.

In order to construct the equilibrium, we determine the values of u for which h(u; l0, k0) = 0
at a stable equilibrium. We first consider the case where u ≥ q; here, by equation (11),
v = 0.5− l0−u. We substitute v = 0.5− l0−u into the function h (·) defined in equation (13),
and solve h (·) = 0 to obtain an expression for u as a function of l0, k0. Denote this function as
x (l0, k0). Next, we consider the case u ≤ p, where v = −0.5− l0− u. We use this relation in
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Figure 7: The equilibrium first period migration (u) as a function of l0 for β = 0.8, γ = 5,
G = 0.7 and k0 = 0.2

the equation h (·) = 0 and solve for u to obtain a function that we denote as y (l0, k0). These
functions x (·) and y (·) are

x (l0, k0) ≡ α+ 0.5β
β+1

y (l0, k0) ≡ α− 0.5β
β+1

, (15)

using the definition
α ≡ β

1 + β
((γG− 1) l0 − γ (G− 1) k0) .

With this notation, we write the equilibrium correspondence:

u(l0, k0) =

(
min {x, 0.5− l0} if x ≥ q

max {y,−0.5− l0} if y ≤ p

)
. (16)

The first line states that if x ≥ q, then a stable equilibrium is u = x, provided that this value is
less than the upper limit of migration, 0.5− l0; otherwise the labor supply constraint is binding,
and all labor moves to Manufacturing. The second line has a similar interpretation. Thus,
there are two equilibria if the initial condition satisfies both q ≤ x and y ≤ p. Using previous
definitions, these two inequalities can be rewritten as

0.5
1− γβ2G

(1.0 + γβG) (β + 1.0)
≤ α− ρ ≤ 0.5 γβ2G− 1

(1.0 + γβG) (β + 1.0)
(17)

This inequality defines the ROM.
Figure 7 shows the graph of the equilibrium migration correspondence for k0 = 0.2, G =

0.7, β = 0.8, and γ = 5. The top kinked line is the graph of min {x, .5− l0} over the interval
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where x ≥ q. The kink occurs where x = .5− l0. The top straight line is the graph of q. The
bottom kinked line and the bottom straight line are the graphs of max {y,−.5− l0} and of p,
respectively. The overlap of the two kinked lines defines the ROM, given k0 = 0.2. If, for
example, l0 = −0.05, the two equilibrium values of migration are u = −0.144 (a movement to
Agriculture) and u = 0.3 (a movement to Manufacturing).

Our assumptions β2Gγ > 1 and β ≤ 1 imply thatGγ > 1, so the slope x and y (as functions
of l0) are always positive, as shown. We noted above that inequality (7) implies that the slope
of p and q (graphed as functions of l0) is negative. Therefore, if x ≥ p is satisfied, it holds for
large values of l0; if y ≤ q is satisfied, it holds for small l0.

The boundaries of the overlap are determined by the solution to x = q and y = p. Denote
X(k0) as the value of l0 that satisfies x = q, and denote Y (k0) as the value of l0 that satisfies
y = p. Some calculation yields the formulae in equation (9) of the text. This step establishes
Part (ii) of the Proposition.

The vertical distance between the boundaries of the ROM is M , defined in equation (10).
We noted in the text that inequality (7) and the assumption γβ2G > 1 imply that χ > 0.
Therefore, when these two inequalities hold, the ROM has positive measure. This fact estab-
lishes sufficiency in Part (i) of the Proposition. The denominator of M is quadratic in γ and the
numerator is linear, so M → 0 as γ → ∞. Thus, the measure of the ROM approaches 0 as
γ → ∞. Since the measure is 0 for γβ2G < 1, positive for γβ2G > 1 and approaches 0 as
γ →∞, it is nonmonotonic in γ, as Part (iii) of the Proposition states.

A.2 Sketch of a general model

The fact that the “likelihood” of multiplicity of equilibria is nonmonotonically related to the
friction associated with a mobile factor, is very simple and general. However, demonstrating
this point requires a model with two state variables. Unfortunately, it is difficult to obtain
analytic results using a two-state rational expectations model; therefore, our results in the text
use a simplification of an already simple model. This procedure leads to clear results, but
the special model has two disadvantages. First, it may leave the reader with the impression
that the conclusions require this sort of special setting, and therefore are not robust. Second,
the analysis of the simple model requires some tedious calculation, which obscures intuition.
To offset these disadvantages, we sketch here a general model that, under mild assumptions,
reproduces the non-monotonicity result shown formally for the special model.
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In the interests of brevity, we do not describe all of the assumptions that lead to the model
presented here, or all of its implications. However, it is worth pointing out that here we assume
that the steady states are interior and are approached asymptotically.

There are two state variables: Lt is the fraction of labor in Manufacturing; Kt, the stock
of knowledge in Manufacturing. There are constant returns to scale in Agriculture. The
Manufacturing-Agriculture wage differential, ω (K,L), is an increasing function of K (be-
cause more knowledge increases productivity) and a decreasing function of L (because of
short-run decreasing returns to scale in the sector). Denote Ωt as the trajectory over (t,∞]
of ωτ ≡ ω (Kτ , Lτ) and denote �0t as the trajectory where ω (Kτ , Lτ) = 0 for τ ≥ t. The
dynamics of the state variables are given by

L̇ =
dL

dt
= γh (Ωt) , with h (Ωt) = 0 iff Ωt = �0t, (18)

dK

dt
= gf(K,L), (19)

with f increasing in L and decreasing in K.
Agents’ intersectoral migration decisions depend on their beliefs about future wage differ-

entials, Ωt. In a deterministic rational expectations equilibrium, agents’ beliefs are correct in
equilibrium. The functional h (·) is determined by the equilibrium condition to agents’ prob-
lems.6 The parameter γ > 0 is inversely related to the amount of friction (e.g. the costs of
migration). The restriction on h (·) states that migration stops if and only if the future trajectory
of the wage differential is identically 0. The function f (·) is given exogenously, and g > 0.

Suppose that the solution to f(L, 0) = 0 is less than the solution to ω(L, 0) = 0, so that the
graph of f(K,L) = 0 intersects the graph of ω(K,L) = 0 from below. Since both graphs of
increasing, there are an odd number of steady states. Suppose, for concreteness, that there are
exactly three steady states; two of these are stable and the intermediate steady state is unstable.
By construction, all of the steady states are independent of the speed of adjustment parameters
γ and g. There may or may not be multiple equilibria; that is, the ROM may have positive or 0
measure.

6For example, h (·)may be a function of the present discounted value of the future stream of wage differentials,
denoted qt. Let p

³
L̇t

´
be the price that an individual pays to migrate at time t. The equilibrium condition is

p
³
L̇t

´
= q or L̇t = p−1 (q) ≡ γh(q). The complete dynamical system of the model consists of equations (18)

and (19) and q̇ = rqt − ωt, where r is the constant discount rate.
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In the limit, as γ → ∞ and g → ∞, we obtain a static model for which the two stable
steady states of the dynamic model are stable equilibria. In this static model there is certainly
a coordination problem (multiple equilibria). The ROM here is (trivially) the entire “state
space”, since there are equilibria at either steady state that are independent of initial values of
K and L.

For finite γ with g = ∞ we obtain a model that has many of the same features as the
one-state models discussed in the text. We adopt

Assumption 1 For the one-state model (with g =∞), the ROM is non-empty if and only if γ
is sufficiently large.

This assumption can be shown to hold if, for example, the model is closed using the equilibrium
condition discussed in footnote 6.

The interesting situation arises if agents’ expectations are sufficiently smooth in model pa-
rameters so that the following is satisfied:

Assumption 2 The equilibrium correspondence (mapping initial conditions and parameter
values into trajectories) is continuous in γ and g for all positive values.

If Assumption 2 was not satisfied, then the comparative statics question addressed in this paper
would be rather artificial. The two assumptions may appear to suggest that the one-state model
should provide a good approximation to the two-state model if the omitted state adjusts rapidly.
In an important respect, however, the one-state model can be misleading precisely when the
omitted state adjusts rapidly. In order to understand why, consider two limiting cases, in each
of which the state is one-dimensional.

Case i) γ = ∞ and g < ∞, so that the single state variable is K. In this case,
unless K begins at the unstable steady state, all labor moves immediately to the
high wage sector and the system then moves toward one of the two steady states.
The equilibrium is unique; here the measure of the ROM is 0.

Case ii) g = ∞ and γ < ∞, so that the single state variable is L. In this case, by
Assumption 1, the ROM has positive measure if and only if γ is sufficiently large.

The more interesting case occurs where g is large but finite and γ < ∞. If γ is large,
the ROM has positive measure, by virtue of the two Assumptions. For large γ it is difficult
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for agents to predict what other agents will do in the future, because migration is cheap; this
inability is important because the wage differential adjusts quickly to migration (g is large).
Therefore the measure of the ROM is positive. However, as γ approaches∞, we move toward
Case i, where the measure of the ROM is 0. Given Assumption 2, the measure of the ROM
must be decreasing in γ for γ large. For small γ, migration is slow in any equilibrium, so the
value of being in a particular sector depends mostly on the predetermined variable K. For
sufficiently small γ, expectations have negligible effect on the equilibrium, so the measure of
the ROM is 0. For this model, and for g <∞ but large, the measure of the ROM is therefore
non-monotonic in γ.

It is worth emphasizing that this non-monotonicity arises in the situation where the state
variable K adjusts quickly, precisely the situation where it might seem that little insight is lost
by treating it as adjusting instantaneously.
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