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Abstract

We model a fishery with potential congestion, in which firms obtain public and pri-

vate signals about the location of the densest fish stock. We analytically determine the

regions of parameter space where greater precision of public and/or private information

increases welfare, and we examine the effects of two types of information sharing. Using

high-resolution data from the world’s largest fishery, we estimate the structural model.

Point estimates imply that more precise private information raises welfare, whereas more

precise public information has a negligible effect on welfare. Moreover, welfare is much

more sensitive to changes in the precision of private information than to changes in the

precision of public information. This difference reflects the fact that public informa-

tion increases congestion more than private information does. We also find empirically

that a small amount of information sharing can reduce welfare, whereas more extensive

information sharing raises welfare, as do information clubs.
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1 Introduction

Better information can increase the efficiency of natural resource use, lowering extraction

costs by changing the location or timing of production. However, more precise information

can cause producers to converge on the same location or increase production at the same

time, thereby increasing congestion (Brown, 1974). The increased congestion externality can

outweigh the direct benefit of better information. Adapting a model by Angeletos and Pavan

(2007) (hereafter, AP07), we consider the value to an industry of three types of changes in

information. The first type involves an exogenous increase in the precision of public and/or

private information, e.g., arising from better measurement. The second two types involve,

respectively, exclusionary and non-exclusionary information sharing. With (exclusionary)

“information clubs”, groups of agents share their private information among club members,

but not with agents in different clubs. Under (non-exclusionary) “global” information shar-

ing, a planner or industry association collects a fraction of agents’ private information and

amalgamates it to create a more precise public signal, thus making agents’ diminished private

information less precise. These three changes have different effects on behavior and payoffs.

Our primary contribution is to estimate the parameters of this model in order to assess

the effect of the three types of information change in an industry of global importance. A

large theoretical literature studies the effect of more precise information, and of information

sharing, in settings where their welfare effect may be ambiguous. However, to the best of

our knowledge this theory has not previously been confronted by data. The estimation uses

high-resolution data from Peru’s anchoveta fishery, the world’s largest fishery, accounting for

8% of global marine fish catch (FAO, 2018). We find that more precise private information

would increase welfare. By contrast, more precise public information has a negligible effect

on welfare. This difference reflects the fact that public information increases congestion to a

much greater extent, compared to private information. We also find that both information

clubs and at least a modest amount of global information sharing raise welfare.

We follow the literature that treats the distinction between public and private information

as exogenous; both types of signals are correlated with the payoff-relevant state of nature.1 All

agents receive the public signal, and each receives a private signal. Greater precision of either

signal enables agents to tailor their actions to the true state of nature, tending to increase

their profits. However, information-induced changes in actions can reduce profits, e.g., by

1Myatt and Wallace (2012) propose an alternative formulation where agents obtain signals from n sources
and decide how much costly “receiver effort” to devote to interpreting each. As some parameters and the
agent’s equililbrium effort changes, the signals vary from private (uncorrelated across agents) to public (per-
fectly correlated across agents). An exogenous distinction between public and private signals is appropriate
in our setting because firms have (intrinsically) private information from their own past activities and public
information from satellites.
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increasing congestion. Bergemann and Morris (2013, p. 1253) note that a more precise public

signal leads to a substantial increase in the correlation of actions across agents, but a small

increase in the correlation between an agent’s action and the state of the world. In our setting,

this means that a more precise public signal leads to a large increase in congestion, while

enabling fishers to get only slightly closer to the most favorable fishing ground. By contrast,

a more precise private signal leads to higher correlation between the agent’s action and the

state of the world (getting closer to the ideal fishing ground), but greater dispersion of agents’

actions (less congestion). Therefore, increased precision of private information is more likely

to improve efficiency. In our setting, global information sharing reallocates information in the

“wrong” direction, making the public signal more precise and the private signal less precise.

Exclusionary information clubs create a new type of signal and also change agents’ decision

problem: with the same information as other club members, an agent can predict their actions.

AP07 provides our starting point, but our focus and analytic results differ. AP07 compare

the noncooperative equilibrium with the outcome under a team. Agents in the noncooperative

equilibrium choose actions to maximize their own welfare. In the team setting, they choose

actions to maximize aggregate welfare, but without being able to share information. Because

our research question does not involve the team problem, we can extend the domain of

parameter space to include greater congestion costs. We use a special case of their model,

relevant to the fishing context, where the noncooperative equilibrium is inefficient only under

incomplete information. By focusing on this case, we are able to provide more definitive

comparative static results.

An earlier literature, motivated largely by antitrust considerations, studies information

sharing. The collection of results in Clarke (1983), Vives (1984) and Gal-or (1986) show that

whether firms benefit from sharing their private information depends on whether competition

is Cournot or Bertrand and on whether the unknown parameter affects demand or costs. In

an n−agent fishing model with congestion and uncertain stock size, Marcoul (2020) iden-

tifies the region of parameter space where industry profits are higher when all firms make

their private information public; his numerical examples illustrate the case with two asym-

metric exclusionary information clubs. Vives (1990) uses a continuum-of-agents monopolistic

competition model in which a voluntary trade association collects private information from

participating firms. All firms choose to participate if only participants receive the collected

information; no firms participate in the non-exclusionary setting where all firms receive the

collected information regardless of their participation. Calvó-Armengol, De Mart́ı, and Prat

(2015) also endogenize information sharing by studying how the formation of communica-

tion networks between agents influences equilibrium actions. We extend this literature by

allowing the industry to split into an arbitrary number of symmetric clubs with exclusionary
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information sharing; and, under global (non-exclusionary) information sharing, allowing the

trade association/planner to collect only a fraction of each firm’s private information.

The strands of the literature that study the effect of more precise information or informa-

tion sharing use similar models; both changes alter the moments of agents’ signals. Whereas

improved measurement can in principle raise the precision of one signal without altering the

other moment(s), under information sharing the moments of the two signals are inextricably

linked. Under global information sharing, the transfer of some private information to the

public increases the precision of the new public signal and lowers the precision of the now-

degraded private signal. Exclusionary information clubs replace the private signal with a

club signal, changing agents’ decision problem by giving them the same information as other

club members. Nevertheless, the similarity of the equilibrium structure with and without

information sharing leads to a unified analysis.2

Morris and Shin (2002) study a version of the Keynesian beauty contest in which an agent’s

payoff increases as their decision is more closely aligned to the true market fundamental, and

also closer to other agents’ decisions: the opposite of congestion costs. Ui and Yoshizawa

(2015) classify linear-quadratic-Gaussian games into eight types, distinguished by how welfare

changes with increased precision of public and private information. Our model corresponds

to their Type +III game, where an increase in the precision of public information improves

welfare only if greater precision of private information also does. Our analysis also relates to a

literature on strategic experimentation, in which congestion (coordination) is a negative exter-

nality because it reduces the opportunity to learn from others (Bolton & Harris, 1999; Callan-

der & Harstad, 2015). Unlike in those papers, the public signal in our context is exogenous.

Section 2 explains how features of the anchoveta fishery map into our model assumptions.

Section 3 lays out the model and provides formulae for equilibrium actions and payoffs.

The following section describes the comparative statics of welfare with respect to exogenous

changes in signals’ precision; we then discuss information clubs and global information shar-

ing. Section 5 describes the data, and the next two sections estimate the model parameters.

Section 8 uses our point estimates and analytic results to evaluate the three types of changes

in information. Section 9 discusses extensions and a final section concludes.

2If more precise signals or the reallocation of information (arising from either global information sharing
or information clubs) lower welfare, no effort would be spent in these endeavors. When any of these changes
raise welfare, we would need to know the cost of achieving the change to predict the equilibrium level of
the change. Myatt and Wallace (2012) model the cost of increasing the precision of received signals, and
Calvó-Armengol, De Mart́ı, and Prat (2015) model the cost of increasing the precision of both received and
sent signals. We do not attempt to extend our model in that direction.
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2 Institutional context

Here we explain how the institutional features of the Peruvian anchoveta fishery motivate the

characteristics of our model.

Congestion without inter-seasonal stock externalities. Congestion may be impor-

tant in the fishery because more intense nearby fishing depletes the local anchoveta population

and reduces vessels’ ability to maneuver and deploy nets. These congestion externalities may

increase fishing costs. In contrast, inter-seasonal stock externalities are relatively unimpor-

tant in this fishery because of the regulator’s ability to (i) limit catch, (ii) respond to new

information to protect the stock, and (iii) promote economically efficient fishing.3

(i) The regulator (PRODUCE) consults with the marine science agency (IMARPE) to

set an industry-wide limit on the total tons that can be landed each season, called the total

allowable catch (TAC). Tons “landed” refers to vessels’ transfer of their catch to a processing

plant. The regulator sets the TAC before the start of the season. There are two fishing

seasons per year for Peru’s North-Central anchoveta stock, each lasting about three months.4

(ii) In four out of the six seasons in our data, the TAC announced at the beginning of

the season is binding. In the second season of both 2017 and 2019 the regulator closed the

fishing season early, before the TAC was reached, due to the detection of significant spawning

activity or the presence of juvenile anchoveta (Englander, 2023).

(iii) Individual vessel quotas (IVQs) divide the TAC among vessels. The IVQ regulation

precludes entry of new vessels into the fishery and gives firms the incentive to minimize costs,

thereby avoiding overcapitalization. Each vessel is entitled to land a fixed percentage of the

TAC each season.

The location of catch does not affect the TAC or IVQs. There are 17 main ports in the

North-Central fishery at which vessels can land their catch. Landings data for 2016 show

that 47% of vessels’ landings occur at their most common port (PRODUCE, 2020c). IVQs

may be transferred among vessels owned by the same firm. But to transfer an IVQ across

firms, the vessel itself must be sold (Natividad, 2016).

Because entry is restricted and aggregate catch is fixed by regulation, the antitrust consid-

erations that motivated the literature on information sharing are not relevant in our setting

(Vives, 1990). To the extent that regulatory limits on catch are set efficiently, they solve

the stock externality. Without an offsetting distortion, congestion always lowers efficiency

because it increases the cost of harvesting a given level of catch.

3Stock externalities would likely decrease the value of public information.
4Peru’s North-Central stock occurs entirely within Peruvian jurisdiction. The stock ranges from Peru’s

northern boundary to the 16th parallel south. Peru’s Southern anchoveta stock is shared with Chile and is
subject to different regulations. The North-Central stock accounts for 95% of tons caught per year (Englander,
2023). This paper analyzes data from the North-Central fishery only.
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Huang and Smith (2014) and Sanz and Diop (2021) provide empirical evidence of the im-

portance of congestion in shrimp fisheries. Huang and Smith note that greater congestion can

improve efficiency by partially offsetting a stock externality: excessive harvest that reduces

the future stock. Unlike Huang and Smith (2014), we estimate only spatial congestion, not a

dynamic stock-related externality.

Increasing information precision and policy implications. Existing and emerging

technologies make the findings of our analysis actionable. For example, firms can increase the

precision of their private signals by deploying acoustic buoys to estimate anchoveta biomass

in specific locations (Brehmer et al., 2019; Simmonds et al., 2009). New satellites, such as

the Plankton Aerosol Cloud ocean Ecosystem (PACE), can increase the precision of public

information by providing better measures of the correlates of anchoveta abundance (National

Aeronautics and Space Administration, 2024). More precise information could help firms’

vessels reach their quota at lower cost, for example by reducing search costs. Search comprises

20% of time spent during fishing trips (Joo et al., 2015).

Payoff function. Our model omits fish price because it is exogenous. With a binding

constraint on landings, the firm’s seasonal revenue is exogenous, so variations in firm behavior

affect only costs. Accordingly, our payoff function focuses on cost rather than revenue.

All vessels receive the same price for their catch; the price per ton is a fixed fraction of

the price of fishmeal in Hamburg (Fréon et al., 2014; Hansman et al., 2020). Thus, more

precise information will not change prices, unlike what occurred in South Indian fisheries

(Jensen, 2007). According to a collective bargaining agreement with the seven largest firms,

vessels that land anchoveta that will be processed into fishmeal and fish oil receive 1.792% of

the Free On Board price of fishmeal per ton of anchoveta landed (SUPNEP, 2017).5 Under

the collective bargaining agreement, a vessel’s crew shares revenue in fixed proportions: the

captain receives “two parts” (twice as much as a regular fisher), the second-in-command and

first engineer receive one and a half parts, and regular fishers receive one part (Englander,

2023; SUPNEP, 2017).

Information sharing within firms. Firms promote information sharing among their

own vessels, while fishers tend to avoid revealing the locations of productive fishing grounds

to others (Marcoul, 2020; Welch et al., 2022). For example, vessels belonging to the same firm

transmit fishing locations and tons caught to firm headquarters. The two firms visited by

one of the authors in December 2019 had central “command centers” in which staff receive

such data from individual vessels, aggregate the information, and send daily reports with

suggested fishing locations to their vessels.

Global information sharing. Firms are required to send their private information

597% of tons landed of anchoveta are processed into fishmeal and fish oil (PRODUCE, 2018).
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about the size and location of their catch to the regulator. Two compulsory monitoring

technologies allow the regulator to verify the information submitted (Section 5.3). However,

the regulator does not currently make this information publicly available, so there is scope

for increased global information sharing. Additional private information could be costly to

collect or difficult to verify. Therefore, our model’s feature that allows the regulator to collect

and amalgamate a fraction (rather than the entirety) of firms’ private information to create

a more precise public signal is important for model realism.

Information clubs. Firms are reluctant to share information with others, making in-

formation clubs difficult to form, and likely limiting their size. However, Gatewood (1984)

provides examples where fishers sometimes share information about stock location. There-

fore, rather than a single club consisting of all firms, our model of small information clubs, in

which firms reveal all of their private information to fellow club members, is also important

for model realism.

3 The model

Each of n <∞ firms receives a public and a private signal about θ, the location of the “ideal

fishing ground”, where the stock is densest. To streamline the exposition, we begin with the

situation where n
c
equal-sized information clubs form, each having c members. Members of an

information club share their private information, but act noncooperatively in choosing their

location. Lemma 1 reports the Bayesian Nash equilibrium decision rule and payoff in the

game with c ≥ 1. Specializing to c = 1, we obtain the case of primary interest, where firms

do not share information. Apart from their receipt of a private signal, firms are homogeneous;

the empirical implementation relaxes this assumption.

Firms face either congestion costs or benefits from operating close to each other. If there

are congestion costs, each firm wants to be far from others; with positive externalities, the

firm wants to be close to others. Using the totality of their information, the firm estimates the

ideal location and forms beliefs about other agents’ locations. The firm then decides where

on the real line to locate, balancing the benefit of being close to the ideal fishing ground with

the costs or benefits of being close to others.

Firms have a diffuse prior on θ and receive the public signal y = θ+εy, with εy ∼ N
(
0, σ2

y

)
,

and a private signal xi = θ+εxi
, with εxi

∼ N (0, σ2
x). The noise across agents’ private signals

is uncorrelated: Eεxi
εxj

= 0, for i ̸= j. However, the noise in an agent’s private signal may

be correlated with the noise in the public signal: Eεyεxi
= ρσyσx.

6 The covariance matrix

6Public signals use satellites covering the entire fishery, producing daily environmental data across fishing
locations (Section 5). In contrast, private signals are specific to where a firm’s vessels fished the previous day.
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for the public signal and the n private signals is positive definite if and only if nρ2 < 1

(Online Appendix B). The number of firms actively fishing in the anchoveta industry varies

throughout the season; the median number active per day in our sample is n = 135. With

this value, positive definiteness requires |ρ| < 0.09. Our results are substantially the same

for ρ = 0 and ρ = 0.09, so in the interest of simplicity, subsequent sections set ρ = 0. This

section retains ρ as a parameter because future empirical work involving smaller industries

may find the general formulae useful.7

Define the ratio of standard deviations as r ≡ σy

σx
; a larger r corresponds to a relatively

less precise public signal. Based on the public and only their own private signal, firm i’s

Bayesian posterior for θ is δy + (1− δ)xi, with

δ ≡ 1− ρr

1 + r2 − 2ρr
. (1)

This weight is also the Best (minimum variance) Linear Unbiased Estimator (BLUE). We

refer to δ as the BLUE weight to distinguish it from the Bayesian Nash equilibrium weight.8

We now consider the non-public information shared by members of a club. Because all

private signals are equally informative and their noise is uncorrelated, the average of these

signals is a sufficient statistic for the set of the club’s signals. The average of non-public

signals for club s is x̃s ≡ 1
c

∑
i∈s xi. Similarly, we define ε̃s =

1
c

∑
i∈s εxi

, the average error of

club members’ uncorrelated private signal noise. Given our assumptions on xi
9

x̃s ∼ N

(
θ,
σ2
x

c

)
and cov (x̃s, y) = Eεy ,{εxi}

(
εy

∑
εxi

c

)
= ρσxσy.

The correlation of x̃s and y is therefore ρ
√
c. The club’s collective private signal, x̃s, is more

precise and (weakly) more highly correlated with the public signal, compared to any club

member’s individual private signal, xi.

Noise is potentially correlated because private signals are derived from a subset of locations from the public
signal data—they share common information from overlapping locations. However, the noise in different firms’
private signals is uncorrelated because firms’ vessels physically cannot fish in the same places and times.

7Our unconstrained point estimate of ρ exceeds 0.09. A previous working paper showed that results are
similar with the larger point estimate and with ρ = 0. Footnotes and Online Appendices discuss ρ ̸= 0.

8δ is positive unless ρr > 1. When the noise in public and private signals is highly positively correlated
and in addition the public signal is relatively noisy (so that ρr is large), the public signal contains a great
deal of noise relative to its additional information. In that case, the BLUE gives negative weight to the public
signal. The weight on the private signal is positive (1 − δ > 0) unless ρ > r. When the noise in public and
private signals is highly correlated and r is small, the private signal contributes a great deal of noise relative
to its additional information, so the BLUE gives that signal negative weight.

9The notation Eεy,{εxi
} means that the expectation is taken over εy and over the c random variables {εxi

}.
Where the meaning is clear, we suppress these subscripts.
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If nature chooses θ, firm i chooses location ki, and j ̸= i chooses location kj, i’s payoff is

J(ki|{kj}, θ) ≡
1

n− 1

B

2

∑
j ̸=i

(ki − kj)
2 − A

2
(ki − θ)2. (2)

The parameters A and B are constant, with A > 0 and B ⋛ 0.

The second term on the right side of Equation 2 captures the increased costs arising from

greater distance between an agent and θ. Fishing farther from where the stock is densest may

reduce revenue for a particular trip, or require that the trip be extended, increasing costs;

it might also increase the number of future trips needed to reach the seasonal quota. If fish

are spatially diffuse, a firm’s position relative to the ideal location matters little, and A ≈ 0.

However, if fish are concentrated near the ideal location, the penalty of being distant from it

is significant; here, A is large. The magnitude of A also depends on the total biomass relative

to fishers’ capacity. If the biomass is very large and the capacity of a firm to catch fish is

limited, the distance from the ideal location might not be important, making A small.

The first term in J(ki|{kj}, θ) captures the costs or benefits associated with dispersion,

the distance between agent i and the average location of other agents. For B > 0 there

is congestion: agent i benefits from being far from other agents due to lower fishing costs.

Here, its payoff increases with the average distance between it and other agents. For B < 0,

proximity to other agents benefits i, e.g., due to increased safety.10 We define the normalized

measure of congestion τ ≡ B
A
.

With linear strategies, i’s location is ki = γy + (1− γ)xi, and i believes that agent j ̸= i

chooses kj = ηy+ (1− η)xj. The symmetric Bayesian Nash equilibrium weight, γNE,c, when

each club has c members, satisfies γ = η. Appendix A contains sketches of all proofs and

Online Appendix B.1 contains the detailed proofs. The model parameters satisfy:11

Assumption 1. (i) A > 0, (ii) τ < 1, (iii) nρ2 < 1.

Lemma 1. Under Assumption 1, when the n agents coalesce into T information clubs, each

with c ≥ 1 members, the Bayesian Nash equilibrium weight on the public signal is

γNE,c =
1− n−c

n−1
τ − crρ

1− n−c
n−1

τ + cr2 − 2crρ
, (3)

10The quadratic form is an approximation of a more general function that increases with proximity to θ and
increases or decreases (depending on the sign of B) with dispersion. The quadratic function is consistent with
the assumption that biomass density decreases monotonically with the distance from θ, and catch increases
monotonically with the density. We confirm that this relationship between expected payoff and distance to
the ideal location holds in our data.

11We use a larger parameter space than AP07 (τ < 1 instead of τ < 0.5) but we cannot use their adaptation
of Morris and Shin’s (2002) uniqueness proof over 0.5 ≤ τ < 1; there we simply assume that the equilibirum
is linear in information. Appendix A discusses these points.
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and the equilibrium payoff is

P = A
2
σ2
xS (τ, γ (r, τ, ρ, c) , r, ρ, c) with S (τ, γ (r, τ, ρ, c) , r, ρ, c) ≡

21
c

(
n−c
n−1

)
(1− γ)2 τ −

[
γ2r2 + (1− γ)2 1

c
+ 2γ (1− γ) ρr

]
.

(4)

evaluated at γ = γNE,c, the equilibrium decision rule.

4 Analysis

Propositions 1 and 2 in Section 4.1 examine the welfare effect of an exogenous change in

precision, e.g., arising from better measurement. The next two subsections study changes

in signals’ moments arising from the transfer of information. Section 4.2 uses Lemma 1 to

determine firms’ incentives to form information clubs. Section 4.3 studies “global informa-

tion sharing”, where a regulator extracts a portion of each agent’s private information and

amalgamates it into a more precise public signal, thereby changing all of the moments. Using

formulae for this moment transformation, we can apply Lemma 1 to determine the equilibrium

effect of global information sharing.

By inspection of Equations 3 and 4, the decision rule and the payoff per firm are invariant

to n if there are no information clubs (c = 1). This invariance is due to the fact that an agent’s

payoff depends on the average deviation between its location and all other agents’ locations.

That average does not change with the number of agents, for a given decision rule. Sections

4.2 and 4.3 explain why the equilibrium depends on n with clubs or global information sharing.

Under global information sharing the regulator might collect only a fraction of firms’

private information (to make the public signal more precise), but we assume that club mem-

bers transfer all their private information to fellow club members. This assumption helps to

streamline the exposition by avoiding repetition. It also means that every club member has

two types of signal: club and public. If we had instead assumed that firms transfer only a

fraction of their private information to fellow club members, firms would have three types

of signal: private, club, and public. That more general setting would not permit a simple

nesting of the cases with and without clubs.

4.1 Exogenous change in precision

Setting c = 1 and ρ = 0 in Equation 3, we obtain the Bayesian Nash equilibrium weight

γNE,1
|ρ=0 = δ

1− τ

1− τδ
< δ iff τ > 0. (5)

9



Figure 1: Boundaries that determine the welfare effect of more precise information

Notes: For ρ = 0, c = 1: (i) more precise public information increases welfare if and only if
(τ, δ) lies above the curve labeled a; (ii) more precise private information increases welfare if
and only if (τ, δ) lies above the curve labeled b. The point X identifies our preferred point
estimate (τ, δ) = (0.448, 0.54), where an increase in the precision of either signal raises welfare.

When τ = 0, a firm’s payoff is unaffected by other agents’ locations. In this limiting case,

γNE,1
τ=0 = δ: firms use the BLUE weight on the public signal. However, with congestion (τ > 0)

the equilibrium weight on the public signal is smaller than, and an increasing function of, δ.

The next two propositions discuss the welfare effect of increasing the precision of one

signal, holding the precision of the other signal fixed. Figure 1 provides an aid in reading

these propositions. Proposition 1 uses the function δa(τ) ≡ 3τ−1
τ2+τ

, shown as the curve labeled

a in Figure 1. Proposition 2 uses the function δb(τ) ≡ 2τ−1
τ

, shown as the curve labeled b. An

increase in the precision of the public signal corresponds to a reduction in r and an increase

in δ: a movement to the north in the figure. An increase in the precision of the private signal

corresponds to an increase in r and a decrease in δ: a movement to the south in the figure.

Proposition 1 considers the welfare effect of a change in the precision of the public signal,

holding the precision of the private signal fixed.

Proposition 1. Under Assumption 1 with ρ = 0 and c = 1: (i) For τ < 1
3
, welfare increases

with the precision of the public signal. (ii) For τ > 1
3
welfare is minimized with respect to the

precision of public information on the curve δa = 3τ−1
τ2+τ

. For δ above this curve, welfare in-

creases with a more precise public signal, and below the curve welfare increases with a less pre-

cise public signal. (iii) If it were possible to change the precision of the public signal costlessly,

the optimal choice is bang-bang: for τ < 0.5 it is optimal to make the public signal infinitely

precise. For τ > 0.5, where congestion is severe, it is optimal to eliminate the public signal.

Proposition 2 considers the welfare effect of a change in the precision of the private signal,
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holding the precision of the public signal fixed.

Proposition 2. With Assumption 1 and ρ = 0 and c = 1: (i) For τ < 0.5, welfare increases

with the precision of the private signal. (ii) For τ > 0.5 welfare is maximized with respect to

the precision of the private signal on the curve δb = 2τ−1
τ

. For δ above this curve, increased

precision of the private signal raises welfare. Below this curve, decreased precision of the

private signal increases welfare.

Because the curves labeled a and b in Figure 1 are monotonically increasing, the higher

is the relative precision of the public signal (the larger is δ), the larger is the critical level

of congestion above which more precise (public or private) information lowers welfare. In

addition, because the curve b lies to the right of the curve a, a smaller amount of congestion

is required to make increased precision of the public (compared to the private) signal harmful.

Greater precision of either the public or private signal increases the accuracy of agents’

information, i.e., it reduces the variance of i’s forecast error, vi ≡ θ − E[θ|y, xi]. AP07 note

that the correlation between agents’ forecast errors is corr(vi, vj) = δ. When neither signal

is perfectly precise, an increase in the precision of the public signal increases this correlation,

whereas an increase in the precision of private information reduces it.12 That is, a more precise

private signal increases informational heterogeneity, causing firms to locate farther apart; and

a more precise public signal lowers this heterogeneity, causing firms to move closer together.

This difference explains why for the region of parameter space between the curves labeled

a and b in Figure 1, increased precision of the private signal raises welfare, but increased

precision of the public signal lowers welfare.13

A more precise public signal tends to benefit agents by enabling them to get closer to

the target. However, with agents moving closer to the target they also tend to move closer

to each other. For τ > 0, the reduction in dispersion harms agents, so the net effect of a

more precise public signal is ambiguous. For large τ (to the right of curve a) congestion is

important enough that increased precision of the public signal lowers welfare. The increased

precision of the private signal creates similar opposing forces. However, a more precise private

signal creates a smaller reduction in dispersion compared to the more precise public signal.14

12If either signal is perfectly precise, all firms know θ and there is no informational heterogeneity.
13AP07 obtain either necessary or sufficient conditions (but not both) to sign the welfare effect of more pre-

cise public or private information for 0 < τ < 0.5. Our ranking criteria is both necessary and sufficient and it
holds for τ < 1. In addition, we obtain the welfare effect of non-marginal changes in the precision of both sig-
nals. We are able to obtain these stronger results because we use an explicit expression for the payoff in terms of
model primitives. For τ < 0, where agents benefit by being close to other agents, we reproduce AP07’s results.

14Online Appendix B.2.2 shows how the boundaries in Figure 1 change when ρ > 0. Even a large value
of ρ causes almost no change to the boundary b. That is, even a substantial correlation between noise in
the public and private signals has almost no effect on the comparative statics of welfare with respect to the
precision of private information. For τ in the range that is plausible for the anchoveta fishery (where likely
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There is a simple relation between the elasticities of welfare with respect to public and

private information. Parameter changes can flip the sign of the payoff (P , given by Equation

4), but this sign is of no intrinsic interest. We therefore use |P | instead of P in the denominator

of the elasticities, so that these have the same sign as the derivatives. With this convention,

the sum of the two elasticities equals 2. The elasticity with respect to the precision of public

information is

α ≡ dP

d
(

1
σy

)
(

1
σy

)
|P | = − dP

d(σy)

σy

|P | = − dS
dσy

σy

|S| = −dS
dr

r
|S| =

sign(−P )2(1− τ) 2τ−τ2+3r2τ−r2−1
(−τ+r2+1)(2τ−τ2+2r2τ−r2−1)

.

(6)

The equalities in the first line of Equation 6 hold for general ρ, and the second line specializes

to ρ = 0. Online Appendix B.2.3 provides details. The elasticity of the payoff with respect

to precision of private information is

β ≡ dP

d
(

1
σx

) 1
σx

|P |
= − dP

dσx

σx
|P |

= sign(−P ) · 2− α. (7)

For P < 0, as holds for our point estimates, β = 2 − α. Increased precision of public

and private information have the opposite effect on r, which appears in the function S in

Equation 4. This reversal accounts for the −α in the definition of β. In addition to this

indirect effect operating via r in the function S, increased precision of private information

lowers the coefficient A
2
σ2
x in the payoff P in Equation 4; when P < 0 (so S < 0) this lower

coefficient increases the payoff.

4.2 The incentive to form clubs: c ≥ 1

Without knowing the cost of forming information clubs, we cannot determine the equilibrium

club size. However, we can show how a change in the club size changes the equilibrium

decision rule and changes welfare when there are n firms. In our empirical setting, we find

that a larger club decreases the weight on the public signal and raises welfare (Section 8).

Firms know that all members of their club have the same information, so in a symmetric

equilibrium they choose the same location. Therefore, fellow club members do not contribute

to the dispersion term in the firm’s payoff on the right side of Equation 2. As c increases,

with c > 1, the change in the payoff weight on dispersion relative to the weight on missing

τ < 0.65), the curve a shifts up with ρ > 0. That is, positive correlation between the noise in the signals
reduces the parameter space over which more precise public information raises welfare.
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the target (τ) therefore depends on n, causing the equilibrium to depend on n. For example,

if c = 10 and n = 20, a firm’s incentive to increase dispersion (for τ > 0) remains, because

there is a chance of being far from members of the other club. In contrast, with c = 20 = n,

all firms know that equilibrium dispersion is zero, so each firm’s only goal is to get close to

the ideal location. For given c, the larger is n, the smaller is the change in payoff weights on

dispersion due to a club having c > 1 members.15

4.3 Global information sharing

Here we consider the situation where a regulator (or industry association) extracts from each

firm a fraction of their private information. The regulator combines this newly acquired

information with the existing public information to create a more precise public signal. Each

firm is left with less private information, so their post-transfer private signal is less precise.

To study this type of information transfer we modify the model introduced in Section 3 by

assuming that each firm receives m private signals, instead of a single private signal as before.

The noise in these m private signals is uncorrelated with the noise in other private signals,

both for the same firm and across firms. We choose the moments of these private signals so

that the aggregate amount of information is unchanged. That is, absent information transfer,

the new model is equivalent to our original model.

Ignoring the integer constraint, we assume that the regulator extracts the fraction f of

each firm’s private information. The new information set for the regulator consists of the

original public signal and the information extracted from the n firms. We define the function

ϖ ≡ nr2

nr2 + f−1
, (8)

the fractional reduction in the variance of the public signal achieved by the information

transfer. We use this function to express the relation between the original and the post-

transfer moments: {σ2
y, σ

2
x} and {σ2′

y , σ
2′
x }, respectively. The post-transfer moments are16

σ2′
y = (1−ϖ)σ2

y; σ
2′
x =

1

1− f
σ2
x; r

′ = r
√
(1−ϖ)(1− f) ≤ r. (9)

The first equality in Equation 9 uses the definition of ϖ; the second follows from the fact

that the transfer reduces precision of firms’ signals by f × 100%; the third uses the first two

equalities and the definition of r. Greater information sharing (higher f) increases ϖ and σx

and reduces σy and r. Section 8 uses our parameter estimates to assess the welfare effect of

15This relation is apparent in Equation 19 in Online Appendix B.1.
16Online Appendix B.4 derives Equations 8 and 9 for the general case ρ ⋛ 0.
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global information information sharing.

5 Data

The value of more precise public or private information depends on the relative precision of

the two signals, r, and on the severity of congestion relative to the importance of being close

to where fish are densest, τ . Here we describe the data used to estimate these parameters.

We observe the catch of all 806 industrial vessels in Peru’s North-Central anchoveta fish-

ery every time they “set” their net in the water. The unit of observation in this “electronic

logbook” data is a set, a vessel-level fishing operation, which occurs at a specific time, longi-

tude, and latitude. Our electronic logbook data spans the six fishing seasons of 2017, 2018,

and 2019, containing 246,920 sets (PRODUCE, 2020a).

5.1 Catch per unit effort (CPUE)

We construct a measure of Catch Per Unit Effort (CPUE) using vessel and firm characteristics.

The simplest measure of CPUE, tons per set, is one measure used by Peru’s marine science

agency (IMARPE, 2017). We adjust tons per set by vessel characteristics to account for the

fact that sets by larger and more powerful vessels require more energy than sets by smaller

and less powerful vessels. We further adjust tons per set by firm characteristics to account

for other cost differences across firms. For example, vessels belonging to larger firms may

have lower cost per set because they are more technically efficient than vessels that belong

to smaller firms. The firm-dependence of our CPUE measure also accounts for the fact that

larger firms have more information; that informational advantage is similar to an advantage

in equipment. Finally, firm characteristics adjust for the possibility that crews of smaller

firms divide revenue differently than crews of the seven largest firms (Section 2).

We construct CPUE by regressing tons per set on the length (in meters) of the vessel, the

engine horsepower of the vessel, the gross tonnage of the vessel (a measure of internal volume),

the number of vessels owned by the vessel’s firm, and indicators for each of the following three

firm types. Seven large firms each own at least 19 vessels; 331 “singleton” firms own only one

vessel (PRODUCE, 2020b). The remaining vessels belong to 131 medium-sized firms that

own between 2 and 10 vessels. The residuals from this regression are our primary measure

of CPUE because they condition catch on fishing cost. Figure 2 plots CPUE by location.

Repeating our analysis using a simpler measure of CPUE (tons per set minus vessel-level

average tons per set) or a measure of CPUE that adjusts for travel costs produces similar

parameter estimates (Online Appendix C).
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Figure 2: Peruvian electronic logbook data, 2017 to 2019

Notes: Each point is a set (a vessel-level fishing operation). The color of each point is the
catch per unit effort (CPUE) of that set, which we calculate by adjusting tons caught by
vessel and firm characteristics. There are 246,920 sets reported by 806 unique vessels in the
electronic logbook data. All vessels are prohibited from fishing within 5 nautical miles (9.3
km) of the coast. Peru is dark grey and Ecuador is light grey.

5.2 Fishing zones

Each set in the electronic logbook data occurs in 1 of 90 fishing zones, which are defined

by the regulator and represent distinct, ecologically meaningful fishing grounds. The main

decision for vessels, as they relate to day-ahead signals, involves determining which zone to

invest hours sailing to. The zones extend far from the coast, but most fishing occurs close to

the coast; therefore, the most frequently fished areas within zones are quite small (Figure 2).17

17Our model assumes that agents choose locations on the line, but the actual fishing choice is two-
dimensional. The fact that the coast is long and most fishing occurs close to the coast means that the

15



Figure 3: Fishing zone polygons

(a) 2017 to 2019 (b) May 24, 2018

Notes: (a) The regulator defines 90 fishing zones (pink). Our electronic logbook data contains
the fishing zone each set occurs in. Here we plot the convex hull of each fishing zone as defined
by the sets that occur in that fishing zone during our three years of data. (b) In our analysis,
we create zone boundaries based on the sets that occur each day. Here we plot an example
of zone boundaries for May 24, 2018.

Figure 3(a) shows the convex hull of each fishing zone as defined by the sets that occur

in that zone during our three years of data. The zonal average CPUE ranges from -97.1 to

73.0 and the mean within-zone standard deviation of CPUE is 56.2. Section 6 explains how

we identify the ideal fishing ground based on each zone’s average CPUE each day. We define

zones’ polygons each day based on the sets that occurred that day; Figure 3(b) displays an

example. The polygon boundaries in Figure 3(a) do not affect our estimate of the distance

between a set and the ideal fishing ground.

The zone-level average CPUE uses multiple sets, providing a less noisy measure of the ideal

fishing ground, compared to using the single set with the highest CPUE. Since daily data on

model approximates the empirical setting. Section 9 considers the two-dimensional problem.
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the actual density of anchoveta do not exist, we use CPUE as its proxy, a standard practice in

fishery economics and fishery science (Lynham & Villaseñor-Derbez, 2024; Medoff, Lynham, &

Raynor, 2022; Nieto et al., 2017; Zhang & Smith, 2011). Using CPUE as a proxy for anchoveta

density assumes that catch conditional on effort is higher in places with greater biomass.

5.3 Public and private information

Firms’ public information consists of oceanic geophysical variables measured daily by National

Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Ad-

ministration (NOAA) satellites: chlorophyll, sea surface temperature (SST), SST anomaly,

sea surface salinity, and sea level anomaly. These variables predict anchoveta abundance

(Castillo et al., 2019; Silva et al., 2016).18 We obtain nine variables in total because NASA

and NOAA have multiple satellites (Online Appendix C.1). Satellites obtain different mea-

surements at different times because they have different orbital paths. Moreover, most satel-

lites image only part of the earth each day. By using multiple measurements of SST, for

example, we obtain a more complete measurement of daily SST. These data are freely avail-

able online. When one of the authors visited two fishing firms in December 2019, both firms

monitored these data and communicated them to their fishers.

Our measures of private information are yesterday’s CPUE and set locations by all vessels

belonging to the same firm. We assume that all vessels within a firm know each other’s lagged

CPUE, because firms share catch information among their vessels (Section 2). Firms can dis-

courage misreporting in electronic logbook data with two monitoring technologies (Englander,

2023). First, all vessels in the fishery are equipped with tamper-proof transponders that relay

vessel location, speed, and course to firms in real-time; this information enables firms to in-

dependently verify fishing activities and locations, because fishing appears as vessels moving

slowly in a circle (Joo et al., 2015). Second, third-party inspectors measure tons landed at

processing plants, which firms can compare to tons reported over the course of a fishing trip.

The regulator receives but currently does not publish data from these monitoring technologies.

6 Estimation of r

Here we estimate r, the relative precision of public and private signals about the day’s location

with the highest stock density.

18Dissolved oxygen also predicts anchoveta abundance, but we exclude it from our analysis because it is
only available from NOAA at the monthly level. Excluding dissolved oxygen should not meaningfully alter
our estimates because it is highly correlated with chlorophyll and sea surface temperature (Kim et al., 2020).
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The unobserved state of nature in our analytic model is θ, the location with the highest

stock density. The empirical application generalizes the analytic specification by assuming

that there might be several “best local zones” instead of a single global ideal zone. The

generalization takes into account the fishery’s large area and transportation costs, which

prevent many boats from traveling to the globally ideal zone in a day.19 It also recognizes

that the stock distribution may be patchy, a feature of many fisheries (Sanchirico & Wilen,

2002). That is, instead of assuming that stock density falls monotonically with the distance

to the globally ideal zone, we merely assume that the density falls monotonically with the

distance from the best local zone. It is as if the single fishery is broken into several smaller

fisheries. The data identifies these smaller fisheries, whose boundaries change daily.

The unit of observation is a set i, performed by a vessel belonging to firm f , and occurring

in zone z on day t. The location of a set is kifzt. We suppose that each set could have occurred

in a group of feasible zones, which we define as those within 126 km of the zone where the

set actually occurred. We chose this radius because it is the median distance among fishing

trips calculated in Joo et al. (2015).20 For a set in a given zone, we define its best local zone

as the zone with the highest average CPUE within 126 km. We denote this best local zone as

θ̂izt. The dependent variable in our regressions is

(∥∥∥∥(kifzt − θ̂izt

)b∥∥∥∥)2

, the squared distance

between the boundary of the zone in which set i occurs and the boundary of the best local

zone. The superscript b indicates that we are taking the distance between two boundaries

(not between two points), and ∥·∥ is the Euclidean distance. Sets in the same zone therefore

produce the same value of the dependent variable.

In our empirical model, the variable of interest for a firm is the best local zone. Our

regressions measure the public and private signals’ ability to predict the deviation between

sets and this best local zone. To the extent that public and private signals predict this

deviation, they can also provide information about the best location. The variance of this

prediction is analogous to the variance of the signal; both measure deviations between the

predicted best location and the actual best location. We estimate σ2
y , the variance of the

public signal, with the residual sum of squares (RSS) from the following linear regression:(∥∥∥∥(kifzt − θ̂izt

)b∥∥∥∥)2

= ψXifzt + eifzt (10)

19The length of the fishery exceeds 1,500 km. At a typical cruising speed of 20 km per hour, it would take
more than 3 days to travel along the coast from the fishery’s southern boundary to its northern boundary
(Peraltilla & Bertrand, 2014).

20Joo et al. (2015) use hourly vessel location data to calculate the distance vessels travel between leaving
port and landing their catch at processing plants. They also calculate each trip’s maximum distance from
the coast. The median maximum distance from the coast is 25 km.
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where ψ are regression coefficients, Xifzt is a matrix of public signals, eifzt is the error term,

and all other terms are defined above.

The matrixXifzt includes 16,290 public signal predictor variables derived from the satellite

measurements of oceanic geophysical variables described in Section 5.3. For each geophysical

variable, we record the nearest measured value to each set, an interpolated value at the set’s

location, and the distance between the set and the nearest measured value. We compute

transformations of these predictor variables and include pairwise interactions between them

to capture complex relationships between public signals and the dependent variable (Online

Appendix C.2).

To avoid overfitting Equation 10, we randomly assign 75% of the days to the training set,

resulting in a training set with 183,055 observations from 321 out of 427 days. The remaining

data comprises the test set.21 We divide the data at the day-level because we want to assess

how predictive public information would be of squared distance to the best local zone on a

given day if we did not observe the actual best local zone that day.

We estimate Equation 10 with lasso, a type of penalized linear regression. We perform

10-fold cross-validation to choose the optimal penalty term (Online Appendix C.4), which

results in a value of 572. Using this optimal penalty term, we fit Equation 10 on the entire

training set. The lasso regression retains 24 predictor variables with non-zero coefficients.

We use the regression coefficients to predict squared distance to the best zone in the test set.

The RSS in the test set—the squared sum of the difference between the actual and the

predicted squared distance to the best local zone—is 9.19956e+11, compared to a total sum of

squares for the test set of 1.10446e+12. Our test R2 is therefore 0.167. Fishing opportunities

are highly variable within a day and over small spatial scales, and our public signals are coarse

and incomplete (e.g., missing a satellite image for a variable in a given location-day). Our

public signals are nonetheless somewhat informative. We could obtain a much higher R2 if we

predicted squared distance to the best local zone in-sample (without evaluating our predic-

tions in a test set), but doing so would overestimate the predictive power of the public signals.

To estimate σ2
x, the variance of the private signal, we replace Xifzt in Equation 10 with

a matrix of private signals and then repeat the same procedure we used to estimate σ2
y. For

each set i by a vessel in firm f on day t, we compute functions of CPUE and fishing locations

among sets by vessels in firm f on day t − 1, such as the CPUE of the nearest set from

the previous day. We calculate transformations and include pairwise interactions between all

predictor variables, resulting in 153 private signal variables (Online Appendix C.3).

Estimating Equation 10 with our optimal shrinkage penalty (161) retains 8 predictor

21This random assignment is irrespective of which fishing season a day occurs in, so the training and test
sets are approximately temporally balanced within fishing seasons.

19



Table 1: Public and private signal parameter estimates

σ2
y σ2

x r δ

9.19956e+11 1.07994e+12 0.923 0.540

variables with non-zero coefficients. Our estimate of σ2
x is 1.07994e+12, compared to the

same total sum of squares as above. The private signals are less informative than the public

signals; the private information R2 in the test set is 0.022.

Our estimate of r is therefore 0.923 (
√
9.19956e+ 11 divided by

√
1.07994e+ 12). Table 1

displays our parameter estimates.

Given the two estimated error terms (eifzt), we can calculate their correlation, ρ, as 0.247.

This value exceeds the upper limit required for positive definiteness when n = 135 (Section 3).

The decision rule is invariant to n in the absence of information clubs or global information

sharing, so we do not require that all parameter estimates satisfy a constraint involving n

(Section 4).

Using our estimate of r and setting ρ = 0 in the formula for δ (Equation 1), we obtain the

estimate δ = 0.540; the BLUE of θ assigns 0.54 weight to the public signal and 0.46 weight

to the private signal. With ρ = 0.247, δ = 0.553. Online Appendix C.5 considers alternative

specifications and demonstrates the robustness of our results.

7 Estimation of τ

The parameter τ measures the benefit of dispersion—fewer nearby sets—relative to the cost

of locating farther from the ideal fishing ground.

We compute dispersion facing set i as

Dit =
1

Mt

∑
j ̸=i

(
k̃it − k̃jt

)2
, (11)

where k̃it − k̃jt = min(∥kit − kjt∥, 126) and Mt is the number of sets on day t. There are 891

sets on the median day and the median set has 312 sets within 126 km. For sets j farther

than 126 km from set i, we adjust the distance values to 126 km, since sets farther than 126

km all likely have the same negligible effect on the CPUE of set i; 126 km is the same radius

we used in Section 6. We refer to Dit as dispersion because it measures the distance between

set i and all other sets on that day. We calculate dispersion for each set; sets in the same

zone have (slightly) different dispersion values.

To measure the cost of locating farther from the ideal fishing ground, we begin with
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Section 6’s best local zone specification to estimate the ideal location θ̂izt for each set i.

Conditional on the distribution of other sets, expected catch from set i is higher if it is closer

to the ideal location, despite the associated higher density of sets and resulting increase in

congestion costs.22 As a result, aggregate harvest per unit of effort at location i, denoted

CPUEi, is higher (in expectation) the closer location i is to the ideal location. We therefore

have a proxy for the set’s distance from the ideal location given the estimate of the ideal

location, θ̂izt, and the location of set i, kizt (which is equivalent to kit, but now includes the z

subscript to reflect the role of zones). This proxy equals the dependent variable from Section

6 (Equation 10); here, however, we omit the firm f subscript because it is not relevant for

our estimation of τ . We standardize squared distance to the best local zone and dispersion

(subtracting their mean and dividing by their standard deviation) so that their regression

coefficients are directly comparable to each other.

We estimate the following equation with ordinary least squares regression:

CPUEizt = κ+BDit + A

(∥∥∥∥(kizt − θ̂izt

)b∥∥∥∥)2

+ eizt (12)

where κ, A, and B are regression coefficients and eizt is the error term. We two-way cluster

standard errors at the level of date t and zone z. We estimate τ as B divided by −A. The

negative of A measures the benefit of being closer to the best local zone.

We expect that the effect of dispersion on CPUE is positive (B > 0). All else equal, more

dispersion should increase CPUE because there are fewer sets near set i (less depletion of

the local anchoveta population and less physical congestion from nearby vessels). We expect

A < 0; as set i occurs farther from the best local zone, CPUE should decrease.

Column 1 of Table 2 displays our estimates of B, A, and τ corresponding to Equation 12.

Our estimates of B and A have the expected signs. A 1 standard deviation increase in

dispersion increases CPUE by 1.596 tons, while a 1 standard deviation increase in squared

distance to the best local zone decreases CPUE by 3.558 tons. We estimate τ = 0.448.

While the negative relationship between CPUE and squared distance to the best local zone

is partly mechanical, our estimate of the relationship between CPUE and dispersion could be

confounded by not observing the biomass of anchoveta at every location-time. Biomass likely

increases CPUE and decreases dispersion: location-times with high biomass will likely have

both higher CPUE and lower dispersion (sets clustered close to each other). Our estimate of

B (and thus of τ) in Column 1 of Table 2 may therefore be biased downward.

We attempt to alleviate this omitted variable bias by implementing the post-double-

22This monotonicity is due to the concavity of the agent’s optimization problem: it is better to be where
the fish are more abundant.
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Table 2: Estimates of τ

CPUE
(1) (2)

Dispersion 1.596 0.496
(0.954) (1.013)

DistToBest2 -3.558 -3.894
(0.892) (0.734)

τ 0.448 0.127
(0.265) (0.259)

Controls No Yes
Adj. R2 0.005 0.066
N 246,920 246,920

Notes: The dependent variable is catch per unit effort (CPUE). Mean CPUE is 0 by con-
struction; the standard deviation is 51.8. We estimate τ as the Dispersion coefficient divided
by the negative of the DistToBest2 coefficient. We estimate the standard error of τ with the
delta method. Our post-double-selection procedure retains 265 control variables that predict
CPUE or Dispersion (Column 2). We two-way cluster standard errors by date and zone.

selection method of Belloni, Chernozhukov, and Hansen (2014). Since omitted variables bias

is caused by variables that affect both the dependent variable (CPUE) and the independent

variable of interest (dispersion), post-double-selection identifies the predictors of either vari-

able, and controls for these predictors in a third regression of the dependent variable on the

independent variable of interest. We include as potential predictors all of the public signal

variables that we used to estimate σ2
y in Section 6, squared distance to the best local zone,

and new potential predictors of biomass and fishing costs (Online Appendix C.6).

Column 2 of Table 2 displays our estimates when we control for the 265 unique predictor

variables retained by the two lasso regressions. Instead of becoming larger, which would

be consistent with a downward biased coefficient in Column 1, the coefficient on dispersion

becomes smaller. This result provides evidence against the concern that omitting biomass

from Equation 12 biases the dispersion coefficient downward. Thus, we use the Column 1

estimate of τ in our welfare calculations in Section 8 because that estimate derives from

an equation that matches our model more closely (i.e., Equation 2 does not contain control

variables). Online Appendix C.6 confirms the robustness of our estimates to alternative

specifications of CPUE, dispersion, and travel costs.

22



8 Welfare effects of information

We use our estimates from Sections 6 and 7 and the theory from Sections 3 and 4 to study

the welfare effects of an exogenous increase in a signal’s precision, and of the reallocation of

information by means of information clubs or global information sharing.

Exogenous increase in the precision of signals. For our point estimates (r, τ) =

(0.923, 0.448), we use Equations 6 and 7 to obtain the elasticity of welfare with respect to the

precision of public information as α = 0.02, and the elasticity with respect to the precision

of private information as β = 1.98. These values align with Figure 1, which locates our point

estimates at X, in the region where greater precision of either signal increases welfare. The

elasticity α is positive but close to zero; a small parameter change can flip the sign of this

elasticity, but because it would remain small in magnitude, the parameter change would not

alter the policy message: more precise private signals substantially raise welfare, but a more

precise public signal likely has a small welfare effect.

Information clubs. The decision rule and the payoff in Lemma 1 are differentiable

functions of c, but the symmetry assumption means that the domain of c is a subset of

integers between 1 and n. For example, with n = 30, the symmetric club size is c ∈
{1, 2, 3, 5, 6, 10, 15, 30}. For our parameter values, the relevant derivatives are monotonic

in c, so there is no loss in generality in ignoring this integer constraint.

Using Equation 3, Online Appendix B.3 shows that

sign

(
dγNE,c

dc

)
= sign [(r (1− n (1− τ))] .

With clubs, γ is still the weight on the public signal, but now 1−γ is the agent’s weight on the

average of club members’ private signals. A larger club makes that average more informative.

Therefore, an increase in the club size reduces the equilibrium weight on the public signal.

The function S defined in Equation 4 is a normalized payoff: the per-firm payoff divided

by the scaling factor A
2
σ2
x. To compare scenarios where a club comprises the same fraction of

the total industry but n is different, we define ϕ = c−1
n−1

: the number of other firms in i’s club

as a fraction of the number of other firms. For ϕ = 0, c = 1, and for ϕ = 1, c = n. Using this

definition, our point estimates (r, τ) = (0.923, 0.448), and Equation 4, Equation 37 in Online

Appendix B.3 reports the normalized welfare, a function of (ϕ, n).

Figure 4 graphs this normalized payoff as a function of ϕ for n ∈ {38, 135, 234}, the number

of firms fishing per day at the 25th, 50th, and 75th percentiles of our data. For positive ϕ,

an increase in n means that there are more firms outside of i’s club, leading to increased

dispersion and a higher payoff. This figure also illustrates the fact discussed above, that in

the absence of clubs and global information sharing, the payoff per firm does not depend on n.
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Figure 4: Normalized payoff as a function of club size

ϕ

S

Notes: The normalized payoff S, as a function of ϕ for n equal to the 25th, the 50th, and the
75th percentile of the number of firms fishing per day.

The figure shows a substantial percent increase in payoff as ϕ rises from 0 to 0.15 (where

other firms in i’s club comprise 15% of the population), and a negligible increase for larger

clubs. These results suggest that information clubs would likely increase industry payoffs.

But the cost of forming such clubs could limit their creation.

Global information sharing. Using Sections 3 and 4 and the point estimates (r, τ) =

(0.923, 0.448), we find that for n > 58, welfare monotonically increases with the amount of

information sharing. For smaller n, welfare falls for small ϖ and then rises. For example, at

n = 38 (the number of firms fishing at the 25th percentile day), information sharing raises

welfare only if it reduces the variance of the public signal by 11.9%, i.e., for ϖ > 0.119.

However, for larger n (including n = 135, the median daily number of firms), even a small

amount of information sharing raises welfare. This qualitative result is intuitive. The larger is

n, the smaller is the fraction (f) of private information that the regulator needs to take from

each firm, to achieve a given reduction in the standard deviation of the public signal. In our

empirical context, where both public and private information are valuable (α > 0, β > 0),

firms are better off when they achieve a more precise public signal at a smaller reduction in

the precision of their private information.

To reach these conclusions, we first invert Equation 8 to write f as a function of ϖ. Substi-
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Figure 5: Normalized payoff as a function of global information sharing

ϖ

S
1−f

Notes: The normalized payoff, S
1−f

, as a function of ϖ for n = 38 (the 25th percentile of

the number of firms fishing per day) and n = 234 (the 75th percentile of the number of
firms fishing per day). For n = 234, welfare increases with the amount of global information
sharing. For n = 38, information sharing reduces welfare unless ϖ > 0.119 (crossing point
indicated by horizontal dotted line).

tuting the result into Equation 9, we compute the elasticities of σx and σy with respect to ϖ:23

ϵσx,ϖ ≡ dσx

dϖ
ϖ
σx

= ϖ
(1−ϖ)

(
1

2(r2n(1−ϖ)−ϖ)

)
≥ 0

ϵσy ,ϖ ≡ dσy

dϖ
ϖ
σy

= −ϖ
(1−ϖ)

≤ 0.
(13)

Using Equations 6, 7, and 13, we then write the elasticity of the payoff with respect to ϖ:

dP
dϖ

ϖ
|P | =

dP
dσx

σx

|P |
dσx

dϖ
ϖ
σx

+ dP
dσy

σy

|P |
dσy

dϖ
ϖ
σy

= (sign(P )2 + α) ϵσx,ϖ − αϵσy ,ϖ

=
[
(sign(P )2 + α)

(
1

2(r2n(1−ϖ)−ϖ)

)
+ α

]
ϖ

1−ϖ
.

(14)

At our point estimates, P < 0, α = 0.02 and r = 0.923. For ϖ positive but small, the term

in the square brackets in the second line of Equation 14 is approximately equal to

−2 + 0.02

2r2n
+ 0.02 =

−1.1621 + 0.02n

n
.

This result shows that a small amount of information sharing (ϖ ≈ 0, ϖ > 0) increases wel-

23Equation 8 and f ≤ 1 imply that ϖ ≤ nr2

nr2+1 , leading to the inequality in the first line of Equation 13.
The elasticities are for the post-transfer moments, σ′

x, σ
′
y; we write σx, σy in order to simplify the notation.
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fare if n > 58 and lowers welfare for smaller n. Figure 5 illustrates this result, showing the

graph of normalized payoff as a function of ϖ, for n = 38 and n = 234.

9 Extensions

Here we consider three extensions: allowing firms to choose a location in two-dimensional

space instead of on the real line; a dynamic model that accommodates stock externalities;

and games in which the decision variable is emissions rather than location.

Actions in two-dimensional space. This extension requires that firms receive signals

of both the latitude and the longitude of the (local) best zone. If firms receive both a public

and a private signal for each of these, then they receive four signals, and have to make two

decisions, their latitude and longitude. Therefore, a firm would condition both of its decisions

on all four signals. Because the weights for each decision sum to one, the firm’s linear decision

rule requires three weights for each decision, a total of six coefficients.

When all agents use linear decision rules, a firm’s payoff is a quadratic function of the

weights in its decision rules. We now have six first order conditions, which are linear functions

of the weights that other firms use. With symmetry (because all firms use the same rule in

equilibrium) we obtain a system of six equations that (in general) can be solved numerically

to obtain the coefficients of the equilibrium linear decision rules as functions of the signals’

moments and of the parameter τ . The six-dimensional equilibrium problem would be too

complicated to yield analytic insight, but it could be studied using parameter estimates.

Stock externalities. For reasons discussed in Section 2, we doubt that stock externali-

ties are of first order importance in the anchoveta fishery, but they likely are in other resource

settings. There has been an explosion of the literature on estimating dynamic games, partic-

ularly in the field of industrial organization (Aguirregabiria, Collard-Wexler, & Ryan, 2021);

perhaps these methods can be adapted to study a dynamic version of our problem.

The components of such a model would include a flow payoff and two sources of dynamics.

Ignoring growth within a season, we need one stock variable to keep track of cumulative

harvest within the season, to account for the possibility that fish become scarcer and harvest

costs higher as the season progresses. Second, each firm needs to keep track of its own seasonal

harvest to determine when it reaches its quota. The number of boats whose quota constraint

is slack would weakly decrease with the season. The flow payoff could be similar to the payoff

in our static model, except that it would also depend on cumulative harvest to account for

stock-related harvest costs. The details of any such model would have to be guided by the

empirical setting.

Emissions games. The game in which firms choose emissions closely resembles those in

26



which firms choose price or quantity. Suppose that firms receive signals about an unknown

technology parameter that affects their abatement costs; these cost parameters might be cor-

related across firms. A regulator fixes a supply schedule or a number (in the case of standard

cap and trade) for emissions permits. Permits are auctioned or otherwise distributed, and

a market for permits opens. Vives (2014) discusses a version of this problem in which firms

receive only a private signal. Cantillon and Slechten (2018) study a multiperiod emissions

game, focusing on the ability of markets to aggregate information. There is scope for further

research in this area, including consideration of both public and private signals about tech-

nology; the increased use of emissions markets may produce opportunities for empirical work.

10 Conclusion

A rich theoretical literature recognizes the differing equilibrium effects of more precise pub-

lic and private information, and the possibility that either might lower welfare by changing

equilibrium behavior. A rich empirical literature estimates the value of information under the

assumption that if information is not useful, agents can ignore it without cost: information

always has (weakly) positive value (Duflo et al., 2018). Thus, the theory on the ambiguous

value of information has rarely been tested empirically; the empirical literature on the value

of information has generally ignored the insights from theory. Our results show the value of

combining a micro-founded model, careful econometrics, and numerical analysis.

We obtain a full analytic characterization of the welfare effects of more precise information

over a larger parameter space than in previous papers. Our model contains two primary

parameters: the relative precision of private versus public information, and the importance

of congestion relative to proximity to the ideal location. We estimate these parameters

using high-resolution data from the world’s largest fishery by catch volume, the Peruvian

anchoveta fishery. We find that private signals are about 8% less precise than public signals

and congestion is about 45% as important to profits as is fishing close to the ideal fishing

ground. Accordingly, improving the precision of private information would increase welfare,

but improving the precision of public information would have a negligible effect on welfare.

Our model nests two kinds of information sharing. We calculate that information clubs, in

which members share private signals, would increase welfare. Even a small amount of global

information sharing would also typically increase welfare because the number of active firms

is large; the regulator requires less private information from each firm in order to achieve a

given increase in the precision of the public signal in this industry.

The primary policy implication is that anchoveta firms would benefit from more precise

private information about the location of fish stocks. Firms could increase the precision of
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their private information by investing in buoy-based acoustic technology that continuously

transmits real-time estimates of anchoveta biomass (Brehmer et al., 2019; Simmonds et al.,

2009). Second, the regulator could implement global information sharing by publishing near

real-time catch data (Englander, 2023).

These conclusions are in line with theory’s recognition that, in the presence of congestion

(or a similar negative externality) more precise public information is less likely to be bene-

ficial, compared to more precise private information. Public information encourages agents

to act in the same manner, e.g., all move to the same fishing ground, thereby exacerbating

the externality. The particularity of our results (to the context of the Peruvian anchoveta

fishery) cautions against attempts to generalize them to other fisheries, or other settings

where externalities are important. This particularity also shows the value of combining the-

ory with empirical tools. This combination enables us to address a type of policy question

not accessible to an atheoretical approach.

A Appendix: Technical information

We first discuss the relation between our model and AP07 and then sketch the proofs and

some derivations. These are computation-intensive, but do not provide additional insight.

Therefore, we relegate this material to Online Appendix B, and here we provide an overview.

Online Appendix C provides more information regarding the data and empirical analysis.

AP07’s footnote 5 notes that Morris and Shin’s (2002) uniqueness proof can be adapted to

show that the unique Bayesian Nash equilibrium in this game is linear in strategies, provided

that (in our notation) τ < 0.5. This restriction is innocuous in AP07, because they study

both the noncooperative Bayesian Nash equilibrium and also a “team problem” in which

firms choose location to maximize collective welfare, but without sharing information. Their

sufficient condition for concavity of payoffs in the team problem implies τ < 0.5. We are

interested only in the noncooperative setting, where the weaker restriction τ < 1 is necessary

and sufficient for concavity of the agent’s problem. We therefore consider the entire parameter

region τ < 1; for 0.5 ≤ τ < 1, where AP07’s sufficient condition for uniqueness is not

satisfied, we assume that the equilibrium is linear in information. We treat firms as choosing

the weight γ in their decision rule, whereas AP07 have firms choose ki. Comparing our

Equation 3 evaluated at c = 1 with their Equation 8 on page 1112 provides a consistency

check, confirming that the two approaches are equivalent.

Online Appendix B.1 proves Lemma 1 and the two propositions. In writing an agent’s

objective and first order condition when c > 1, we recognize that the agent knows the infor-

mation other club members have, and therefore can predict their actions. In contrast, the

28



agent takes expectations of the actions of members of different clubs.

To prove the Lemma, we substitute the public signal weights γ (the weight that agent

i intends to use) and η (the weight that this agent believes other agents will use) into i’s

objective. We then replace the signals with their definitions (e.g., y = θ+ εy) and cancel the

θs. Taking expectations with respect to the noise (εy, {εxi
}) produces i’s expected welfare as

a function of γ and η and the signals’ moments. Evaluating the first order condition with

respect to γ at a symmetric equilibrium (γ = η) produces Equation 3. Evaluating the payoff

at this symmetric equilibrium produces Equation 4.

To prove the two propositions, we set c = 1 and ρ = 0 and rewrite the expression for

the equilibrium payoff in terms of (σy, σx). Taking the derivative of the payoff with respect

to these two moments and simplifying completes most of the proofs. However, to establish

Proposition 1.iii we use L’Hopital’s Rule to evaluate the payoff at the limiting values of σy.

Online Appendix B.2.2 uses Lemma 1 with c = 1 to construct (for ρ ⋚ 0) the boundaries

of the sets in the (τ, δ) plane where the derivatives of the payoff with respect to σy and σx

do not change signs. Figure 1 shows the boundaries for ρ = 0. Figures B1 and B2 show

the boundaries for public and private information with ρ > 0. The construction of these

boundaries is somewhat intricate because the welfare derivatives are ratios of polynomials.

To avoid a complicated taxonomy, we restrict τ < 1 − ρ2 to ensure that the denominator of

these ratios does not pass through a zero (at which point the derivative is undefined). Online

Appendix B.2.3 computes the elasticities of the payoff with respect to the precision of public

and private information, shown in Equations 6 and 7.

Online Appendix B.3 uses Lemma 1 to take the derivative of the equilibrium weight (γNE,c)

with respect to the club size. To construct Figure 4, we use c = 1 + (n− 1)ϕ to eliminate c

from the expression for S, writing the normalized payoff as a function of the point estimates

of the model primitives and (n, ϕ).

Online Appendix B.4 describes the model in which each agent receives m private signals.

This generalization enables us to consider the possibility that the regulator collects only a

fraction of agents’ private information. We choose the moments of these m signals so that,

absent information sharing, the model is equivalent to our original model in which each agent

receives a single private signal. We then compute the moments of the enhanced public signal

and the degraded private signal, when the regulator collects the fraction f of each firm’s pri-

vate information. In the process, we derive Equations 8 and 9. The appendix considers the

general case ρ ⋚ 0, so it also shows how global information sharing affects this correlation.
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Data Availability Statement

The data and code underlying this research are available on Zenodo at https://doi.org/10.

5281/zenodo.15122098.
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Online Appendix for “The value of

information in a congested fishery”

Appendix A provides a sketch of the proofs and of derivations and it also serves as a road map

to Online Appendix B, which contains the detailed proofs and derivations, and supporting

arguments for some of the claims made in the paper. Online Appendix C contains supporting

information for the empirical results.

B Online Appendix: Proofs and derivations

We first explain the necessary and sufficient condition for a positive definite covariance matrix

of the entire set of public and private signals, nρ2 < 1. Using the definition r ≡ σy

σx
, the

covariance matrix for the public signal and the n private signals can be written as σ2
xΓ, where

the (n + 1)× (n + 1) matrix Γ has r2 in the (1, 1) entry, 1’s in other diagonal entries, rρ on

the first row and column, and zeros elsewhere. For example, for n = 3

Γ =


r2 rρ rρ rρ

rρ 1 0 0

rρ 0 1 0

rρ 0 0 1

 .

It can be shown, e.g., using an inductive proof, that the determinant is |Γ| = r2(1 − nρ2),

i.e., |Γ| > 0 ⇐⇒ 1 > nρ2. With 1 > nρ2, the principal minors of Γ are also positive.

B.1 Proofs

Proof. (Lemma 1) The definitions in the text imply

ε̃s ∼
(
0,
σ2
x

c

)
,Eε̃sεy = ρσxσy, and Eε̃sε̃k = 0 for k ̸= s. (15)

Let agent i be a member of a particular club, indexed by s̃(i). In a linear equilibrium, agent

i uses the decision rule ki = γy + (1− γ) x̃s̃(i) and agent j ̸= i (including agents in the same

club as i) uses the rule kj = ηy + (1− η) x̃s(j), where x̃s(j) denotes the collective semi-private

signal of the club to which agent j belongs. Substituting these linear decision rules into firm
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i’s payoff, J(ki|{kj}, θ), gives the payoff as a function of the weights γ and η:

1
n−1

B
2

[
(c− 1) (γy + (1− γ) x̃s̃ − (ηy + (1− η) x̃s̃))

2 +∑
s̸=s̃ c ((γy + (1− γ) x̃s̃)− (ηy + (1− η) x̃s))

2
]

−A
2
(γy + (1− γ) x̃s̃ − θ)2 .

The term in the first line, multiplied by c − 1, is the contribution to dispersion provided by

the other c− 1 members of i’s club. In a symmetric equilibrium, this contribution is zero: all

members of the club have the same information, so they locate in the same position. The sec-

ond line measures the dispersion provided by members of other T −1 clubs, each of which has

c members. The third line is the cost of missing the target. The expectation of this payoff is

P club ≡ 1
n−1

B
2

[
(c− 1) (γy + (1− γ) x̃s̃ − (ηy + (1− η) x̃s̃))

2 +

E
∑

s ̸=s̃ c ((γy + (1− γ) x̃s̃)− (ηy + (1− η) x̃s))
2
]

−A
2
E (γy + (1− γ) x̃s̃ − θ)2 .

(16)

Terms in the first line are observed, so there is no expectations operator there. The first ex-

pectations operator, appearing in the second line, is over other clubs’ private signals. There

are c members of each of these other clubs, and all members of a club have the same informa-

tion and make the same decision. The second expectations operator, appearing in the third

line, is over θ. We simplify the second line of Equation 16 by replacing the signals by their

definitions, i.e., y = θ+ εy and x̃s̃ = θ+ ε̃xs̃
; we then cancel the θs and then take expectations

with respect of εy and {ε̃xs̃
}. These steps produce:

E
∑

s ̸=s̃ c ((γy + (1− γ) x̃s̃)− (ηy + (1− η) x̃s))
2 =

E
∑

s ̸=s̃ c (γ (θ + εy) + (1− γ) (θ + ε̃xs̃
)− (η (θ + εy) + (1− η) (θ + ε̃xs)))

2 =

E
∑

s ̸=s̃ c (γεy + (1− γ) ε̃xs̃
− (ηεy + (1− η) ε̃xs))

2 =

E
∑

s ̸=s̃ c ((γ − η) εy + (1− γ) ε̃xs̃
− (1− η) ε̃xs)

2 =

(T − 1) c
[
(γ − η)2 σ2

y +
(
(1− γ)2 + (1− η)2

) σ2
x

c
− 2 (γ − η)2 ρσxσy

]
=

(T − 1) cσ2
x

[
(γ − η)2 r2 + (1− γ)2 1

c
+ (1− η)2 1

c
− 2rρ (γ − η)2

]
.

(17)

Before this sequence of equalities we explained the steps used to obtain the first three equali-

ties in the sequence. To obtain the fourth equality of Sequence 17 we simplify the expectation

2



of the cross product term using

E2 (γ − η) εy ((1− γ) ε̃xs̃
− (1− η) ε̃xs) = 2 (γ − η) ((1− γ)− (1− η)) ρσxσy =

−2 (γ − η)2 ρσxσy.

This expression appears as the last term on the fifth line of Sequence 17. We obtain the final

line by factoring out σ2
x and using the definition of r.

The expected cost of missing of the target is

A
2
E (γy + (1− γ) x̃s̃ − θ)2 = A

2
E (γεy + (1− γ) ε̃s̃)

2 =

A
2

(
γ2σ2

y + (1− γ)2 σ2
x

c
+ 2γ (1− γ) ρσxσy

)
=

= A
2
σ2
x

(
γ2r2 + (1− γ)2 1

c
+ 2γ (1− γ) ρr

)
.

(18)

Once again, the first expectations operator is over θ; we obtain the first equality in this se-

quence by replacing the signals with their definitions and then canceling θ. Thus, the second

expectations operator is over the shocks εy, ε̃xs̃
. The second equality follows from taking

expectations; the third equality follows from simplification, using the definition of r.

Using Equations 16, 17 and 18 we write agent i’s expected payoff

P club ≡
c−1
n−1

B
2
(γy + (1− γ) x̃s̃ − (ηy + (1− η) x̃s̃))

2

+ (n−c)
n−1

B
2
σ2
x

[
(γ − η)2 r2 + (1− γ)2 1

c
+ (1− η)2 1

c
− 2rρ (γ − η)2

]
−A

2
σ2
x

(
γ2r2 + (1− γ)2 1

c
+ 2γ (1− γ) ρr

)
.

(19)

The second line uses n = Tc to write T−1
n−1

c = n−c
n−1

.

The derivative of the first line after the identity symbol in Equation 19, with respect to γ, is

c− 1

n− 1

B

2
2 (γy + (1− γ) x̃s̃ − (ηy + (1− η) x̃s̃)) (y − x̃s̃) .

Evaluated at a symmetric equilibrium (γ = η) this expression equals zero. Therefore, the

possibility of dispersion between an agent and other club members does not affect either the

payoff or the first order condition, and thus does not affect the decision rule. We use this fact

to write the payoff more simply by dropping the first line after the identity in Equation 19.

Once we drop this term, it is apparent that the club causes the “effective payoff weight” on

the dispersion term to fall from B to n−c
n−1

B.

We also use the definition Υ ≡ (n−c)
n−1

B
A
= (n−c)

n−1
τ ≤ τ < 1; the strict inequality follows from

3



Assumption 1(ii). The resulting simplified payoff is

P club ≡
Aσ2

x

[
Υ
2

(
(γ − η)2 r2 + (1− γ)2 1

c
+ (1− η)2 1

c
− 2rρ (γ − η)2

)
− 1

2

(
γ2r2 + (1− γ)2 1

c
+ 2γ (1− γ) ρr

)]
.

(20)

We denote the function in square brackets as P̃ , so P club = Aσ2
xP̃ .

The first order condition for maximizing this payoff with respect to γ, dP̃
dγ

= 0, implies

crΥ(r − 2ρ) η +
(
cr2 − 2crρ+ 1

)
(1−Υ) γ + (Υ + crρ− 1) = 0. (21)

Evaluating this first order condition at the symmetric equilibrium, η = γ, and solving for γ

gives the equilibrium weight

γNE,c =
1−Υ− crρ

1−Υ+ cr2 − 2crρ
,

which produces Equation 3. We obtain Equation 4 using Equation 20 (factoring the 1
2
)

evaluated at the equilibrium, where η = γ.

The second order condition for the agent’s problem uses

d2P̃

dγ2
=

1

c
(Υ− 1)

(
cr2 − 2cρr + 1

)
.

We now show that cr2−2crρ+1 > 0. This inequality follows from inspection for ρ ≤ 0, so we

need only consider the case ρ > 0. For this case cr2−2crρ+1 > f(c, r) ≡ cr2− 2cr√
n
+1 (because

ρ < 1√
n
), so we need to show that f(c, r) ≥ 0. Again, we have two cases. For r ≥ 2√

n
, f(c, r) ≥

0 by inspection (because c > 0). For the alternative, r < 2√
n
, use the fact that f(c, r) is a

quadratic in r with a single root at r∗ = 1√
n
(that is, f(c, r∗) = 0). The quadratic is positive

at r = 0, and because the unique root is r∗ the quadratic is positive for f ̸= r∗. Thus, the

firm’s second order condition is satisfied if and only if Υ < 1. This inequality holds for c = 1

if and only if τ < 1. With this inequality, the second order condition holds for all c ≤ n.

Proof. (Proposition 1) Set ρ = 0 and c = 1 and evaluate the equilibrium payoff, Equation 4,

at the equilibrium decision rule, Equation 3, to write the payoff in terms of model primitives,

denoted Z:

Z ≡ −1
2
σ2
yAσ

2
x

σ2
x(τ2−2τ+1)+σ2

y(1−2τ)

(−τσ2
x+σ2

y+σ2
x)

2 . (22)
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Part i. The derivative of Z with respect to σ2
y is

dZ
dσ2

y
=

(
1
2
Aσ4

x(1−τ)

((τ−1)σ2
x−σ2

y)
3

)(
(1− 3τ)σ2

y + σ2
x (τ

2 − 2τ + 1)
)

= 1
2
Aδ2 1−τ

(1−δτ)3
(3τ − τδ − τ 2δ − 1) .

(23)

Because τ < 1 and δ ≤ 1, the coefficient, 1
2
Aδ2 1−τ

(1−δτ)3
, is positive and it is finite (so Z is

continuous in σ2
y). Therefore, Equation 23 implies that dZ

dσ2
y
> 0 ⇔ (3τ − τδ − τ 2δ − 1) > 0,

i.e., welfare increases with the precision of public information ( dZ
dσ2

y
< 0) if and only if

3τ − 1 < δτ (τ + 1) . (24)

We now consider three cases. (a) For 0 > τ > −1, Inequality 24 holds for δ < 3τ−1
τ2+τ

≡ δa(τ).

Moreover, with 0 > τ > −1, a calculation establishes that 3τ−1
τ2+τ

> 1; in addition, δ < 1.

Therefore, greater precision of public information increases welfare for 0 > τ > −1. (b) For

τ < −1, Inequality 24 holds for δ > 3τ−1
τ2+τ

. This inequality always holds because for τ < −1,
3τ−1
τ2+τ

< 0; moreover, δ > 0. Therefore, for τ < 0, Inequality 24 is satisfied: an increase in

the precision of public information increases welfare. (c) For τ > 0, Inequality 24 holds if

and only if δ > 3τ−1
τ2+τ

. Because δ > 0, this inequality is always satisfied for 0 < τ < 1
3
. This

argument establishes Part (i).

Part (ii). For 1
3
< τ < 1,

dZ

dσ2
y

= 0 ⇐⇒ δ =
3τ − 1

τ(τ + 1)

so δ = 3τ−1
τ(τ+1)

is the unique extreme point of Z with respect to σ2
y. Moreover, as established

in Part (i), Z is increasing in the precision of the public signal for δ > 3τ−1
τ(τ+1)

and decreasing

in the precision of the public signal for δ < 3τ−1
τ(τ+1)

. Therefore, Z is minimized with respect to

the precision of public information at δ = 3τ−1
τ(τ+1)

.

Part (iii). Using the definition r = σy

σx
we can rewrite Equation 22 as

Z (r; τ, σx) = −1

2
Aσx

2 r2

(1− τ + r2)2
(
τ 2 − 2τ + 1− 2r2τ + r2

)
.

This equation gives the Bayesian Nash equilibrium payoff as a function of r when we fix τ and

σx; r increases as we increase σy. For fixed σx, we see by inspection that Z (0; τ, σ2
x) = 0. To

evaluate limr→∞ Z (r; τ, σ2
x) we apply L’Hopital’s Rule four times (because both the numerator

5



and the denominator are quartics in r) to obtain

lim
r→∞

Z
(
r; τ, σ2

x

)
= lim

r→∞

12r (2τ − 1)

24r
= τ − 1

2
.

Thus, limr→∞ Z (r; τ, σ2
x) > Z (0; τ, σ2

x) if and only if τ > 0.5.

Proof. (Proposition 2) Part i. Using the equilibrium payoff, Equation 22, we have

dZ
dσ2

x
= −1

2
A

(σ2
y)2

(σ2
x+σ2

y−σ2
xτ)

3

(
σ2
x + σ2

y − σ2
xτ − 2σ2

yτ
)

= −1
2
A (δ−1)2

(1−τδ)3
(τδ − 2τ + 1) .

(25)

The coefficient −1
2
A (δ−1)2

(1−τδ)3
< 0. Therefore, welfare increases with the precision of private

information (i.e. dZ
dσ2

x
< 0) if and only if (τδ − 2τ + 1) > 0. This inequality holds for τ < 0.5.

Part ii. From Part (i), the payoff is continuous in σ2
x, and for τ > 0.5 the unique extreme

point of the payoff, with respect to σ2
x, is δ = 2τ−1

τ
. Moreover, the payoff increases with

the precision of the private signal if and only if δ > 2τ−1
τ

, and the payoff decreases with

the precision of the private signal if and only if δ < 2τ−1
τ

. Recall that an increase in the

precision of the private signal corresponds to an increase in r and a decrease in δ. Thus, for

fixed τ > 0.5 and fixed σ2
y, the payoff is maximized with respect to the precision of private

information at δ = 2τ−1
τ

.

B.2 Analysis with general ρ

This Online Appendix collects the analysis for general values of ρ. Where this analysis requires

numerical methods, we use our point estimates r = 0.923, ρ = 0.247, τ = 0.448. The point

estimate of ρ is much larger than the theoretical maximum value ρ = 0.09 when there are

n = 135 firms (the median daily number fishing). Recall that the estimation procedure is

independent of n; this is a reflection of the fact that the payoff and the equilibrium decision

rule are independent of n when there are no clubs (c = 1) and no global information sharing

(f = 0). The introduction to Section 4 explains this point.
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B.2.1 Comparative statics

Using Equation 3 with c = 1, we obtain

(i) dγNE,1

dρ
< 0 ⇔ 1− r2 − τ < 0, (ii) dγNE,1

dτ
< 0 ⇔ ρ < r,

and (iii) dγNE,1

dr
< 0 ⇔ (r2 − τ + 1) ρ < 2r (1− τ) .

(26)

In general, the signs of the expressions are ambiguous, but at our point estimates, all three

inequalities (after the three “⇔”s) are satisfied. Thus, for c = 1 and our point estimates,

the equilibrium weight on the public signal falls with: greater correlation between the noise

in the public and private signal; greater congestion; and a relatively more precise private

signal. These results are intuitive. With greater correlation, the public signal adds less new

information about θ to the private signal; firms therefore rely less on the public signal in order

to increase their distance from other firms, thereby lowering their congestion costs. Greater

congestion costs (larger τ) reduces firms’ reliance on the public sign for a similar reason.

Finally, a relatively more precise private signal shifts firms’ equilibrium weight to that signal.

Because ρ < 1, the denominator of δ is 1+r2−2ρr > 1+r2−2r = (1−r)2 ≥ 0. Therefore,

δ has the same sign as the numerator, 1 − ρr, and δ is continuous in ρ and r. The function

is non-monotonic in parameters, with

dδ

dρ
< 0 ⇔ r > 1 and

dδ

dr
> 0 ⇔ ρ > 2

r

r2 + 1
. (27)

A higher correlation between noise in signals increases the BLUE weight on the public signal

if and only if the public signal is relatively precise, compared to the private signal (r < 1). For

ρ close to 0, a relatively more precise public signal (smaller r) increases the BLUE weight on

the public signal, as we would expect. However, for r > 3 and sufficiently large ρ, a relatively

less precise public signal increases the BLUE weight on the public signal. For r = 0.923, we

have dδ
dρ
> 0 and dδ

dr
< 0.

B.2.2 Constructing the boundaries for welfare effects when ρ ̸= 0.

For ρ = 0, the curves labeled a and b in Figure B1 show the boundaries in the (τ, δ) plane at

which the welfare effect of increased precision changes signs. These curves were discussed in

Section 4.1 and illustrated in Figure 1. The curves labeled a′ and a′′ show new boundaries for

public information when ρ = 0.247. With this value of ρ, a more precise public signal raises

welfare for parameters above the curve a′ and below the curve a′′, and lowers welfare for pa-

rameters below those two curves. The larger ρ changes the boundary b for private information

7



Figure B1: Boundaries that determine the welfare effect of more precise information

Notes: For ρ = 0, c = 1: (i) more precise public information increases welfare if and only
if (τ, δ) lies above the solid curve labelled a; (ii) more precise private information increases
welfare if and only if (τ, δ) lies above the solid curve labelled b. For ρ = 0.247, c = 1: (i) more
precise public information increases welfare if and only if (τ, δ) lies above the dashed curve
labelled a′ or below the dotted curve labelled a′′; (ii) the boundary for private information is
very close to the curve b (see Figure B2); we do not show that boundary here in order to reduce
clutter. Under ρ = 0.247, the point X identifies our point estimate (τ, δ) = (0.448, 0.553),
which lies above the curve a.

only slightly, so to maintain clarity, this figure does not show that new boundary (correspond-

ing to ρ = 0.247). We discuss this figure and then explain how we obtain the new boundaries.

The derivatives of welfare with respect to the precision of information are continuous for

τ < 1− ρ2 = 0.94 (at ρ = 0.247). To use the same figure to graph the boundaries with both

ρ = 0 and ρ = 0.247, Figure B1 truncates the boundary curves at τ = 0.94.

The critical τ at which the derivative of welfare with respect to more precise public

information vanishes is a solution to a cubic in τ . The curves a′ and a′′ show the graphs of

the two solutions to this cubic for 0 < τ < 0.94. The derivative of welfare is negative between

these two curves and positive above a′ and below a′′. In view of the fact that the relevant

derivative is a ratios of cubics, this level of complexity is not surprising.

Figure B1 nevertheless conveys a simple message. First, even a substantial correlation

between the noise in the public and private signals has almost no effect on the comparative

statics of welfare with respect to the precision of private information (i.e., the boundary b

scarcely changes). Second, for τ in the range that is plausible for the anchoveta fishery (where

likely τ < 0.65), positive correlation between the noise in the signals reduces the parameter
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space over which more precise public information raises welfare: the curve a′ lies above a,

and the curve a′′ does not exist for τ < 0.65. This ranking could be reversed, but only for

unlikely values of τ (in the region below curve a′′). Third, taking correlation into account

might reverse policy conclusions. The point X in Figure B1, identifying our point estimate of

(τ, δ) given ρ = 0.247, lies between the curves a′ and a. The change in sign of the welfare effect

of increased precision of public information compared to when ρ = 0 arises for two reasons

in this example: (i) we used a large value of ρ, leading to a substantial shift in the boundary

a; (ii) our point estimates for (τ, δ), indicated by the X, lies close to the boundary a. On

this boundary, the welfare effect of more precise public information is zero, and because of

continuity the welfare effect is close to zero near the boundary. Therefore, even a small shift

in the boundary can switch the sign of the welfare effect. However, because the magnitude

of the welfare effect is small, this flip is unlikely to be economically important.

We now explain how (for ρ ̸= 0) we use Equations 1, 3 and 4 and numerical methods

to construct the boundaries in the (τ, δ) plane where an increase in precision of public or

private information has zero welfare effect. We use MuPad, a feature of Scientific Workplace,

for calculations. For given ρ, Equation 1 gives the relation between δ and r. When ρ = 0,

δ ∈ [0, 1] as r varies over the positive half line. For ρ > 0 we need to restrict the domain of

r so that its image δ(r; ρ) ∈ [0, 1]. We want to keep δ in this range because our goal is to

compare (across ρ = 0 and ρ > 0) the boundaries at which the welfare effect of more precise

information changes signs. To this end, for ρ > 0, we restrict r ∈ R(ρ) ≡ [ρ, 1
ρ
].

We first show that for ρ > 0, δ(r; ρ) is a strictly decreasing function of r for r ∈ R(ρ).

Dropping the argument ρ from the function δ(r; ρ), note that δ(r)|r=ρ = 1 and δ(r)r= 1
ρ
= 0.

Moreover, using the second inequality in System 27 we confirm that dδ
dr
< 0 at the boundaries

of the interval R(ρ). Again using System 27, we see that dδ
dr

= 0 requires h(r) ≡ ρr2−2r+ρ =

0. The roots of h(r) are
1±
√

1−ρ2

ρ
. The smaller root lies below the lower boundary r = ρ. To

confirm this claim, note that

1−
√

1− ρ2

ρ
− ρ =

1− ρ2 −
√

1− ρ2

ρ
< 0.

By inspection, the larger root of h(r) = 0 lies above the upper boundary of R(ρ). In summary,

we have shown that for ρ > 0, δ(r) is a strictly decreasing function of r for r ∈ R(ρ).24

For completeness, we note that for ρ < 0, δ(r) is strictly decreasing for r ∈ [0,∞], with

δ(r)|r=0 = 1 and limr→∞δ(r) = 0.

24Denote r− ≡ 1−
√

1−ρ2

ρ , the smaller root of h(r). For ρ > 0 and r ∈ [0, ρ), δ(r) is non-monotonic, reaching

its maximum at r = r−. For r > 1
ρ , δ(r) is non-monotonic, reaching its minimum at r+ ≡ 1+

√
1−ρ2

ρ , the

larger root of h(r).
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To ensure that our domain of analysis remains 0 < δ < 1 when ρ ̸= 0 we adopt

Assumption 2. For ρ > 0, r ∈ R (ρ) ≡
(
ρ, 1

ρ

)
, and for ρ ≤ 0, r ∈ (0,∞).

We find the boundaries in the (τ, δ) plane where the derivative of the payoff with respect

to the precision of either the public or the private signal equals zero in two steps. In the first

step we find the boundaries in the (τ, r) plane where the derivative of the payoff with respect

to the precision of either the public or the private signal equals zero. We then convert these

boundaries from the (τ, r) plane to the (τ, δ) plane, our ultimate objective.

To avoid having to introduce yet another symbol, we abuse notation by using S (only in

this Online Appendix) to mean the function S defined in Equation 4 after replacing γ with

the equilibrium weight given in Equation 3. With this understanding, we have

S = r2
2τ + r2ρ2 + 2rρ− τ 2 + ρ2 + 2r2τ − 2rρ3 − r2 − 4rτρ− 1

(−τ − 2rρ+ r2 + 1)2
.

Using MuPad, we can write the derivative as

dS

dr
=
N

p3
, (28)

with the following definitions

N ≡ c0 + c1ρ+ c2ρ
2 + c3ρ

3 + c4ρ
4

p ≡ −r2 + 2ρr + τ − 1,
(29)

together with

c0 ≡ 2r (3r2τ 2 − 4r2τ + r2 − τ 3 + 3τ 2 − 3τ + 1)

c1 ≡ (−2r (r3 − 2r3τ + 6rτ 2 − 9rτ + 3r))

c2 ≡ 2r (τ − 2r2τ + r2 − 1)

c3 ≡ 2r (3r − 3rτ + r3)

c4 ≡ (−4r3) .

(30)

In this Online Appendix (only) we use N as a mnemonic for “numerator” and we use p as a

mnemonic for “pole”, because the derivative is undefined where p = 0, i.e., at a pole.

The derivative of the payoff with respect to the precision of public information has the

same sign as −dS
dr

= N
−p3

. The derivative changes discontinuously, flipping signs as τ passes

through a pole, defined as a value of τ where p = 0. The unique solution to p = 0 (the only

pole) is τ p ≡ r2 − 2ρr + 1. The minimum of this function occurs at r = ρ, where τ = 1− ρ2.
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Our model already requires τ < 1. We further restrict the domain of analysis to τ < 1− ρ2,

thus ensuring that the domain includes no poles. With this restriction, the derivative of the

payoff with respect to the precision of public information is continuous. For our preferred

point estimate ρ = 0.247, this restriction eliminates only τ ∈ (0.938 99, 1) This reduction

in the domain is unimportant in our setting, where our point estimates imply much smaller

values of τ .

Because ρ < 1, we have

p|τ=0 = −
(
1− 2ρr + r2

)
< −

(
1− 2r + r2

)
= − (1− r)2 ≤ 0,

so p|τ=0 < 0; moreover, p is strictly increasing in τ , and equals 0 at τ = τ p. Our restriction

to τ < 1− ρ2 implies that p < 0 for τ < 1− ρ2, so −p3, the demoninator of −dS
dr
, is positive

over our domain of analysis. The derivative of the payoff with respect to the precision of

the public signal therefore has the same sign as n over this domain. By inspection of the

definitions in System 29, n is a cubic in τ .

Now we establish that N|τ=0 > 0. We have

N|τ=0 = 2r
(
1− ρ2

) (
−r3ρ+ 2r2ρ2 + r2 − 3rρ+ 1

)
. (31)

The coefficient 2r (1− ρ2) > 0, so n|τ=0 has the same sign as

f ≡ −r3ρ+ 2r2ρ2 + r2 − 3rρ+ 1.

We now establish that for r ∈ R (ρ) =
(
ρ, 1

ρ

)
when ρ > 0 or r ∈ [0,∞] when ρ ≤ 0, f > 0.

This inequality and Equation 31 implies that N|τ=0 > 0. Note that df
dρ

= −r (r2 − 4ρr + 3).

Also, the roots of f = 0 are
{

1
r
, 1
2r
(r2 + 1)

}
for r ̸= 0. Both of these roots are positive. Using

f|ρ=0 = r2 + 1 > 0 and df
dρ |ρ=0

= −r (r2 + 3) < 0, and the fact that both roots of f = 0 are

positive, we conclude that f > 0 for ρ ≤ 0.

Now consider the case ρ > 0. We have f|ρ=0 = r2 + 1 > 0 and f|ρ=r = (r2 − 1)
2
> 0. We

need to examine two possibilities: 1
r
< 1

2r
(r2 + 1) and 1

r
> 1

2r
(r2 + 1). The first of these two

case implies 2 < r2+1, or 1 < r2. We fix r and consider variations in ρ. We have f (ρ; r) > 0

for ρ < 1
r
, i.e., for r < 1

ρ
. This inequality holds because of our assumption that r ∈ R (ρ).

Now consider the second case, where 1
r
> 1

2r
(r2 + 1), i.e., 2 > r2+1, or 1 > r2. This inequality

implies r2+1
2r

> r. Therefore, there exists no ρ > 0 where ρ ∈
(

r2+1
2r
, r
)
, i.e. there exists no

ρ < r (as required by r ∈ R (ρ)) where ρ > r2+1
2r

(a necessary condition for f < 0).

We conclude that under Assumption 2, N|τ=0 > 0, so the derivative of the payoff with

respect to the precision of public information is positive at τ = 0. In addition, the derivative
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has the same sign as the cubic N (ρ, r, τ) for τ < 1−ρ2. These two facts enable us to determine

the boundaries at which the derivative changes signs by finding the roots of N(ρ, r, τ) = 0;

we are interested only in real roots less than τ = 1− ρ2.

Before turning to the effect of an increase in the precision of private information, we note

as a consistency check that

−dS
dr |ρ=0

= −2r
τ − 1

(r2 − τ + 1)3
(
−3r2τ + r2 + τ 2 − 2τ + 1

)
.

The term −2r τ−1
(r2−τ+1)3

> 0 so the derivative has the same sign as

(
−3r2τ + r2 + τ 2 − 2τ + 1

)
.

Comparing this expression to the first line of Equation 23 we see that our general expression

(that is, for ρ ∈ (−1, 1)) for the boundaries where the derivative of the payoff with respect

to the precision of public information changes signs specializes to the expression that we

obtained in Proposition 1 where ρ = 0.

To determine the derivative of the payoff with respect to the precision of private informa-

tion, we begin with the payoff P = A
2
σ2
xS. The welfare effect of an increase in precision of

the private information (a reduction in σ2
x) is

− dP
dσx

= −
(
AσxS − A

2
σ2
x
dS
dr

σy

σ2
x

)
= −A

2
σx

(
2S − σx

dS
dr

σy

σ2
x

)
= −A

2
σx
(
2S − dS

dr
r
)
= −A

2
σx

(
2S − n

p3
r
)
.

The first equality uses the definition of r and the last equality uses Equation 28. Using

MuPad we obtain

−
(
2S − n

p3
r

)
= 2r3

r − ρ

−p3
m

with

m ≡
(
4rρ− 2r2 − ρ2 − 1

)
τ +

(
1− ρ2

)
r2 +

(
ρ2 − 1

)
2ρr +

(
1− ρ2

)
.

Because 2r3 r−ρ
−p3

> 0 over our domain of analysis, we conclude that the sign of the derivative

of welfare with respect to the precision of private information is the same as the sign of m.

We have

m|τ=0 =
(
1− ρ2

)
r2 +

(
ρ2 − 1

)
2ρr +

(
1− ρ2

)
.

This expression is positive at r = 0 and there are no real roots of (1− ρ2) r2 + (ρ2 − 1) 2ρr+

(1− ρ2) = 0, so we conclude that m|τ=0 > 0. The coefficient of τ , (4rρ− 2r2 − ρ2 − 1) is

negative at r = ρ and the derivative of this coefficient with respect to r is 4ρ − 4r < 0 for
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Figure B2: Graphs of the boundaries for ρ = 0.247 and ρ = 0

Notes: For ρ = 0.247 and c = 1, an increase in the precision of private information raises
welfare if and only if (τ, δ) lies to the left of the dashed boundary. The solid curve shows the
boundary that corresponds to ρ = 0 and c = 1, obtained from Proposition 2 and displayed in
Figures 1 and B1. Because the two curves lie so close together, we do not include the dashed
graph of the boundary when ρ = 0.247 in Figure B1.

r ∈ R (ρ); therefore, the coefficient is negative over the region of analysis. The unique root

of m = 0 is

b ≡ −(ρ2 + r2 (ρ2 − 1)− 2rρ (ρ2 − 1)− 1)

−4rρ+ ρ2 + 2r2 + 1
. (32)

From the previous analysis, the derivative of the payoff with respect to the precision of private

information is positive for τ < b and negative for b < τ < 1− ρ2.

As a consistency check, we note that when we set ρ = 0, b specializes to the boundary given

in Proposition 2 (which assumes ρ = 0). Specializing the formula for b by setting ρ = 0 we have

b|ρ=0 =
r2+1
2r2+1

. In Proposition 2 we expressed the boundary as δ = 2τ−1
τ

. Using δ|ρ=0 =
1

r2+1
we

rewrite this boundary as 1
r2+1

= 2τ−1
τ

. Solving for τ gives τ = r2+1
2r2+1

= b|ρ=0, thus confirming

that our formula for general ρ specializes to the formula in Proposition 2 when ρ = 0.

Algorithm for finding the boundaries in Figures B1 and B2. We have shown that the

boundaries for public information are real roots of the cubic n (τ ; ρ, r) = 0 that satisfy τ <

1− ρ2; the unique boundary for private information is the function b (r, ρ). For fixed ρ, both

of these boundaries are expressed as functions of r. To convert these to functions of δ (as we

require for the two figures) we use the relation δ = 1−rρ
r2−2ρr+1

. For ρ > 0 we proceed as follows:

(i) Choose a value ρ.

(ii) Select a grid over R (ρ) =
(
ρ, 1

ρ

)
by choosing a set of increasing weights w that satisfy

0 < w < 1, and for each weight set r (w, ρ) = ρ+ w
(

1
ρ
− ρ
)
.

(iii) For this combination (ρ, w) find the real roots of n (τ ; ρ, r (w, ρ)) = 0 that satisfy

13



Table B1: Boundary values for public and private information

(i) w (ii) r (iii) δ (iv) τ l (v) τu (vi) b

0.02 0.3230 0.9740 0.7799 0.9355 0.9333
0.04 0.3991 0.9369 0.6938 0.9287 0.9170
0.05 0.4371 0.9148 0.6576 0.9250 0.9054
0.06 0.4751 0.8907 0.6249 0.9210 0.8922
0.07 0.5131 0.8648 0.5951 0.9170 0.8775
0.08 0.5511 0.8375 0.5680 0.9129 0.8617
0.10 0.6272 0.7800 0.5208 0.9046 0.8285
0.14 0.7792 0.6607 0.4478 0.8879 0.7623
0.16 0.8553 0.6026 0.4194 0.8795 0.7321
0.18 0.9313 0.5472 0.3952 0.8712 0.7046
0.20 1.0073 0.4952 0.3742 0.8630 0.6799
0.40 1.7676 0.1733 0.2509 0.7866 0.5487
0.50 2.1478 0.1031 0.2099 0.7531 0.5235
0.60 2.5279 0.0612 0.1709 0.7230 0.5084
0.70 2.9081 0.0351 0.1311 0.6963 0.4987
0.80 3.2883 0.0184 0.0896 0.6729 0.4922
0.90 3.6684 0.0074 0.0459 0.6524 0.4876

Notes: Column (i) contains the weights, w, used to determine the grid points r ∈ R (ρ).
Column (ii) contains the corresponding value of r, given ρ = 0.247. Column (iii) contains the
corresponding δ. Columns (iv) and (v) contain the lower and upper boundaries, denoted τ l

and τu, at which the derivative of welfare with respect to the precision of public information
equals 0. More precise public information increases welfare for τ < τ l and for τu < τ < 1−ρ2,
and lowers welfare for τ l < τ < τu. Column (vi) contains b, the boundary above which more
precise private information raises welfare.

τ < 1 − ρ2. These are the boundaries for public information. Find b (r (w, ρ) , ρ); this is the

boundary for private information.

Table B1 shows the results of applying this algorithm, using ρ = 0.247 and a set of weights

w. For example, for w = 0.16 (in column (i)) we obtain r (w, ρ) = ρ + w
(

1
ρ
− ρ
)
= 0.8553

(in column (ii)), and δ = 0.6026 (in column (iii)). The roots of n = 0 are (approximately)

{0.4194, 0.8795, 2.628}. The smallest root is τ l = 0.4194 (in column (iv)) and the middle root

is τu = 0.8795 (in column (v)); we ignore the largest root, which lies above the upper bound

of our domain of analysis, 1− ρ2). The boundary for private information is b = 0.7321. The

curves a′ and a′′ in Figure B1 correspond to columns (iv) and (v) in Table B1, and the dashed

curve in Figure B2 corresponds to column (vi) in this table.
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B.2.3 Computation of elasticities α and β

We now derive the elasticies α and β. Using the definition of S in Equation 4, we obtain

(with the assistance of Mupad, a feature of Scientific Workplace) the closed form expression

for the elasticity of S with respect to r:

dS

dr

r

S
= −2

b0 + b1ρ+ b2ρ
2 + b3ρ

3 + b4ρ
4

a0 + a1ρ++a2ρ2 + a3ρ3 + a4ρ4
, (33)

with
b0 = (3r2τ 2 − 4r2τ + r2 − τ 3 + 3τ 2 − 3τ + 1)

b1 = (2r3τ − r3 − 6rτ 2 + 9rτ − 3r)

b2 = (τ − 2r2τ + r2 − 1)

b3 = (3r − 3rτ + r3)

b4 = (−2r2)

and
a0 = − (r2 − τ + 1) (r2 − 2r2τ + τ 2 − 2τ + 1)

a1 = (2r (r2 − 2r2τ + τ 2 − 2τ + 1) + (2r − 4rτ) (r2 − τ + 1))

a2 = ((r2 + 1) (r2 − τ + 1)− 2r (2r − 4rτ))

a3 = (−2r (r2 − τ + 1)− 2r (r2 + 1))

a4 = (4r2) .

The sign of S is easy to evaluate, given r, τ, ρ. With this information and using the definitions

in the first line of Equation 6 we obtain α, the elasticity of the payoff with respect to the

precision of public information. We set ρ = 0 to obtain the second line of Equation 6:

dS

dr

r

S
= −2

b0
a0
.

To obtain β, the elasticity of the payoff with respect to the precision of private information,

we use the fact that σx affects the payoff, P = A
2
σ2
xS, via S(r(σx)) and also via the coefficient

σ2
x. To evaluate the elasticity, we use the formula for the elasticity of σ2 with respect to 1

σ
:

dσ2

d 1
σ

1
σ

σ2
=
dσ2

dσ

dσ

d 1
σ

σ−3 = 2σσ−3

[
d 1
σ

dσ

]−1

= −2σσ−3
[
σ−2
]−1

= −2. (34)

Using the definition r = σy

σx
we have the elasticity

dr

d 1
σx

1
σx

r
= 1. (35)
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We use these intermediate results and Equation 33 (the elasticity of S with respect to r) to

obtain the elasticity of the payoff with respect to 1
σx
, β. We have

β ≡ dP

d( 1
σx
)

1
σx

|P | =
A
2
S dσ2

x

d 1
σx

[
1
σx

σ2
x

]
σ2
x

A
2
σ2
x|S|

+ A
2
σ2
x
dS
dr

r
|S|

|S|
r

dr
d 1
σx

1
σx

A
2
σ2
x|S|

= −2 S
|S| − α.

(36)

The first term after the first equality gives the percentage change in the payoff (Equation 4)

due to a change in the coefficient (σ2
x) of S. The second term gives the percentage payoff

change operating through the change in r. The second line follows from simplification, using

Equation 34 for the first term and Equation 35 for the second term. In particular, the second

term simplifies to dS
dr

dr
d|S| , which equals −α by Equation 6. To obtain Equation 7, we transform

−2 S
|S| into sign(−P ) · 2 using S

|S| = −sign(−P )1. (P < 0 ⇐⇒ S < 0.)

B.3 The comparative statics of clubs

Using Equation 3 we obtain the derivative of the Bayesian Nash equilibrium weight with

respect to the club size

dγNE,c

dc
= r (r − ρ) (n− 1)

nτ − n+ 1

(n+ cτ − nτ − cr2 + 2crρ+ cnr2 − 2cnrρ− 1)2
.

The right side of this equality has the same sign as (r − ρ) (1− n (1− τ)).

To produce Figure 4, we use the expression for the equilibrium payoff and decision rule

from Lemma 1. Dividing this expression by A
2
σ2
x, we obtain the normalized payoff, S. We

evaluate this payoff at our point estimates, (τ, r) = (0.448, 0.923) and use c = 1+ (1−ϕ)n to

eliminate c. The result is a ratio of polynomials, a function of (ϕ, n) that we denote T :

T ≡ −1.0
(81.288n− 59.915)ϕ2 + (9.4352n+ 124.52)ϕ+ 41.883

((90.723n2− 86.03n+ 20.395)ϕ2 + (299.01n− 141.77)ϕ+ 246.38
(37)

Figure 4 graphs this function over ϕ for three values of n.

B.4 Global information sharing

To consider the case where firms share some, but not necessarily all of their private infor-

mation, we assume that the representative firm, i, gets the public signal, y = θ + εy, and m

private signals, (xi,1, xi,2, ...xi,m), with xi,h = θ+ εi,h. The expectation of all errors is zero (so

the signals are unbiased), and Eε2y = σ2
y , E (εi,h)

2 = σ̃2
x, Eεyεi,h = ψσ̃xσy, Eεi,hεj,n = 0 for all

i, j, h, n. The correlation between noise in any of the firm’s private signals and the noise in the
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public signal is ψ. The noise is uncorrelated across i’s signals and also uncorrelated with noise

in every other firm’s private signals. (We already assumed that the noise in private signals

is uncorrelated across firms; the assumption that noise in private signals are uncorrelated

within a firm is new.) Because all of i’s signals are equally informative, the firm puts equal

weight on each. Define the average of i’s private signals as x̄i ≡ 1
m

∑m
k=1 xi,k. The above

assumptions imply that E (x̄i − θ)2 = 1
m
σ̃2
x and

E (x̄i − θ) (y − θ) =
1

m
E

[(
m∑
k=1

εi,k

)
εy

]
=

1

m
mψσ̃xσy = ψσ̃xσy.

Our baseline model, in which each firm receives a single private signal, denoted xi, assumed

E (xi − θ)2 = σ2
x and E (xi − θ) (y − θ) = ρσxσy. To make the assumptions across the two

models mutually consistent, we set

1

m
σ̃2
x = σ2

x, or σ̃
2
x = mσ2

x =⇒ σ̃x =
√
mσx. (38)

We also have

ψσ̃xσy = ρσxσy, or ψ
√
mσxσy = ρσxσy =⇒ ψ

√
m = ρ. (39)

Now suppose that the regulator requires each firm to reveal k ≤ m pieces of private infor-

mation. With n firms each revealing k unbiased signals whose noise is mutually uncorrelated,

the mean of firms’ revealed (previously private) information is x̄ ≡ 1
nk

∑n
i=1

∑k
p=1 xi,p. The

variance of x̄ is

E

(
1

nk

n∑
i=1

k∑
p=1

xi,p − θ

)2

=
1

nk
σ̃2
x =

m

nk
σ2
x =

σ2
x

nf
,

where we use f = k
m
, the fraction of its private information that each firm reveals to the reg-

ulator. The covariance between the (old) public signal and the aggregation of the regulator’s

new information is

cov(x̄, y) = E (x̄− θ) (y − θ) = E 1
nk

∑n
i=1

∑k
p=1 (εi,pεy)

= ψσ̃xσy = ψ
√
mσxσy = ρσxσy.

The covariance between the regulator’s new signal (consisting of the firms’ erstwhile private

information), x̄, and the original public signal, y, is the same as the covariance between the

firm’s (original) full private signal, xi, and y. The correlation between x̄ and y is

corr (x̄, y) =
ρσxσy√
1
nf
σxσy

= ρ
√
nf.
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After the partial revelation of private information, the distribution of the regulator’s infor-

mation state, (y, x̄), is

(y, x̄) ∼

(
(θ, θ) ,

[
σ2
y ρσyσx

ρσyσx
σ2
x

nf

])
.

This covariance matrix is positive definite because

|ρ| < 1√
n
<

1√
nf

. (40)

The regulator’s BLU estimator of θ, λy + (1− λ) x̄ (also, its Bayesian posterior given

normality and diffuse priors), minimizes the variance of the estimator. It solves

V (n) = minλ

(
λ2σ2

y + (1− λ)2 σ2
x

nf
+ 2 (1− λ)λρσyσx

)
=

minλ

(
λ2r2 + (1− λ)2 1

nf
+ 2 (1− λ)λρr

)
σ2
x.

(41)

The solution to this problem gives

λ =
1− fnrρ

fnr2 − 2fnrρ+ 1
and V (n) = r2

1− fnρ2

fnr2 − 2fnρr + 1
σ2
x. (42)

As a consistency check, note that Equation 40 implies that the numerator of V (n) is positive.

For ρ ≤ 0 the denominator is positive by inspection. We therefore consider the case ρ > 0,

where the denominator is larger than h(r) ≡ fnr2−2f
√
nr+1. By inspection, h(0) > 0, and

using the quadratic formula we see that for 0 < f < 1 there are no real roots to h(r) = 0;

thus, h(r) > 0 for 0 < f < 1. By inspection, the denominator is positive for f = 0. Finally,

for f = 1 (and ρ > 0) the denominator is greater than k(r) ≡ nr2 − 2
√
nr + 1. We see that

k(0) = 1 and the unique root of k(r) = 0 is 1√
n
, so k(r) ≥ 0.

Before having received the firms’ private information, the variance of the public signal was

σ2
y = r2σ2

x. Therefore, the fractional reduction in the variance due to the additional (formerly

private) information is

ϖ ≡
r2σ2

x − r2σ2
x

1−fnρ2

fnr2−2fnρr+1

r2σ2
x

=
(r − ρ)2

r2 − 2ρr + 1
fn

, (43)

shown in the text (when ρ = 0) as Equation 8.

We now determine the relation between the post-information-transfer moments and the

original moments. The variance of the original public signal is σ2
y. Using Equation 43, the

transfer of information reduces this variance by the fraction ϖ, so the post-transfer variance

of the (new) public signal is (1−ϖ)σ2
y. Each firm’s original private signal consisted of
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m independent signals, each with variance σ̃2
x = mσ2

x. After communicating k pieces of

information, the firm has m − k pieces of information that remain private. Because these

individual signals are independent, their mean is a sufficient statistic for the firm’s (newly

reduced) private information. This statistic is

x̃i ≡
1

m− k

m−k∑
s=1

xis ∼
(
θ,

1

m− k
σ̃2
x

)
=

(
θ,

m

m− k
σ2
x

)
.

where the equality uses σ̃2
x = mσ2

x (Equation 38). Using k
m

= f , we write the variance of this

signal as 1
1−f

σ2
x. After the information transfer, the ratio of the standard deviations of the

(new) private and public information is

r′ =

√
1−ϖσy√

1
1−f

σx
= r
√
(1−ϖ) (1− f).

Equation 9 collects the expressions for the variances of the “new” public and private signals,

and the ratio of their standard deviations.

We need an intermediate result to express the covariance between the new (after the

transfer of information) public and private signals in terms of ϖ. Evaluating λ = 1−fnrρ
fnr2−2fnrρ+1

(from Equation 42) at n = ϖ

((r−ρ)2−ϖ(r2−2rρ))f
gives

λ =
1

r − ρ
(r (1−ϖ)− ρ) . (44)

The covariance between x̃i and the (new) public signal is

E
(

1
m−k

∑m−k
s=1 εi,s

)(
λεy + (1− λ) 1

nk

∑n
i=1

∑k
p=1 εi,p

)
=

E
(

1
m−k

∑m−k
s=1 εi,s

)
λεy = λρσxσy =

ρ
r−ρ

(r (1−ϖ)− ρ)σxσy.
(45)

The left side of the first equation uses the formula for the revised public signal, after the

regulator aggregates information from firms. The first equality uses the assumption that noise

in the firm’s remaining private information is uncorrelated with noise in all other (previously)

private pieces of information that were communicated to the regulator. The second equality

uses the fact (established above) that our assumptions imply that Eεi,sεy = ρσxσy. The final
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equality uses Equation 44. The correlation between the new public and private signals is

ρ′ =

1
r−ρ

(r (1−ϖ)− ρ) ρσyσx
√
1−ϖσy

√
1

1−f
σx

=

1
r−ρ

(r (1−ϖ)− ρ) ρ
√
1−ϖ

√
1

1−f

. (46)

C Online Appendix: Data and empirical analysis

Online Appendix C.1 lists the sets we drop from the electronic logbook data and details

the provenance and content of our public information satellite data. Online Appendices

C.2 and C.3 specify the construction of the public and private signal matrices that we use

to estimate the parameter r. Online Appendix C.4 details the cross-validation procedure

involved in estimating r. Online Appendix C.5 assesses the robustness of our estimates of r

to alternative specifications. Online Appendix C.6 does the same for our estimation of τ .

C.1 Electronic logbook data cleaning and public information satel-

lite data

The raw electronic logbook data contains 247,024 sets. We drop 97 sets that occur on fishing

trips that last longer than two weeks (because the median trip lasts 17 hours and the 99th

percentile trip lasts 3 days), as well as 7 sets where tons caught is more than 10 times the

99th percentile of tons caught per set by that vessel. The electronic logbook data we use in

our analysis therefore contains 246,920 sets.

We use chlorophyll, daytime sea surface temperature (SST), and nighttime SST from

the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi Na-

tional Polar-orbiting Partnership (SNPP) satellite (NASA, 2016a, 2016b, 2018); chlorophyll,

daytime SST, and nighttime SST from the Moderate Resolution Imaging Spectroradiometer

(MODIS) sensor aboard the Aqua satellite (NASA, 2014, 2019a, 2019b); SST anomaly from

the National Oceanic and Atmospheric Administration (NOAA) via Instituto Humboldt, a

Peruvian non-governmental organization (NOAA, 2022); sea surface salinity from the Soil

Moisture Active Passive (SMAP) satellite (NOAA, 2021); and sea level anomaly from the

NOAA Laboratory for Satellite Altimetry (NOAA, 2023). We download the data occurring

inside Peru’s Exclusive Economic Zone (Flanders Marine Institute, 2019). We use the pre-

vious day’s value for both nighttime SST variables since a firm deciding where to fish today

only knows last night’s SST value. The resolution of chlorophyll, daytime SST, and nighttime

SST data is 4 km (for both VIIRS and MODIS); the resolution of sea surface salinity and

SST anomaly is 25 km; and the resolution of sea level anomaly is 0.25◦ (about 30 km).
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C.2 Construction of public signal matrix

First, for each of the nine oceanic geophysical variables, we record the value of the geophysical

variable at the nearest location to set i. (Recall that most satellites image only part of the

earth each day.) Second, we interpolate each geophysical variable over the entire fishery

each day using inverse distance weighting. Then we extract the interpolated value of the

geophysical variable for each set. We thus create two variables from each geophysical variable

– the nearest value and the interpolated value – which gives us 18 geophysical variables (9

times 2).

Then we calculate three new variables for each of these 18 original variables. We calculate

the average value for set i’s best local zone, the difference between set i’s value and the

average value in its best local zone, and the difference between set i’s value and the average

value that day (in any zone). After this procedure we have 72 predictor variables (18 plus 3

times 18).

Next, we add 18 more predictor variables to reach a total of 90. First, we record the dis-

tance between set i and the nearest location at which each of the 9 original, non-interpolated

geophysical variables were measured, since closer measurements may be more predictive.

Second, we calculate the average of these distances in set i’s best local zone.

We then calculate the square of each of these 90 predictor variables, increasing the number

to 180. (Including additional higher order terms causes our estimation procedure to exceed

the RAM of our server.) Finally, we interact all 180 of these variables with each other,

obtaining a public signal matrix with 16,290 variables (180 choose 2, plus the original 180

variables). If a geophysical variable has no measurements inside Peru’s anchoveta fishery on

a given day, sets on this day have missing values for all variables that are a function of that

geophysical variable.

C.3 Construction of private signal matrix

First, for each set i by a vessel in firm f on day t, we record the CPUE of the nearest set

on day t− 1 by vessels in firm f . Second, for each firm-day, we interpolate the previous day

CPUE of sets by the firm’s vessels using inverse distance weighting. Then for each set we

extract lagged firm-level CPUE at that set’s location. This procedure yields two variables

from firms’ lagged CPUE: the nearest value and the interpolated value.

Our third and fourth variables are firm-day demeaned nearest and interpolated lagged

CPUE. Fifth, we record the distance between set i and the nearest set by vessels in the same

firm on the previous day. Sixth, we calculate the average interpolated firm-level lagged CPUE

in set i’s best local zone. Our seventh and eighth variables are the differences between this
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sixth variable and set i’s nearest and interpolated firm-level lagged CPUE.

Our ninth and tenth variables are the squared distances between the zone set i occurs in

and the predicted best local zones, which are the zones within 126 km that have the highest

average interpolated and nearest firm-level lagged CPUE. (By contrast, the best local zone

for our sixth predictor variable is the one within 126 km that has the highest actual CPUE

among all sets on day t.) Our eleventh predictor variable is the number of zones that vessels

belonging to firm f fished in on day t−1. We add six more predictor variables by calculating

third-order polynomials for the three (non-differenced) CPUE variables (the first, second, and

sixth variables). We can calculate third-order instead of secord-order polynomials because

unlike in our estimation of the precision of the public signal, we are not constrained by our

server’s RAM.

Finally, we interact all 17 of our private predictor variables to obtain a matrix of private

signals with 153 variables (17 choose 2, plus the original 17 variables). If firm f had no sets

on day t−1, then we record all predictor variables as missing, except for the number of zones

that vessels belonging to firm f fished in on day t− 1.

C.4 Cross-validation procedure used in estimating the variance of

public and private signals

Our 10-fold cross-validation procedure iteratively divides the training set into an analysis set

and an assessment set. One iteration involves training the model in an analysis set, consisting

of 90% of days in the training set, and then assessing accuracy by predicting squared distance

to the best local zone for the assessment set, consisting of the remaining 10% of days in the

training set. We repeat the procedure 10 times, using different splits of the training data

into analysis and assessment sets each time. We save the prediction accuracy—the R2 in the

assessment sets—at different values of the lasso penalty term. In each iteration of our cross-

validation procedure, we impute missing predictor values with that variable’s mean value

in the analysis set, remove zero variance predictors (if any), and standardize all predictor

variables. We define the optimal penalty term as in Breiman et al. (1984) as the penalty that

returns the simplest model (fewest predictor variables) that is within one standard error of

the numerically optimal penalty (the smaller penalty that results in a more complex model

and the highest in-sample R2 among all penalties).

C.5 Other specifications and robustness checks for estimating r

We considered several other dependent variables for our regressions, but we believe that

squared distance to the best zone matches our model most closely. For example, we could
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choose CPUE of set i as our dependent variable, but predicting CPUE (which is not itself a

location) is less similar to predicting the best location than our primary dependent variable.

Alternatively, we could estimate r with a two-step procedure in which our dependent

variable equals 1 if the set occurs in the best local zone and equals 0 otherwise. In the first

step, we would regress this variable on public or private signals and then use the resulting

predicted values to obtain the predicted best local zone(s) each day. In the second step, we

would calculate the precision of the public or private signal as the average squared distance

between the predicted best and actual best local zone(s), where the predicted best local

zone(s) comes from either the public signal regression or the private signal regression. This

procedure is similar to our primary dependent variable, but we do not implement it because its

two steps may degrade the precision of the signals relative to our primary one-step procedure.

We do, however, repeat our estimation procedure with an alternative measure of CPUE:

tons per set minus vessel-level average tons per set. We obtain similar results compared to

our primary specification of CPUE: r equals 0.905 (first row of Table C1), compared to 0.923

in our primary specification.

As a second robustness check, we repeat our estimation procedure after adjusting CPUE

for travel costs (second row of Table C1). If anchoveta are slightly less abundant in Zone

A than in Zone B, but Zone A is much closer to the firm’s vessel, then Zone A may be the

more profitable zone to fish in. Since we do not observe where each trip begins, we proxy

for travel cost by calculating the distance between set i and the centroid of the sets by the

vessel on its previous trip. We construct an alternative measure of CPUE by regressing

tons caught on this distance to a new location and the firm and vessel characteristics in our

primary specification. We obtain a similar parameter estimate as in our primary specification

(r equals 0.910, compared to 0.923 in our primary specification).

Finally, we repeat our estimation using alternative radii to define the best local zone. This

version changes our outcome variable, squared distance to the best local zone, as well as some

of our public and private signals. The third row of Table C1 displays the results when we

halve our preferred radius from 126 km to 63 km, and the fourth row displays the results when

we double our preferred radius from 126 km to 252 km. In the half radius specification, the

precision of the public signal declines relative to that of the private signal. The double radius

specification reverses that relationship; the precision of the public signal increases relative

to the precision of the private signal. Over larger areas, it seems that geophysical variables

predict fishing grounds better than the previous day’s CPUE by a firm’s vessels. For this

reason the BLUE of θ, the parameter δ, places more weight on the public signal when the

area of feasible fishing grounds is larger.

We considered augmenting our private signal matrix with historical variables because past
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Table C1: r robustness checks

Parameter estimates

Specification σ2
y σ2

x r δ

Simple CPUE 8.82187e+11 1.07608e+12 0.905 0.550
Travel cost 9.29433e+11 1.12195e+12 0.910 0.547
Half radius 6.38564e+10 6.36043e+10 1.002 0.499
Double radius 1.56387e+13 3.13934e+13 0.706 0.667

Notes: Each row presents estimates from a different robustness check. We repeat our esti-
mation procedure with a simpler measure of CPUE, tons per set minus vessel-level average
tons per set, in the first row; with a measure of CPUE that accounts for travel costs in the
second row; with a radius of 63 km, half that of our primary radius, in the third row; and
with a radius of 252 km, double that of our primary radius, in the fourth row.

fishing success beyond the day-before could inform location decisions. For a given set i, we

identify the vessel’s best set in the previous year within 126 km of i. We calculate the distance

from last year’s best set to set i’s best local zone, and we also record the CPUE of last year’s

best set. We add four new predictor variables to our private signal matrix: squared distance

between last year’s best set and i’s best local zone, and a third-order polynomial of the CPUE

of last year’s best set. After interacting all predictor variables with each other, we re-estimate

σ2
x with a matrix of 231 variables (21 choose 2, plus the original 21 variables). Estimating

Equation 10 with our optimal shrinkage penalty (157) retains the same 8 variables with non-

zero coefficients as in our primary specification without historical predictor variables. Our

estimate of σ2
x is therefore the same (1.07994e+12). Historical CPUE may fail to predict

squared distance to the best local zone because the spatial abundance of the anchoveta stock

is not stable over time (Castillo et al., 2019).

C.6 Other specifications and robustness checks for estimating τ

Double-lasso procedure. Our application of the post-double selection method of Belloni,

Chernozhukov, and Hansen (2014) in Section 7 has three steps (Column 2 of Table 2). First,

we run a lasso regression with CPUE as the dependent variable (omitting standardized disper-

sion as a predictor variable). Second, we run a lasso regression with standardized dispersion

as the dependent variable. Finally, we regress (via ordinary least squares) CPUE on stan-

dardized dispersion and include as controls all of the variables that lasso retains as predictors

of CPUE or standardized dispersion. Standardized squared distance to the best local zone is

one of the control variables in this final regression because it was retained as a predictor in

both lasso regressions.
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Table C2: τ robustness checks

CPUE
(1) (2) (3)

Dispersion 1.585 0.450 1.587
(0.810) (0.623) (0.956)

DistToBest2 -4.223 -3.528 -3.670
(0.757) (0.848) (0.910)

τ 0.375 0.128 0.432
(0.211) (0.179) (0.255)

Adj. R2 0.007 0.004 0.006
N 246,920 246,920 246,920

Notes: Each column presents estimates of Equation 12 from a different robustness check.
We re-estimate Equation 12 with a simpler measure of CPUE, tons per set minus vessel-
level average tons per set, in Column 1; with a measure of dispersion that accounts for the
spatial configuration of sets in Column 2; and with a measure of CPUE that accounts for
travel costs in Column 3. In all regressions, the dependent variable is CPUE and standard
errors are two-way clustered at the date and zone level. In all columns, we estimate τ as the
Dispersion coefficient divided by the negative of the DistToBest2 coefficient, and we estimate
the standard error of τ with the delta method.

In addition to including as predictors all of the public signal variables we used to estimate

σ2
y , we construct the following measures of local stock depletion, which is negatively correlated

with contemporaneous biomass. For a given set i in zone z on day t, we calculate eight lags

of tons caught in zone z: tons caught in zone z on day t prior to the start of set i, tons caught

in zone z on day t − 1, tons caught in zone z on day t − 2, and so on until tons caught in

zone z on day t− 7. For each of these 8 variables, we calculate squared terms and indicators

for 0 tons caught, yielding a matrix of 24 predictor variables. We add these 24 variables

to the 180 public signal variables, and then interact all 204 variables with each other. We

include calendar date indicator variables, zone indicator variables, and squared distance to

the best local zone as predictors as well, but we do not include them in the interaction due to

computational constraints. Zone indicator variables partially capture differences in the cost

of fishing across locations. We thus obtain a matrix of 21,411 predictor variables. Of these,

the two lasso regressions retain 265 unique predictor variables with non-zero coefficients.

Additional robustness checks. We consider three alternative specifications for esti-

mating τ in Table C2. As in our primary specification, we always standardize dispersion

and squared distance to the best local zone before re-estimating Equation 12 so that the two

regression coefficients are directly comparable.
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First, we re-estimate Equation 12 with our simpler measure of CPUE, vessel-demeaned

tons per set. This robustness check returns estimates B = 1.585, A = −4.223, and τ = 0.375

(Column 1 of Table C2). These are similar to the estimates in our primary CPUE specification

(Column 1 of Table 2).

Second, we consider a dispersion measure that accounts for sets’ spatial configuration:25

D′
it =

1

Mit − 1
·

∑
j ̸=i (kit − kjt)

2(
# sets in NE

Mit−1

)2
+
(

# sets in SE
Mit−1

)2
+
(

# sets in SW
Mit−1

)2
+
(

# sets in NW
Mit−1

)2 (47)

where D′
it is the alternative measure of dispersion, Mit − 1 is the number of other sets within

126 km of set i,
∑

j ̸=i (kit − kjt)
2 is the sum of squared distances between set i and sets

j among sets j that are within 126 km of set i; and NE, SE, SW, and NW denote the

northeast, southeast, southwest, and northwest quadrants of the circle with radius of 126 km

and center at kit. For example, if all sets j are in i’s northeast quadrant, they could have a

smaller effect on i’s CPUE than if the j sets were more evenly distributed across quadrants,

since in the latter case vessels have arguably dispersed to a greater extent. Accounting for

the spatial configuration of sets could therefore increase the estimated effect of dispersion on

CPUE, which would likely increase our estimate of τ . Our reasoning is, if D′
it provides a more

accurate measure of dispersion, then our use of Dit in our primary specification introduces

measurement error. Although the effect of measurement error on coefficient estimates is

ambiguous in general, it often biases estimates toward zero. Based on this logic, we would

expect that replacing Dit with D′
it would lead to a larger (in absolute value) coefficient

estimate if D′
it were actually a more precise measure of dispersion. However, when we re-

estimate Equation 12 with D′
it as our measure of dispersion, we estimate a smaller effect

of dispersion and a smaller τ (Column 2 of Table C2). Therefore, we have no grounds for

thinking that D′
it provides a more accurate measure of dispersion.

Third, Column 3 of Table C2 presents an estimate of τ using our measure of CPUE that

accounts for travel costs (Online Appendix C.5). We obtain a nearly identical estimate, 0.432,

compared to the estimate of τ in our primary specification (0.448).
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