The Political Economy of Environmental Policy with Overlapping Generations*

Larry Karp† Armon Rezai‡

May 16, 2011

Abstract

A two-sector OLG model illuminates previously unexamined intergenerational effects of a tax that protects an environmental stock. A traded asset capitalizes the economic returns to future tax-induced environmental improvements, benefiting the current asset owners, the old generation. Absent a transfer, the tax harms the young generation by decreasing their real wage. Future generations benefit from the tax-induced improvement in environmental stock. The principal intergenerational conflict arising from public policy is between generations alive at the time society imposes the policy, not between generations alive at different times. A Pareto-improving policy can be implemented under various political economy settings.

Keywords: Open-access resource, two-sector overlapping generations, resource tax, generational conflict, climate policy, dynamic bargaining, Markov perfection

JEL, classification numbers: E24, H23, Q20, Q52, Q54

*Larry Karp thanks the Ragnar Frisch Centre for Economic Research for financial support. Armon Rezai thanks the Austrian Marshall Plan Foundation for financial support and the Institute of European Studies at UC Berkeley for its hospitality. We benefited from comments by Michael Hoel, Richard Howarth, Christian Traeger, Klaas Van’t Veld, and seminar participants at Oslo, Munich, Denver, Wyoming and Exeter. The usual disclaimer holds.

†Department of Agricultural and Resource Economics, University of California, Berkeley, and the Ragnar Frisch Center for Economic Research, email: karp@berkeley.edu

‡Department of Socio-Economics, Vienna University of Economics and Business, email: arezai@wu.ac.at
1 Introduction

Conventional analysis (typically) builds in the assumption that environmental policy requires people alive today to make sacrifices in order to protect the environment, preserving consumption opportunities for those alive in the future. This analysis, in focusing on the conflict between agents who live at different points in time, tends to ignore the conflict between different types of agents alive when the policy is first implemented. An overlapping generations (OLG) model turns this conventional view on its head: all generations may benefit from environmental policy, provided that the winners alive today compensate those who would, absent compensation, be harmed by the policy.

In our OLG model, environmental policy benefits asset holders (the old generation) by increasing the value of their assets, and tends to harm wage earners (the young generation) by decreasing their real wage. Future generations benefit from the improved environment. The primary conflict arises between generations alive at the time society imposes the policy, not between those alive today and those alive in the distant future. The old, however, can compensate the young currently alive, making both groups better off. This intergenerational transfer need occur only when the policy is first imposed, not in future periods.

Our two-sector OLG model contains a single endogenous stock, the “environment”. Lack of property rights to this resource causes producers to exploit the environmental stock too heavily, reducing future productivity. The absence of property rights to the environmental resource also means that there is no market for this stock, so it cannot be used as a store of value. There is a single store of value, a constant (or exogenously changing) stock of man-made capital. The old generation uses this capital for production and then sells it to the young generation.

A policy such as an environmental tax reduces over-production of the environment-intensive commodity and increases the value of the traded asset, the fixed (or exogenously changing) capital. This change in asset value is a mechanism for transferring welfare from future generations, who benefit from the tax-induced future increase in environmental stock, to the current owners of the asset, the old in the period when society first imposes the tax. Those asset owners always benefit from the environmental tax. The current young generation, which buys the higher priced asset, can be made better off by appropriate allocation of the revenue from the environmental tax. In
particular, it is not necessary to give the current young a share of the increase in asset value. In future periods, the tax and the allocation of tax revenues might vary or be constant, depending on the particular political economy structure.

The literature that examines environmental policy in OLG models has neglected the particular role of asset prices that we emphasize. Kemp and van Long (1979) and Mourmouras (1991) are among the first to use the OLG framework of Samuelson (1958) and Diamond (1965) to assess the economics of renewable resources. Mourmouras (1993) demonstrates that a social planner can implement welfare-improving conservation measures in a model with environmental externalities and capital accumulation. The emphasis of these policies is to implement non-decreasing ("sustainable") consumption paths. Howarth (1991, 1996), Howarth and Norgaard (1990, 1992), and Krautkraemer and Batina (1999) analyze welfare aspects of sustainable consumption paths in OLG models. John et al. (1995) discuss the steady state inefficiencies due to intergenerational disconnectedness in the presence of private goods with negative externalities; John and Pecchenino (1994) consider the transitional dynamics in this setting. Marini and Scaramozzino (1995) analyze the intertemporal effects of environmental externalities and optimal, time-consistent fiscal policy in continuous time. These contributions recognize that environmental policy affects different generations unevenly because costs are immediate but benefits arise in the future.

Bovenberg and Heijdra (1998, 2002) and Heijdra et al. (2006) show that the issuance of public debt can be used to achieve intergenerational transfers, leading to Pareto improvements; they examine the difference in distributional impacts of profit, wage, and lump-sum taxes. Our contribution emphasizes the role of asset price effects and shows that Pareto-improving tax policy can be implemented and sustained through an endogenous political process. In particular, an environmental tax can improve current generations' welfare even in the absence of a government that uses bonds to distribute income across generations. We use a dynamic general equilibrium model that, apart from the OLG structure, is similar to that of Copeland and Taylor (2009). It is close to that of Koskela et al. (2002) in its OLG structure; but differs by separating conventional capital and the renewable resource into different sectors and by allowing for open-access in the latter. Galor (1992) discusses existence and stability properties of a general two-sector OLG model. Farmer and Wendner (2003) extend Galor's insights to models with heterogeneous capital. Our assumption of a fixed capital stock reduces much of the com-
plexity of their models and creates linkages to the asset price model of Lucas (1978).

The insights of our model are applicable where there are imperfect property rights to an endogenously changing natural stock, as is the case with the climate. Most models used to study climate policy include assumptions that imply that meaningful policy requires a reduction in current consumption and current utility. Howarth (1998), Rasmussen (2003) and Leach (2008) present numerical estimates of the welfare impacts of climate policy in calibrated OLG models, but neglect the positive effects of policy for generations alive today. Climate policy changes the future trajectory of consumption, and eventually leads to higher utility flows than the levels under Business as Usual (BAU). In models that emphasize conflict among agents living at different point in time, comparison of the consumption trajectories under BAU and under a climate policy depends on the social discount rate, a parameter (or function) about which there is considerable disagreement (Stern, 2007; Nordhaus, 2007). Our model emphasizes the potential conflict among agents living at the same point in time, and the substantial alignment of interests among agents living at different points in time, making the social discount rate is much less important.

There already exist two challenges to the conventional view that environmental policy requires sacrifices by those alive today. First, with multiple market failures, there may be “win-win” opportunities, so that correcting the externalities jointly makes it possible to protect the environment without reducing current consumption. Second, Foley (2009) notes that there may be opportunities to rebalance society’s investment portfolio, reducing saving of man-made capital, e.g. industrial infrastructure, and increasing saving of environmental capital in such a way that leaves all generations better off than under BAU. In this situation, each generation is better off under the environmental policy. Rezai et al. (2011), using a model that resembles DICE, find that Foley’s conjecture is plausible. Proponents of the conventional view recognize this possibility.¹

The fact that our model contains a single distortion and a single endogenously changing stock, the environment, means that we rule out the possibility of win-win situations and of a reallocation of the savings portfo-

¹For example, Nordhaus (2007) discusses an option that “… keeps consumption the same for the present but rearranges societal investments away from conventional capital (structure, equipment, education and the like) to investments in abatement of greenhouse gas emissions (in ‘climate capital’, so to speak).”
lio. Agents alive in the current period have only one way to influence the future, by changing their current use of the environmental stock. In addition, agents in our OLG model are not altruistic; they care only about their own lifetime welfare. Thus, questions about the social discount rate are essentially irrelevant, although each generation’s discounting of its own future consumption still matters. Our assumptions that there is a single endogenous stock and that agents are non-altruistic make the model tractable, and the assumptions bias the model against finding that environmental policy improves welfare for each generation. However, we find that an environmental tax, with appropriate allocation of tax revenues, creates a Pareto improvement and can be implemented and sustained in a political equilibrium that requires a supermajority to change the policy. There is no need for policymakers to be “smarter than the market”, as is required to exploit win-win situations or to rebalance the investment portfolio.

The OLG model directs attention away from the conflict between those alive today and those alive in the distant future, a conflict that has been the focus of much academic attention, and instead emphasizes the conflict between different type of actors alive today. Much of the political (as distinct from academic) dispute about climate policy centers on a conflict between developed and developing countries. Populations of the developing countries are younger and poorer than those of developed countries. The correspondence between levels of development in the world and generations in an OLG model is inexact but useful. Our results show that environmental policy benefits the current asset-rich (the old) and harms the current asset-poor (the young). The current rich should compensate the current poor not because the former are able and morally obliged to do so, but because climate policy benefits the former and, absent the transfer, harms the latter.

Our use of an explicit general equilibrium model renders transparent the effect of environmental policy on the real wage and the value of capital, key elements in our analysis. The model looks quite different from climate change models, which typically use a one-commodity setting. This apparent difference may cause the reader to think that while our model may be applicable to some renewable resources, it is not appropriate for the analysis of climate policy. However, the climate (system) is a renewable resource. We point out below that we can convert our general equilibrium setting to a one-commodity setting, giving the resulting model the appearance of “standard” climate change models, apart from the OLG structure. We do not begin with that one-commodity setting simply because the effect of policy on the real
wage and asset value is more transparent in the general equilibrium setting. The OLG setting is important because it shows how asset prices transfer benefits from the future to the current period, without the need for fiscal policies.

2 Model

We use a two-sector Ricardo-Viner discrete time overlapping generations model. In each period t a cohort of constant size 1 is born. We suppress time subscripts when convenient. Agents live two periods; they are risk-neutral and maximize their intertemporal additive, homothetic utility. They have no bequest motive.

One sector, “manufacturing”, produces a good M using labor and a sector-specific input, capital. The stock of capital is fixed, $K \equiv 1$; later we relax this assumption. The other sector produces a good F using labor and an endogenously changing resource stock, x. There are perfect property rights for the stock of manufacturing capital, and no property rights for the resource stock. Labor is perfectly mobile, and in the absence of an environmental policy competes away all rent in the resource-intensive sector.

Young agents receive a wage, income from the resource sector, and possibly a share of tax revenues. They divide their income between consumption of the two goods and purchase of manufacturing capital. The old generation earns the profits of its manufacturing firm, the proceeds from selling the firm, and its share of the tax revenue. Because agents are non-altruistic, the old generation consumes all of its income.

The labor and commodity markets are competitive and clear in each period. Employment in the resource sector equals L and free movement of labor between the sectors ensures that the return to labor there equals the manufacturing wage. Manufacturing is the numeraire good and the relative price of the resource-intensive good is P. Output in the resource-intensive sector is $F = Lf(x)$ with x the stock of the resource and $f(x)$ the output per unit of labor. The function $f(x)$ is increasing and weakly concave. Manufacturing output is $M = m(1 - L)$ where m is increasing and strictly concave, so that there are profits (rent) in this sector. Manufacturing firms are the only asset of the economy. They are owned by the old generation and sold to the young generation.

The open access of the resource sector means that too much labor moves
to this sector. This misallocation can be reduced by imposing an ad-valorem tax, T, on production of the resource-intensive good. The revenue accruing to workers in the resource sector, under the tax, equals $P(1-T)Lf(x)$. Society returns the tax revenue, $R = PTLf(x)$, in a lump sum, but possibly different shares, to the young and old generations.

We examine the distributional effect of such a tax. The tax reduces the returns to labor in the resource sector and, hence, reduces the misallocation of labor. This reallocation of labor increases the resource stock in future periods. As labor flows into the manufacturing firm, wages fall and manufacturing output and nominal profits rise. A no-arbitrage condition introduced below implies that the value of the firm is equal to the discounted sum of future profits, deflated by a price index. Under mild restrictions, the environmental tax increases these future profits, thereby increasing the asset price and benefiting the old. Because the tax increases the relative price P and decreases the nominal wage, it would, in the absence of transfers of tax revenue, necessarily decrease the current real wage. By increasing the future resource stock, the tax also affects future generations.

We show analytically the welfare effects of a small exogenous tax trajectory. We then propose a political economy model in which the tax trajectory is endogenous; there we use numerical methods to study the equilibrium.

The endogenous variables σ_t and $\tilde{\sigma}_{t+1}$ are the present and the expected next-period value of the firm; χ_t and $\tilde{\chi}_{t+1}$ are the present and expected next-period share of the tax revenue received by the young; and $\tilde{\pi}_{t+1}$ is the expected next-period manufacturing profit. We assume intertemporal additive utility, with the single period utility function $u(c_{F,t}, c_{M,t})$, where $c_{i,j}$ is the consumption level of good i at time j. The agent’s pure rate of time preference is ρ. The lifetime decision problem of the representative agent who is young in period t, is

$$\max_{c_{F,t}, c_{M,t}, c_{F,t+1}, c_{M,t+1}} u(c_{F,t}, c_{M,t}) + \frac{1}{1+\rho} u(c_{F,t+1}, c_{M,t+1})$$

subject to the budget constraint in the first and second period of their life:

$$w_t + \chi_t R_t \geq P_t c_{F,t} + c_{M,t} + \sigma_t, \text{ and}$$

$$\tilde{\sigma}_{t+1} + (1 - \tilde{\chi}_{t+1})\tilde{R}_{t+1} + \tilde{\pi}_{t+1} \geq \tilde{P}_{t+1} c_{F,t+1} + c_{M,t+1}.$$

Agents take as given, or have rational point expectations of:

$$w_t, P_t, \tilde{P}_{t+1}, \sigma_t, \tilde{\sigma}_{t+1}, \chi_t, \tilde{\chi}_{t+1}, R_t, \tilde{R}_{t+1}, \rho, \tilde{\pi}_{t+1}.$$
The young agent dedicates all of her time to working and the old agent manages the manufacturing firm.

To solve for the static equilibrium, we choose Cobb-Douglas functional forms for the utility function, \(u \), and the production function in manufacturing, \(m \). Period \(t \) utility and manufacturing output are:

\[
u(\cdot) = c_{F,t}^{\alpha}c_{M,t}^{1-\alpha}; \quad M = m(L) = (1 - L)^\beta,\]

with \(\alpha \) the constant budget share for the resource-intensive good and \(\beta < 1 \) labor’s share of the value of manufacturing output. Indirect utility is linear in the expenditure level \(e \)

\[
v(e, p) = \left(\frac{\alpha e}{P}\right)^\alpha \left(\frac{(1 - \alpha)e}{1}\right)^{1-\alpha} = \alpha^\alpha (1 - \alpha)^{1-\alpha} P^{-\alpha}e = \mu P^{-\alpha}e,
\]

with \(\mu \equiv \alpha^\alpha (1 - \alpha)^{1-\alpha} \).

The assumption of identical homothetic preferences implies that the share of income devoted to each good is independent of both the level and distribution of income; prices do not depend on the distribution of income. The ratio of demand for both goods is a function of this price. The requirements that workers are indifferent between working in either sector, \(P(1 - T)f(x) = w \), and that manufacturing firms maximize profits, determine the wage, the allocation of labor, and supply of both goods. The relative price, \(P \), causes product markets to clear. These equilibrium conditions for the labor and product markets lead to the following expressions for the values of \(w, L, \) and \(P \):

\[
L = \frac{1-T}{\alpha \beta + 1-T}, \quad w = \beta \left(1 + \frac{1-T}{\alpha \beta}\right)^{1-\beta},
\]

\[
P = \frac{w}{(1-T)f(x)} = \frac{\beta \left(1 + \frac{1-T}{\alpha \beta}\right)^{1-\beta}}{(1-T)f(x)} \equiv p(x, T).
\]

Under Cobb-Douglas technology and preferences, the equilibrium allocation of labor and the wage do not depend on the resource stock, \(x \), only on the tax \(T \) and the parameters \(\alpha \) and \(\beta \). However, the equilibrium commodity price depends on \(x \) via the function \(f(x) \). Firms’ profits, \(\pi \), the tax revenue, \(R \), and the sectoral values of output, \(PF \) and \(M \), depend also only on \(T \) and model parameters:

\[
\pi = \frac{1-\beta}{\beta}w(1-L), \quad R = \frac{T}{1-T}Lw,
\]

\[
M = (1 - L)^\beta, \quad PF = \frac{\alpha}{1-\alpha}(1 - L)^\beta.
\]
Systems (1) and (2) determine the static equilibrium of the economy.

2.1 Relation to standard IAMs

Standard IAMs use a one commodity framework and they assume that environmental policy lowers utility in the current period. Our model can be recast in the one-commodity framework, and it also implies that environmental policy lowers (aggregate) utility in the current period. We emphasize these points of similarity in order to make it clear that the different policy implications arise from the OLG structure, not the general equilibrium setting. In addition, the model treats capital and labor symmetrically, in that the real wage, \(\mu P^{\alpha}w \), and the real profit (equivalently, the rental) rate, \(\mu P^{\alpha} \pi \), both fall with the tax and rise with the environmental stock. We summarize these observations in the following proposition. (The appendix contains proofs not found in the text.)

Proposition 1 (i) An increase in the tax at time \(\tau \) reduces aggregate period-\(\tau \) utility. (ii) For a predetermined level of the environmental stock, a higher tax decreases both the real wage and the real profit rate. (iii) A higher environmental stock increases both the real wage and the real profit rate.

The tax- and stock-induced changes in the real profit rate are general equilibrium effects. The higher tax increases, and the higher stock leaves unaltered, the *nominal* profit rate. However, the change in the real profit rate also depends on the change in the price index \(P \); this change more than offsets the wage effect. Most IAMs posit a somewhat *ad hoc* relation between environmental stocks and the level of real national or world income. The general equilibrium framework shows how changes in the environmental stock affects the real price of factors that do not directly depend on this stock – the manufacturing capital in our model.

Figure 1 uses a production possibility frontier to illustrate the welfare effect of environmental policy both in standard IAMs and in our OLG model. Under BAU, current consumption is at point \(A \), a level that maximizes current aggregate utility, ignoring the environmental externality. The tax moves consumption to point \(B \), where current aggregate utility is lower. Therefore, at least one of the two agents has lower current utility at \(B \) than at \(A \).

Figure 1 illustrates the conventional view that environmental policy creates a conflict between those alive today and those alive in the future. The
consumption path under BAU moves along the curve from A to A', a trajectory that incorporates changes in both environmental and man-made capital stocks, including technological change (introduced in Section 6). An environmental policy causes current consumption to move to point B, leading to a fall in current aggregate utility. The consumption trajectory under the environmental policy moves along the curve from point B to B''. Agents alive at the initial time have higher utility under trajectory AA', and those alive later have higher utility under trajectory BB'', so in conventional models a welfare comparison depends on the social discount rate.

The two previous challenges to the conventional view, the existence of win-win situations or the possibility of reallocating the investment portfolio, imply that environmental policy moves society from trajectory AA' to trajectory $B'B''$. With this move, agents in every period have higher utility under environmental policy. Our model rules out both of the previous challenges: there are no win-win opportunities, and the assumption that the environment is the only endogenously changing stock excludes the possibility of reallocating investment across stocks.

Environmental policy in our model does lower aggregate utility of consumption in the first period. The current old live for a single period, so the policy increases their lifetime welfare if and only if it increases their utility in the current period. The current young will also be alive in the next period. Even if the policy lowers their current utility, their lifetime welfare can increase if their utility in the next period increases sufficiently. The OLG model recognizes that some agents alive in the current period also benefit

Figure 1: Consumption expansion paths under BAU ($A - A'$) and under an environmental policy ($B - B' - B''$)
from the higher resource stock in the future, and it helps to identify the
distributional effects that arise from changes in the asset price.

We noted that the model treats the two factors symmetrically, in that a
higher tax and a higher environmental stock have the same qualitative effects
on the real wage and the real profit rate. There is a fundamental asymmetry
between the two factors, however. The price of capital depends on future
profit rates, whereas the price of labor depends on only its current value
of marginal productivity. Current owners of capital benefit from the future
increases in productivity created by the environmental policy, even though
they are not alive to enjoy them directly. Absent transfers, current owners
of labor benefit from these future productivity increases only to the extent
that they are alive to enjoy them.

2.2 The asset price

To explore how asset prices transfer the benefits of environmental improve-
ments from the future into the present, we need to specify the dynamics of
the natural resource. We assume that the average product of labor in the re-
source sector is linear in the stock \(f(x) = \gamma x \) for a constant \(\gamma > 0 \) and that
the resource stock obeys a logistic growth function. The resource transition
equation is

\[
x_{t+1} = x_t + r x_t \left(1 - \frac{x_t}{C} \right) - L(T_t) \gamma x_t = \left(1 + r \left(1 - \frac{x_t}{C} \right) - L(T_t) \gamma \right) x_t
\]

\[
= \left(1 + \bar{r}(T_t, x_t) \right) x_t \text{ with } \bar{r}_t \equiv \left(r \left(1 - \frac{x_t}{C} \right) - L(T_t) \gamma \right),
\]

with \(r \) the intrinsic growth rate, \(C \) the carrying capacity of the resource, and
\(\bar{r} \) the endogenous growth rate of the resource. A higher tax conserves the
resource because \(\frac{dE_t}{dt} < 0 \Rightarrow \frac{dE_t}{dt} > 0 \Rightarrow \frac{dx_{t+1}}{dt} > 0 \).

We restrict parameter values to ensure that under BAU there exists an
interior steady state, \(x_\infty \), to which trajectories beginning near that steady
state converge monotonically. The necessary and sufficient conditions for
this are \(1 > \frac{d(1+\bar{r})x}{dx} > 0 \), evaluated at \(T = 0 \), \(x = x_\infty \). These inequalities are
equivalent to

\[
1 < \zeta < 2 \text{ with } \zeta \equiv r + \frac{\beta (1-\alpha) + \alpha (1-\gamma)}{\beta (1-\alpha) + \alpha}.
\]

10
The unique non-trivial steady state stock of the resource is

\[x_\infty = C \left(1 - \frac{\gamma L(T_\infty)}{r} \right) = C^S - \frac{1}{r}. \tag{5} \]

The BAU trajectory is monotonic if and only if the initial condition satisfies \(x_0 \leq \frac{1}{C^S - 1} x_\infty \).

The young buy manufacturing firms from the old; the asset price affects welfare through expenditure. Systems (1) and (2) enable us to state the young and old generation’s expenditure levels, \(e^y \) and \(e^o \), as functions of current tax \(T \) and the asset price, \(\sigma(x, T) \), where \(T \) is the tax trajectory:

\[e^y = w(T) + \chi R(T) - \sigma(x, T) \quad \text{and} \quad e^o = \pi(T) + (1 - \chi)R(T) + \sigma(x, T). \tag{6} \]

A no-arbitrage condition requires that the young’s marginal loss in utility from purchasing a unit of the asset in the current period equals their marginal gain in utility from having that asset in the next period. This condition determines the demand for the asset as a function of its current price and expectation of next period profit rate and price. This demand function, and the fixed (or exogenously changing) supply of capital, determine the current asset price as a function of expected next period profit rate and price, leading to:

Proposition 2 The price of a unit of capital is equal to the sum of the discounted utility arising from the firm’s future profits, evaluated at current prices.

A policy change that, for example, increases the asset price, benefits the current asset owners, the old. The changed asset price has no effect on the welfare of asset purchasers, the young. The no-arbitrage condition described above implies that the young pay exactly what the asset is worth to them. Although the change in asset price changes their current expenditures, the offsetting change in future receipts leads to a zero change in their welfare:

Corollary 1 (i) An unanticipated change in the asset price does not affect the lifetime utility of current and future young generations. (ii) Only the current old generation is affected by unanticipated changes in the asset price.
3 Welfare Effects of a Tax

Under BAU, the environmental tax is identically 0. Consider an arbitrary non-negative tax trajectory, the vector \bar{T}, with element $\bar{T}_i \geq 0$. Strict inequality holds for at least one i, including $i = 0$. The index i denotes the number of periods in the future, so $i = 0$ denotes the current period. A non-negative perturbation of the zero tax BAU policy is $T = \varepsilon \bar{T}$, with $\varepsilon \geq 0$ the perturbation parameter. A larger ε therefore is equivalent to a higher tax policy. We adopt the assumption that $\bar{T}_0 \geq 0$, i.e. that the environmental policy begins in the current period, because consideration of delayed policies yields only obvious results. In this section we set the fraction of tax revenue given to the young, χ, to be a constant, an assumption we revisit in Section 5. The following proposition provides a sufficient condition for a non-negative perturbation of the BAU policy to improve the welfare of the old generation.

Proposition 3 For all $\chi \in [0, 1]$, a sufficient condition for the old generation to benefit from a small tax increase is that the initial value of the environmental stock (when the policy begins) satisfies $x_0 \leq \frac{1}{\zeta} x_\infty$, where ζ and x_∞ are defined in equations (4) and (5). The old generation’s welfare increases in its tax share, $(1 - \chi)$.

The sufficient condition, stated in terms of the initial value of the environmental stock, ensures that the BAU stock trajectory approaches the BAU steady state monotonically. Inspection of the proof shows that the old can benefit from a tax even when this restriction does not hold. We have the following immediate result.

Corollary 2 Under the condition stated in Proposition 3, the tax leads to a fall in first-period welfare of the present young generation.

Proof. Propositions 1 and 3 state that aggregate current welfare falls while welfare of the old generation rises. Therefore, first-period welfare of the current young must fall.

In general, a price change creates winners and losers. The OLG framework shows that a policy that discourages over-use of a resource benefits asset holders and in the first period harms the young agents. Of course, the policy also changes the consumption of the current-young in the next period, thereby creating the possibility of higher lifetime welfare. To avoid uninteresting complications, we assume for the rest of this section that $\bar{T}_1 = T_0 > 0$.

12
Proposition 4 (i) For a constant $\chi \in [0, 1]$, a small increase in tax rates increases lifetime welfare of the present young generation if and only if: (a) it receives less than the entire tax revenue while young ($\chi < 1$), and (b) $\bar{r}(0, x_t) > (1 + \rho)^{\frac{1}{2}} - 1$, i.e. the pure rate of time preference is less than the positive welfare effect of lower prices due to the higher resource stock. (ii) If the renewable resource is falling on the BAU trajectory and $\chi < 1$, the tax policy lowers the young generation’s lifetime welfare.

The case relevant for most problems involving environmental stocks, and climate policy in particular, is where the resource is being degraded, i.e. where $\bar{r}(0, x_t) < 0$. In this circumstance, condition (b) in the Proposition fails, and the tax policy necessarily reduces the lifetime welfare of the young.

Even if a small tax potentially harms the young, it makes sense to ask whether the young would prefer to receive a larger share of tax revenue when young or old, holding the tax fixed.

Proposition 5 The young generation prefers a constant $\chi = 0$ (i.e. receipt of all tax revenue when its old) if and only if it benefits from a tax introduction. If the policy lowers their welfare, they prefer to receive all of the tax revenue while young.

Proposition 4 condition (b) states that the young benefit only if they can increase their welfare by shifting their income into the future. In this case, the young generation wants to shift all its tax receipts into the future, $\chi = 0$. If this condition does not hold, the young generation’s welfare can be held constant by setting $\chi = 1$, since the first order effects of a small tax increase on the real wage and the tax revenue sum to zero.

Propositions 4 and 5 are based on the assumption that the old in each period receive the same share of tax revenue, i.e. that $1 - \chi$ is constant. That assumption is useful for understanding the distributional effect of environmental policy, but it is not reasonable as a policy prescription. The old in the period when the tax is imposed – unlike the old in any other period – capture the future benefits that are capitalized in the asset price (Corollary 1). In addition, the young in future periods benefit from a higher resource stock (relative to BAU) in both periods of their life; the young in the current period benefit from environmental protection in only the second period of their life. Therefore, it is reasonable to treat the old and the young in the period when the policy is introduced differently than their counterparts in
future periods. In particular, the current young should receive a larger share of tax revenues, compared to the young in future periods. This favorable treatment makes it possible for the policy to improve the young generation’s welfare, an observation that motivates the analysis in Section 5.

In summary, if the environmental problem is that the resource is below its 0-tax steady state and therefore recovering, but just not recovering sufficiently quickly, then the young potentially would support a tax that speeds recovery. In that circumstance, both the young and the old generations want all of the tax revenue to go to the old, under the constraint that the share is constant. In the more relevant circumstance where the environmental objective is to keep the resource from degrading excessively, the young would oppose a tax that helps to solve the problem. If such a tax were forced upon them, and the tax share χ were constant, they would prefer to receive all of the tax revenue while young. Thus, in the case that is relevant to most problems involving environmental stocks, this OLG model shows that there is a conflict between generations alive at the time society imposes the tax. The old generation favors the environmental policy because some of the future benefits of that policy are capitalized into the asset value. The current young obtain none of those capitalized benefits, and they do not live long enough to reap significant benefits from the improved environment.

4 Robustness

The critical difference between capital and labor is that the price of capital reflects tax-induced future increases in real profit rates, whereas the price of labor, the wage, reflects none of the future increases in labor productivity. Asset owners therefore capture some of the future productivity gains due to the tax, whereas agents who sell their labor do not. This asymmetry between factor owners does not depend on the specifics of the model; in this respect at least, the results are robust. The capital gains are the means by which some benefits of environmental policy are transferred from the future to the present. This transfer is the basis for our result that such policy is likely to involve a conflict between generations alive when the policy is first imposed, rather than between generations who live at different points in time.

In practice, environmental policy is likely to reduce the value of some assets, e.g. coal-fired power plants in the case of climate policy. In the interest of transparency, our model contains a single asset. A richer but
less tractable model would include two or more assets, and environmental policy might reduce the value of some of these. The exact implications of an environmental tax for asset prices depend on the environment’s future effect on asset returns. For example, climate policy might increase the asset price of even a coal-fired power plant if this policy averts major climate crises that severely reduce future returns to the plant.

If environmental policy reduces the value of most assets, and the stock of these assets is really fixed, then the policy causes society to write down the value of the stock of its assets, possibly reducing the welfare of all generations. When policy reduces the value of most assets but it is feasible to invest in new, low-carbon plants, the policy may harm all generations currently alive and benefit only some future generations. That scenario would produce results analogous to those of standard integrated assessment models that use optimal control.

The descriptive power of our model depends on the relation between the rate of change of the traded asset (zero in our setting above) and the environmental stock. If the traded asset depreciates quickly, relative to the change in the environmental stock, then tax-induced changes in the environmental stock have little effect on the price of the traded asset. In that case, the asset price transfers few of the tax-induced future benefits to those currently alive, and there would be little difference between an OLG and a standard optimal control model. Our setting, where the traded asset does not depreciate, probably exaggerates the extent to which asset prices transfer future policy-induced benefits to the current period. The equally extreme assumption that current generation do not care about the welfare of future generations biases the model against environmental policy. Therefore, the magnitude of the benefit to current generations might vary, but the qualitative relation is likely to survive in a more general setting.

5 Transfers

Here we consider the role of transfers when under BAU the resource is degrading, \(\bar{r}(0, x_t) < 0 \). The proof of Proposition 4 shows that a small tax has only a second order welfare effect on the young if they receive all of the tax revenue while young (\(\chi = 1 \)). We noted above that the old obtain a first order welfare gain even if they receive none of the tax revenue. Given these two results it is not surprising that for a small tax, it is always possible for
the old generation to make a transfer to the young, in addition to giving
them all of the tax revenue, so that both generations are better off. This
means of compensating the young requires that the old give them a portion
of the tax-induced increase in the asset value. It might be politically difficult
to achieve such a transfer.

An alternative means of compensating the young is to give them a higher
share of tax revenue, compared to the future young. One way to do this is to
hold the tax share parameter \(\chi < 1 \) constant, but give the first-period young
the fraction \(\xi \) of the old generation’s share of tax revenue. This transfer
scheme allows the first period old to keep all of the capital gains and the
fraction \((1 - \chi)(1 - \xi)\) of tax revenue. In this way, the future young (rather
than the current old) compensate the current young to make the latter willing
to accept the tax policy. We state this formally:

Proposition 6 For constant \(\chi < 1 \) there exists a tax transfer rate \(0 \leq \xi^{\text{crit}} < 1 \) from the present old to the present young such that with \(\xi > \xi^{\text{crit}} \), a small tax policy with \(\bar{T}_0 = \bar{T}_1 > 0 \) creates a Pareto improvement.

It is not surprising that \(\xi^{\text{crit}} < 1 \). The first-order aggregate welfare effect
of a tax, in the first period, is zero because the pre-tax allocation maximizes
period-t aggregate welfare. Under Cobb-Douglas functional forms, the first-
order effect on real profits is also zero. The first-order effects on the remaining
two components of aggregate income, \(w \) and \(R \), must therefore cancel each
other. If \(\chi \neq 1 \) and the old generation waives all its claim on tax revenue,
\(\xi = 1 \), the young are fully compensated for the fall in the real wage and
also benefit from tax receipts in the next period. Therefore the young are
strictly better off under the tax for sufficiently large \(\xi < 1 \). Because the old
are better off under the tax even if they receive none of the tax revenue, they
are also strictly better off when \(\chi \neq 1 \) and \(\xi < 1 \).

Because the young gain under this tax and transfer, an argument parallel
to that which establishes Proposition 5 implies that for any \(\xi > \xi^{\text{crit}} \), both
generations prefer \(\chi = 0 \). In the bargaining model studied in Section 7 we
therefore emphasize the case \(\chi = 0 \).

The fact that a tax and transfer combination creates a Pareto improve-
ment for the generations alive at the time society imposes the policy is note-
worthy because it arises in a model that appears biased in favor of finding
that an environmental policy harms some generation. Agents alive at the
time the policy is imposed do not care about the welfare of future genera-
tions. In addition, they have only one means of accumulation: protecting
the environment. That protection always requires that aggregate first period utility of consumption falls.

Generations sufficiently far in the future are also better off due to a small tax. A small tax has only a second order effect on “static efficiency”, the efficiency calculation that holds the trajectory of the resource stock fixed. However, the tax has a first order effect on the steady state resource stock, and that increased stock creates a first order welfare gain in the steady state. Absent transfers, the tax is more likely to benefit future generations compared to the current young generation: the tax-induced higher stock benefits each of the future generations in two periods, whereas it benefits the current young generation in only one period. (See Appendix B.1 for details.)

6 Exogenous Productivity Growth

In the context of most environmental problems, the natural resource is degrading on the 0-tax trajectory. In our model of constant productivity and capital, the world becomes poorer and future generations have lower welfare on that trajectory. This section introduces exogenous productivity growth in both sectors. Let \(\alpha \geq 0 \) be the growth rate of total factor productivity in manufacturing and \(\beta \geq 0 \) the growth rate of efficiency in output per unit flow of the resource. Sectoral output is

\[
M_t = e^{\alpha_t}(1 - L_t)^\beta \quad \text{and} \quad F_t = e^{\beta_t}L_t\gamma x_t.
\]

The inequality \(a > 0 \) can also be interpreted as exogenous growth in the stock of capital. The extraction of the resource is still \(L_t\gamma x_t \) (not \(e^{\beta_t}L_t\gamma x_t \)). This model of resource productivity growth implies that each extracted unit of the resource increases the supply of the resource-intensive commodity. If we think of the resource as being energy, the assumption means that the economy becomes less energy intensive. At a constant stock level, this form of productivity growth implies growth rates for utility of \(e^{(1-\alpha)a+\alpha b} \), for the price level of \(e^{(a-b)}(1 + \bar{r}(T_t, x_t)) \) and for all other variables \((w_t, R_t, \text{and} \pi_t)\) of \(e^a \). For the following proposition we assume that \(\chi \in (0, 1) \) is constant and that there is no transfer between generations, i.e. \(\xi = 0 \).

Proposition 7 A larger value of \(a - b \) increases the stringency of the necessary and sufficient condition under which a small constant tax increases the welfare of the young.
Under proportional growth \((a = b)\), the condition for the young to benefit from the tax is the same as when \(a = b = 0\). The welfare effect of the tax, for the young, depends on the change in the price level. A *ceteris paribus* increase in \(a - b\) increases the next period relative supply of the manufacturing good, thereby increasing the future relative price of the resource-intensive good, \(P_{t+1}\). The higher price lowers the marginal utility of next period income, making it “less likely” that the young are willing to forgo income today in order to have higher income in the next period. For \(a > b\), the young would require a higher transfer from the old in order to agree to the tax. If, however, the productivity in the resource sector grows much faster than in the manufacturing sector \((b \gg a)\), the young might support a tax even when the resource is shrinking on the 0-tax trajectory, and in the absence of a transfer.

7 Political Economy Equilibria

Both current generations can gain from a tax, given proper allocation of tax revenues. To find the equilibrium tax and transfer levels and to explore the political economy details, we calibrate the model and solve it numerically for a specific political economy setting. In this scenario, we assume that in each period the old and the young solve a cooperative game, i.e. they choose a tax to maximize their joint surplus. We refer to this scenario as “efficient bargaining”. We compare the efficient bargaining outcome to the outcome under a social planner that chooses the tax sequence to maximize the present discounted value of the infinite sequence of future single-period aggregate utility, using the discount rate \(\rho\).

We also experimented with another scenario to test the model’s sensitivity to the political economy structure, and found that the results are similar. In particular, we considered a setting that restricts the bargaining opportunities in the game between the young and the old generation in each period; we report some features of that scenario in subsequent footnotes. We refer to that scenario as “inefficient bargaining”. Beliefs about the future bargaining

For the model of inefficient bargaining, we set \(\chi = 0\) for the reasons discussed in Section 5, and allowed the old in the first period to propose a transfer rate \(\xi\). Conditional on this choice, the old and the young each propose a constant tax. Due to inertia, society chooses the smaller of these two taxes. We then confirmed numerically that this tax is time consistent. Future young generations would like to lower the tax and future old
outcomes constrain the current bargaining game. Because of this constraint, there is no reason to suppose that the outcome under efficient bargaining is “better” than under inefficient bargaining. Indeed, by some measures the outcome is worse under efficient bargaining.

These political economy models show that there remains some conflict across generations that live during different periods. Generations in the future always prefer that previous generations use a larger tax, to generate a larger environmental stock. Our claim is simply that starting with a major unsolved environmental problem, here represented by a zero BAU tax, all generations can be made better off when agents alive at each point are able to bargain amongst themselves, even when they do not care about the welfare of those who will live in the future.

7.1 Calibration

The parameter α is the share of the resource-intensive commodity in the consumption basket. We set $\alpha = 0.2$, equal to the approximate share of non-durable good consumption in the US (see US-NIPA, 2010). The wage share in manufacturing, β, in the US is around 0.6. We set the annual pure rate of time preference at $2\%/year$ which gives $\rho = 1$ assuming one period lasts 35 years.

In light of the climate policy motivation, we model the renewable resource as easily exhaustible and slowly regenerating; these choices reflect the view that climate change is a serious environmental problem. We choose units of the resource stock, x, such that its carrying capacity is normalized to one, $C = 1$, so that x equals the capacity rate. The productivity parameter γ equals the inverse of the amount of labor that would exhaust the resource in a single period, starting from the carrying capacity $x_0 = 1$. We set $\gamma = 3.33$ and $r = 1.37$ which is equivalent to an uncongested growth rate of $2.5\%/year$. On a 0-tax trajectory the resource continues to degrade to a steady state of $x_\infty = 0.285$. Equation system (7) summarizes the parameter values:

$$\alpha = 0.2; \beta = 0.6; \rho = 1; r = 1.37; \gamma = 3.33.$$ (7)
For this parameter set, the old generation has a higher expenditure level than the young under BAU for any stock level. Here, the asset-rich and the asset-poor correspond to the rich and the poor. The BAU trajectory is monotonic if and only if $x_0 \leq 0.73$. For larger initial conditions, the BAU trajectory drops below the steady state in the first period and then approaches the steady state monotonically from below.

7.2 Efficient Bargaining

Here we assume that in each period the current young and the current old bargain over the tax in order to maximize their joint lifetime welfare; in this sense, bargaining is efficient. Agents recognize that future generations have the same flexibility; in particular, the taxes in future periods are conditioned on the future value of the directly-payoff-relevant state variable, the environmental stock. Agents currently alive are able to influence future policies by influencing the state variable that they bequeath to the future, but current agents cannot choose future policies. That is, we consider a stationary Markov Perfect equilibrium (MPE) in the dynamic game amongst the succession of generations. The transfer from the future to the present occurs via the asset price; future taxes affect this price. The cost, to those currently alive, of the efficiency in bargaining, is a possible loss of commitment ability, relative to bargaining environments where friction makes it harder to change policies. Consequently, all agents may be worse off under efficient bargaining, compared to the particular inefficient bargaining structure that we alluded to above.

If the tax revenue is non-zero and χ is unbounded, any transfer between generations alive at a point in time can be achieved by a suitable choice of the current value of χ; here, χ is perfect substitute for lump sum transfers. In general, the equilibrium values of both χ and T are functions of the environmental stock. In order to see that these two policy functions are mutually dependent, consider two worlds with constant exogenous χ and no lump sum transfers; $\chi = 1$ in one world and $\chi = 0$ in the other. Even if agents believed that the future taxes would be determined by the same policy function, they would have different incentives in choosing the current tax rate, simply because the current young would obtain a different fraction of the next-period tax revenue in the two worlds; that tax revenue depends on the next-period stock, which depends on the current tax. Therefore, the equilibrium tax functions must be different in the two worlds. The current value of χ af-
fects only the distribution of income, not the equilibrium tax. However the anticipated next-period value of χ does affect the current equilibrium tax.

To solve a model in which both taxes and the division of tax revenue are endogenous, we would need to specify the particulars of the game, e.g. the factors that determine the division of surplus. As an alternative, we solve the tax-setting game conditional on a fixed value of χ, and then check for the sensitivity of the equilibrium with respect to χ. Even with constant χ, we find that the equilibrium tax policies are non-monotonic in the environmental stock, a fact that makes it difficult to determine ex ante the relation between χ and the incentive to tax in the current period. Numerical results show that the equilibrium is insensitive to the two obvious choices, $\chi = 1$ and $\chi = 0$. We therefore present here the derivation and results for $\chi = 0$; this is the obvious choice, for reasons explained in Section 5. Appendix B.2 contains sensitivity results.

The nominal value of national income in period t is $Y(T_t) = P_t F_t + m (1 - L_t)$ and the aggregate utility in period t (real national income) is $\mu \rho^{-\alpha}(x_t, T_t) Y(T_t)$; see the proof of Proposition 1 for the explicit form of $Y(T_t)$.

Taking as given $\chi = 0$, our goal is to find the equilibrium stationary tax function, denoted $T_t = \Upsilon(x_t)$. The Nash condition requires that given agents’ belief that $T_{t+i} = \Upsilon(x_{t+i})$ for $i > 0$, the equilibrium decision for the agents choosing the current tax is $T_t = \Upsilon(x_t)$. Ownership of the asset entitles the owner to profits and revenue from the sale of the asset after production. By purchasing the asset from the old in period t, the agent who is young in period t obtains the utility derived from profits and asset sales when she is old. We denote the level of utility obtained from the sale of assets in the next period as $\bar{\sigma}(x_{t+1}, \Upsilon(x_{t+1}))$, and define this function recursively, using

$$
\bar{\sigma}(x_t, T_t) = \frac{1}{1 + \rho} \left\{ \rho^{-\alpha}(x_{t+1}, \Upsilon(x_{t+1})) \pi(\Upsilon(x_{t+1})) + \bar{\sigma}(x_{t+1}, \Upsilon(x_{t+1})) \right\},
$$

Equation (8) states that the utility that the old generation receives in period t, from the sale of assets to the young generation in that period, equals the young generation’s present value of the utility from next-period profits, plus the utility from their future sale of the asset. This equation is the utility analog of the no-arbitrage condition used in the proof of Proposition 2 (equation (13)) obtained by defining $\bar{\sigma}_t = P_t^{-\alpha} \sigma_t$.

Because $\chi = 0$, the t-period young also obtain all of the tax revenue
in the next period; using the second equation in system (2), we write this revenue as \(R(\Upsilon(x_{t+1})) \); the present value of the utility of this revenue is
\[
\frac{1}{1+\rho} p^{-\alpha}(x_{t+1}, \Upsilon(x_{t+1})) R(\Upsilon(x_{t+1}))
\]

The bargaining equilibrium in period \(t \) is the solution to the optimization problem

\[
\max_{T_t} U^o + U^y = \max_{T_t} \left\{ \mu p^{-\alpha}(x_t, T_t) Y(T_t) + \mu \bar{\sigma}(x_t, T_t) + \frac{1}{1+\rho} p^{-\alpha}(x_{t+1}, \Upsilon(x_{t+1})) R(\Upsilon(x_{t+1})) \right\}
\]

subject to

\[
x_{t+1} = (1 + \bar{r}(x_t, T_t)) x_t.
\]

Equation (9) states that the objective is to maximize the lifetime utility of the current old and the current young generation. This maximand equals the utility value of current national income, plus the present value of the utility value of owning the asset in the next period and receiving the tax revenue.

The primitives of the model lead to explicit expressions for the functions \(p(x, T) \) and \(Y(T) \). Equation (8) recursively determines the function \(\bar{\sigma}(x_t, T_t) \). Agents at time \(t \) take the functions \(\Upsilon(x_{t+1}) \) and \(\bar{\sigma}(x_{t+1}, \Upsilon(x_{t+1})) \) as given, but they are endogenous to the problem. We obtain a numerical solution using the collocation method and Chebyshev polynomials (Judd, 1998; Miranda and Fackler, 2002); see Appendix B.2.

Figures 2 and 3 summarize the numerical solution to the problem in
equations (9) and (10) for the parameter values of equation system (7). The figures also contain information about a social planner’s problem, discussed in the next subsection. Inspection of the discrete time phase diagram in Figure 2 shows that for any current stock, the next period stock is higher under the efficient-bargaining tax compared to under BAU: the environmental policy protects the resource stock. The steady state stock level under efficient bargaining is 0.38, compared to the BAU level of 0.28. Under the efficient-bargaining tax, the stock trajectory is a monotonic function of time. In contrast, under BAU, for large initial values of ξ, the subsequent level of ξ is below the steady state. In this situation, the BAU trajectory first overshoots the steady state and then approaches the steady state from below.\footnote{In the inefficient bargaining model described in the previous footnote, the steady state level is $x^\text{indef}_{\infty} = 0.46$. The introduction of frictions in political decision-making increases the tax rate, benefiting future generations. This steady state level is close to the one chosen by the social planner, $x^\text{social}_{\infty} = 0.51$.}

The possibility of overshooting helps to explain why the equilibrium tax policy is (slightly) non-monotonic in the stock (Figure 3), and also why the asset value, in units of utility, is monotonic in the stock under the tax policy, but non-monotonic under BAU. (To conserve space, this figure is not presented.) At high values of the resource stock, a high tax prevents the stock from overshooting the steady state, as would occur under BAU. At low values of the resource stock, a high tax helps the resource to regenerate. The equilibrium tax therefore reaches a minimum for an intermediate value of the stock. Under BAU, the possibility of overshooting causes the asset
value to be low at high stock values; the asset value is also low when the low resource stock leads to low equilibrium utility. Under efficient bargaining, the equilibrium adjustment of the tax ensures that a higher resource stock leads to higher utility value of the asset.

Figure 4 shows agents’ welfare gain under the efficient-bargaining tax, relative to BAU levels. For future generations \((i \geq 1)\) we show the welfare gain of the young agent, and for the current generation \((i = 0)\) we show the aggregate lifetime welfare gain for the current young and old generations. Section 3 explains why the generations alive when the tax is first imposed need to be treated differently than future generations. The dashed curve corresponds to the initial condition \(x_0 = 0.45\) and the solid curve corresponds to \(x_0 = 0.9\). For intermediate initial conditions, the welfare gain lies between these two curves. If the economy starts out slightly higher than the with-policy steady state, agents gain because under BAU welfare would fall to a low level as the resource degenerates. If the initial resource stock is far above the steady state, future generations additionally benefit because the tax prevents overshooting. The fact that overshooting is a problem for high but not for low initial stocks explains why the welfare gain falls when the initial stock is large. The aggregate gain to the first generations is \(3\% - 7\%\) and the steady state welfare gain is about \(3\%\).
7.3 A social planner

We briefly consider the social planner’s problem typically used in Integrated Assessment Models. The single period aggregate utility, as noted above, is $\mu p(x_t, T_t)^{-\alpha} Y(T_t)$. Schneider, Traeger and Winkler (2010) explain the problems with using parameters that describe individual preferences in an OLG setting to calibrate a social discount rate. Here, for illustration, we take the social discount rate to be the individual agent’s pure rate of time preference. The social planner’s problem is

$$\max_{\{T_t\}_{t=0}^\infty} \sum_{t=0}^\infty (1 + \rho)^{-t} \mu p(x_t, T_t)^{-\alpha} Y(T_t)$$

subject to $x_{t+1} = (1 + \bar{r}_t(x_t, T_t)) x_t$ with x_0 given.

We obtain a numerical solution to the dynamic programming problem associated with this optimization problem, using the parameters above, the collocation method, and Chebyshev polynomials. The dot-dash graphs in Figures 2 and 3 show the phase portrait and the policy function for this social planner. The equilibrium stock and tax trajectories are higher under the social planner, compared to under efficient bargaining. This result is not surprising, given our assumption that agents have no bequest motive. The possibly surprising result is that the selfish agents’ equilibrium tax is rather close to the social planner’s tax. The social planner’s steady state tax is $T = 0.40$, a level slightly higher than the tax that maximizes the steady state lifetime welfare of the young, $T = 0.38$.

In most IAMs, environmental policy involves a sacrifice by those currently alive. In our model, the social planner’s policy lowers aggregate first period welfare and increases the welfare of those alive in future periods. Even here, however, lifetime aggregate welfare of the generations alive in the first period increases due to changes in asset prices.

8 Discussion

Many discussions about environmental policy start from the presumption that this policy requires current sacrifices in order to protect future generations. The two existing challenges to this presumption are that there may be win-win situations, and that it may be possible to reallocate current savings
in order to make agents in each period better off. Both of these challenges require the presence of a social planner that is “smarter than the market”. We provide a different perspective, using a model that excludes both of the existing challenges to the conventional view.

In a general equilibrium OLG model, current owners of the non-environmental asset benefit from the increased asset value caused by the imposition of an environmental tax, even though they do not live long enough to enjoy the improved environment. Future generations benefit from the improved environment. The young generation that is alive when society imposes the policy loses, in the absence of transfers. This generation does not capture the increase in asset values, since it buys those assets. Moreover, it suffers current losses because the environmental tax decreases the real wage. The young generation is also not alive long enough to enjoy the benefit of the improved environment. Thus, there is a genuine intergenerational conflict, but it is not the conflict between those living today and those living in the distant future – the conflict that most of the literature emphasizes. Instead, it is the conflict between those who own assets and those who must purchase them: in our model, the old and the young currently alive.

The special status of the two generations currently alive makes it easier to design Pareto improving environmental policy. These two generations can strike a bargain between themselves without involving future generations, because the environmental improvements automatically leave future generations better off. The equilibrium policy in a political economy setting with efficient bargaining amongst those alive at a point in time is less conservationist than the policy under a particular alternative bargaining model that restricts the choice set. In this situation, greater within-period efficiency carries with it a costly decrease in the ability to make credible commitments, leading to a lower tax and greater emissions in equilibrium. We compared these political economy equilibria to the solution to the optimal control problem in which a social planner maximizes the present discounted stream of single period aggregate payoffs, using the intra-generational discount factor. This planning problem is analogous to the type of problem solved in IAMs, because it ignores the OLG structure. The tax policy in this optimal control problem is more conservationist than the equilibrium policy in either political economy setting. However, even under this more conservationist policy, the aggregate lifetime welfare of those alive in the first period is higher than under BAU, because the change in the asset price transfers some environmentally-induced benefits from the future to the present.
Although the academic literature on climate policy emphasizes conflict between current and distant future generations, the actual political dispute turns to a large degree on disagreements between developed and developing countries. Our model is too simple to accurately reflect the subtleties of that dispute, but the model does help to illuminate some important points. The developing nations are younger and poorer than developed nations. Our model shows that young and asset-poor agents have a just claim on compensation from old and asset-rich agents, if the former are to accept meaningful climate policy. It is not that the old rich can afford to and are morally obliged to make this compensation – a claim that may or may not be accepted. Rather, the old rich should make the compensation because the environmental policy benefits them and would, in the absence of the transfer, harm the young poor; in addition the old rich can finance the compensation using only a fraction of their increased benefits.

Both of the political economy models that we considered suggest that an environmental agreement emerges in equilibrium, a positive rather than a normative result. Why has a meaningful climate agreement thus far eluded us? There are two types of answer to this question. The first is that perhaps the world is better described by traditional IAMs, where the conflict between those alive today and those alive in the future is central; and those alive today are simply not willing to make the sacrifices to benefit future generations. The second type of answer is that the debate about climate policy has been improperly framed, and that with better understanding of how this policy affects asset owners, there will be greater chance of an agreement.

By way of analogy, the progress that the world has made toward an open trading system probably owes something to the economic theory that explains why liberal trade potentially benefits all nations. Certainly it would have been more difficult to reach trade agreements if the dominant intellectual paradigm was the mercantilist rather than the neoclassical view of trade. The mercantilist view probably seems more intuitive to non-economists; the economic profession has worked hard to explain why it is wrong.

The view that climate policy will “cost us” seems natural; it may or may not be correct, but it has been roundly endorsed by economic analysis. This analysis has had little to say about transfers that would help to achieve an agreement. This paper attempts to reframe the question of climate policy, in a way that focuses our attention on reasons to make transfers from the asset-rich to the asset-poor in order to induce the latter to agree to climate policy.
References

A Proofs

A.1 Proof of Proposition 1

Proof. (Sketch) (i) Using systems (1) and (2), the nominal value of national income in period t is

$$Y(T_t) = P_t F_t + m (1 - L_t).$$

We multiply nominal national income by $\mu P^{-\alpha}$ to convert dollars to utils; $P = p(x_t, T_t)$ is a function of both the tax and the environmental stock. The single period aggregate utility is

$$U(x_t, T_t) \equiv \mu p(x_t, T_t)^{-\alpha} Y(T_t) = x_t^\alpha \omega(T_t),$$

with $\omega(T_t) \equiv \mu \left(\beta \left(1 + \frac{1-T}{\alpha \beta} \right)^{1-\beta} - \alpha \right)^{-\alpha}$.

Differentiating with respect to T and simplifying gives, for $T \neq 0$,

$$\frac{dU}{dT} = -\mu P^{-\alpha} (1 - \alpha) \beta L T \frac{Y}{(1 - T)^2} < 0. \quad (11)$$

(ii and iii) The tax decreases the nominal wage, w, and increases the equilibrium relative price, P, and therefore decreases the real wage. A higher stock does not affect the nominal wage but it decreases the equilibrium relative price, so it increases the real wage.

The real profit rate is $\mu P^{-\alpha} \pi$. The tax lowers the equilibrium nominal wage, increasing nominal profits, π, but it also increases the commodity price. Using the fact that preferences are homothetic and that the wage share is constant, we have

$$\mu P^{-\alpha} \pi = \mu P^{-\alpha} (1 - \beta) \frac{Y}{1 - \alpha}.$$

Differentiating this with respect to T gives, for $T \neq 0$,

$$\frac{d \mu P^{-\alpha} \pi}{dT} = \mu \frac{1 - \beta}{1 - \alpha} \frac{dP^{-\alpha} Y}{dT} = -\mu P^{-\alpha} (1 - \beta) \beta L T \frac{Y}{(1 - T)^2} < 0.$$

A higher stock does not alter nominal profits, but decreases the commodity price, thereby increasing real profits. ■
A.2 Proof of Proposition 2

Proof. The subscript on T_τ denotes that the first element of the trajectory of taxes is the tax in period t. The price of a firm this period is σ_t and the expectation of the next-period price is $\tilde{\sigma}_{t+1}$. In equilibrium the young generation buys one firm today and sells it in the next period. With intertemporally additive, homothetic lifetime utility, the present value of total utility of the young agent is:

$$U^y_t = \mu \tilde{P}^{-\alpha} e^y_t + \frac{1}{1+\rho} \mu \tilde{P}^{-\alpha} \tilde{e}^y_{t+1} = \mu \times$$

$$\left(P^{-\alpha}_t (w_t + \chi_t R_t - \sigma (x_t, T_t)) + \frac{1}{1+\rho} \tilde{P}^{-\alpha}_{t+1} \left((1 - \tilde{\chi}_{t+1}) \tilde{R}_{t+1} + \tilde{\pi}_{t+1} + \tilde{\sigma}(x_{t+1}, T_{t+1}) \right) \right).$$

(12)

If a young person buys a unit of the factory today, costing σ_t, the loss in utility is $\pi_{t+1} + \sigma_{t+1}$; purchase of one factory today increases expenditures next period by $\pi_{t+1} \tilde{\sigma}_{t+1}$; the increase in the present value of utility next period due to the purchase of the factory is $\frac{1}{1+\rho} \mu \tilde{P}^{-\alpha}_{t+1} (\pi_{t+1} + \pi_{t+1})$. The equilibrium price-of-factory sequence requires that excess demand for the asset is 0, which, under rational expectation, requires satisfaction of the no-arbitrage condition

$$P^{-\alpha}_t \sigma_t = \frac{1}{1+\rho} P^{-\alpha}_{t+1} (\pi_{t+1} + \sigma_{t+1}).$$

(13)

Write this no-arbitrage condition, equation (13), as

$$\sigma_t = \frac{1}{1+\rho} \left(\frac{P_t}{P_{t+1}} \right)^\alpha (\pi_{t+1} + \sigma_{t+1})$$

or

$$\sigma_{t+i} = \frac{1}{1+\rho} \left(\frac{P_{t+i}}{P_{t+1+i}} \right)^\alpha (\pi_{t+i+1} + \sigma_{t+i+1}),$$

so

$$\sigma_t = \frac{1}{1+\rho} \left(\frac{P_t}{P_{t+1}} \right)^\alpha \pi_{t+1} + \frac{1}{1+\rho} \left(\frac{P_t}{P_{t+1}} \right)^\alpha \left[\frac{1}{1+\rho} \left(\frac{P_{t+1}}{P_{t+2}} \right)^\alpha (\pi_{t+2} + \sigma_{t+2}) \right].$$

By repeated substitution obtain

$$\sigma_t = \sum_{j=1}^{S} \left[\frac{1}{1+\rho} \left(\frac{P_t}{P_{t+1}} \right)^\alpha \pi_{t+1}^j \right] + \left[\frac{1}{1+\rho} \right]^S \left[\left\{ \prod_{s=0}^{S-1} \left(\frac{P_{t+s}}{P_{t+s+1}} \right)^\alpha \right\} \sigma_{t+S} \right]$$

32
If the system converges to a steady state, then the second term goes to 0 as $S \to \infty$ and
\[\sigma_t = \sum_{j=1}^{\infty} \left(\frac{1}{1 + \rho} \right)^j \left[\left\{ \Pi_{s=0}^{j-1} \left(\frac{P_{t+s}}{P_{t+s+1}} \right)^{\alpha} \right\} \pi_{t+j} \right]. \]

Note that
\[\Pi_{s=0}^{j-1} \left(\frac{P_{t+s}}{P_{t+s+1}} \right)^{\alpha} = \left(\frac{P_t}{P_{t+j}} \right)^{\alpha} \]

Using this relation we have
\[\sigma_t = P_t^{\alpha} \sum_{i=1}^{\infty} (1 + \rho)^{-i} P_{t+i}^{-\alpha} \pi_{t+i}, \quad (14) \]

π is independent of the stock and, for fixed T, constant. Under this condition the expression for the asset price reduces to
\[\sigma_t = \pi P_t^{\alpha} \sum_{j=1}^{\infty} \left(\frac{1}{1 + \rho} \right)^j P_{t+j}^{-\alpha}. \quad (15) \]

A.3 Proof of Corollary 1

Proof. (i) The imposition of the no-arbitrage condition simplifies the lifetime welfare expression of the young, equation (12), to:
\[U_t^y = \mu \left[p(T_t, x_t)^{-\alpha} (w(T_t) + \chi_t R(T_t)) + \frac{p(T_{t+1}, x_{t+1})^{-\alpha}}{1 + \rho} (1 - \chi_{t+1}) R(T_{t+1}) \right]. \quad (16) \]

The no-arbitrage condition implies that the young generation’s utility is independent of the asset price. A loss in utility from the higher asset price in the first period equals the discounted utility gain from increased profits and asset price in the second period. As a consequence, the young generation’s expenditure equals wage income in the first period and their share of the tax revenue in the first and second period. Their welfare considerations are limited to these expenditure components and the price effects.

(ii) The same holds for all future generations. Asset prices enter only the welfare expression of the current old generation. The current owners of the asset capture all future benefits reflected in a changed asset price. ■
A.4 Proof of Proposition 3

Proof. Using equation (3), and the definitions of ς and x_∞ in equations (4) and (5), the BAU trajectory is monotonic if and only if the initial condition is less than or equal to the root of $(1 + \tilde{r}(0, x)) x = x_\infty$, which is equivalent to $x_0 \leq C^{\varsigma^{-1}}$, or $x_0 \leq \frac{1}{\tilde{r}} x_\infty$.

The old generation’s remaining lifetime welfare consists of the utility it obtains from current consumption,

$$ U_t^o (\varepsilon) = \mu \left(p(x_t, T_t)^{-\alpha} (1 - \chi) R_t + \sum_{i=0}^{\infty} (1 + \rho)^{-i} p(x_{t+i}, T_{t+i})^{-\alpha} \pi_{t+i} \right). \tag{17} $$

We start with the derivative of the second term in U^o, the return to holding the asset. We differentiate each term in the sum by $T_i = \varepsilon \tilde{T}_i$, recognizing that T_i has a direct effect on $\pi_{t+i}^\alpha p_{t+i}^{-\alpha}$ and an indirect effect, via its effect on x_{t+j}, on $\pi_{t+j}^\alpha p_{t+j}^{-\alpha}$ for $j > i$. We use $T_i = \varepsilon \tilde{T}_i$, so $dT_i = \tilde{T}_id\varepsilon$.

$$ \frac{d}{d\varepsilon} \sum_{i=0}^{\infty} (1 + \rho)^{-i} \pi_{t+i}^\alpha p_{t+i}^{-\alpha} = \frac{\partial \pi_{t+i}^\alpha p_{t+i}^{-\alpha}}{\partial T_t} \tilde{T}_i $$

$$ + (1 + \rho)^{-1} \left[\frac{\partial \pi_{t+i+1}^\alpha p_{t+i+1}^{-\alpha}}{\partial T_{t+1}} \tilde{T}_{t+1} + \frac{\partial \pi_{t+i+1}^\alpha p_{t+i+1}^{-\alpha}}{\partial x_{t+1}} \tilde{T} \frac{\partial \pi_{t+i+1}^\alpha p_{t+i+1}^{-\alpha}}{\partial T_t} \right] $$

$$ + (1 + \rho)^{-2} \left[\frac{\partial \pi_{t+i+2}^\alpha p_{t+i+2}^{-\alpha}}{\partial T_{t+2}} \tilde{T}_{t+2} + \frac{\partial \pi_{t+i+2}^\alpha p_{t+i+2}^{-\alpha}}{\partial x_{t+2}} \left(\frac{\partial \pi_{t+i+2}^\alpha p_{t+i+2}^{-\alpha}}{\partial x_{t+1}} + \frac{\partial \pi_{t+i+2}^\alpha p_{t+i+2}^{-\alpha}}{\partial T_{t+1}} \tilde{T}_t \right) \right] $$

$$ + (1 + \rho)^{-3} \left[\frac{\partial \pi_{t+i+3}^\alpha p_{t+i+3}^{-\alpha}}{\partial T_{t+3}} \tilde{T}_{t+3} + \frac{\partial \pi_{t+i+3}^\alpha p_{t+i+3}^{-\alpha}}{\partial x_{t+3}} \left(\frac{\partial \pi_{t+i+3}^\alpha p_{t+i+3}^{-\alpha}}{\partial x_{t+2}} \left(\frac{\partial \pi_{t+i+3}^\alpha p_{t+i+3}^{-\alpha}}{\partial x_{t+1}} + \frac{\partial \pi_{t+i+3}^\alpha p_{t+i+3}^{-\alpha}}{\partial T_{t+1}} \tilde{T}_{t+1} \right) + \frac{\partial \pi_{t+i+3}^\alpha p_{t+i+3}^{-\alpha}}{\partial x_{t+2}} \tilde{T}_t \right) \right] $$

$$ + $$

We simplify this expression using the fact that at $\varepsilon = 0$, $T_0 = T_1 = ... = 0$. Evaluating the different expressions along the BAU trajectory, we have

$$ \frac{\partial \pi_i p_i^{-\alpha}}{\partial T_i} = 0; \quad \pi_0 = \pi_1 = ... = \pi; \quad \text{and} \quad \frac{\partial \pi_i p_i^{-\alpha}}{\partial x_i} = \eta x_i^{\gamma-1}, \text{with} \eta \equiv \alpha \pi \left(\frac{w}{\gamma} \right)^{-\alpha} > 0. $$

Using the convention that $\prod_j^{j-1} z_j = 1$, we write the i’th term in the sum above as $(1 + \rho)^{-i} \theta_i$, with

$$ \theta_i \equiv \eta x_i^{\gamma-1} \left[\sum_{j=0}^{i-1} \left\{ \frac{\partial x_{t+i-j}}{\partial T_{t+i-j-1}} \tilde{T}_{t+i-j-1} \left(\prod_{k=0}^{j-1} \frac{\partial x_{t+i-k}}{\partial x_{t+i-k-1}} \right) \right\} \right]. $$

34
The initial condition is x_t and the BAU steady state is x_∞. The assumption that $x_t < \frac{1}{2} \xi x_\infty$, with $\frac{1}{2} \xi x_\infty > 1$ by inequality (4), implies that

$$
\left(\prod_{k=0}^{j-1} \frac{\partial x_{t+i-k}}{\partial x_{t+i-k-1}} \right) > 0.
$$

By assumption, $T_{t+i-j} \geq 0$ with strict inequality for some $i - j - 1 \geq 0$, and we have $\frac{\partial r}{\partial r} > 0 \Rightarrow \frac{\partial x_{t+i}}{\partial T_t} > 0$. Consequently $\theta_i \geq 0$ with strict inequality holding for some i.

The old also receive a share of the tax revenue. The effect of a tax increase on current tax revenue is

$$
\frac{dP^{-\alpha}(1 - \chi)R}{d\varepsilon} \bigg|_{\varepsilon=0} = (1 - \chi)R \frac{dP^{-\alpha}}{d\varepsilon} + (1 - \chi)P^{-\alpha} \frac{dR}{d\varepsilon} \bigg|_{\varepsilon=0}
$$

$$
= (1 - \chi)P^{-\alpha} \left(1 + \frac{\alpha}{\beta(1-\alpha)} \right)^{-\beta} T_t > 0
$$

(18)

Given that the derivatives of both terms in U_t are positive, a small tax trajectory increases the welfare of the old generation. For a positive current tax, $R_t > 0$, and the old generation’s utility strictly increases in its share of the tax revenue.

A.5 Proof of Proposition 4

Proof. The lifetime welfare of the young, from equation (16), is

$$
U_t^y (\varepsilon) = \mu P^{-\alpha} \left(w(T_t \varepsilon) + \chi R(T_t \varepsilon) + \frac{(1 + \bar{r}(T_t \varepsilon, x_t))}{1 + \rho}(1 - \chi)R(T_{t+1} \varepsilon) \right).
$$

Differentiating this expression with respect to ε gives

$$
\frac{dU_t^y}{d\varepsilon} = \frac{d}{d\varepsilon} \mu P^{-\alpha} \left(w(T_t \varepsilon) + \chi R(T_t \varepsilon) \right) + \frac{d}{d\varepsilon} \left[\mu P^{-\alpha} \left(1 + \bar{r}(T_t \varepsilon, x_t) \right) \frac{1}{1 + \rho}(1 - \chi)R(T_{t+1} \varepsilon) \right]
$$

We know that the first order effect of a tax introduction on output measured in utils is zero simply because the pre-tax allocation maximizes current aggregate utility. Given Cobb-Douglas functional forms, profits are proportional to output so that the first order effect on real profits is also zero. Consequently the effect on the remaining two components of income, w and R, also have to cancel out: $\frac{dP^{-\alpha}w}{d\varepsilon} \bigg|_{\varepsilon=0} + \frac{dP^{-\alpha}R}{d\varepsilon} \bigg|_{\varepsilon=0} = 0$. Using the fact that
\(R(0) = 0 \) such that \(\left. \frac{dR - \alpha R}{d\varepsilon} \right|_{\varepsilon = 0} = P - \alpha \frac{dR}{d\varepsilon} \right|_{\varepsilon = 0} \) and the assumption that the first two tax rates are equal, the expression simplifies to

\[
\frac{dU^y}{d\varepsilon} \bigg|_{\varepsilon = 0} = \mu \left[P_t^{-\alpha} (-1 + \chi) \frac{dR}{d\varepsilon} + P_t^{-\alpha} (1 - \chi) \frac{(1 + \bar{r}(T_\varepsilon, x_t))^{\alpha} \frac{dR}{d\varepsilon}}{1 + \rho} \right] \bigg|_{\varepsilon = 0} = \mu P_t^{-\alpha} (1 - \chi) \left(\frac{(1 + \bar{r}(0, x_t))^{\alpha}}{1 + \rho} - 1 \right) \frac{dR}{d\varepsilon} \bigg|_{\varepsilon = 0}
\]

The young generation loses income \(-p_t^{-\alpha} \frac{dR}{d\varepsilon} \) in the first period through an increase in the tax, but is able to recuperate \(\chi p_t^{-\alpha} \frac{dR}{d\varepsilon} \) in the form of tax revenues. It gains \(p_t^{-\alpha} (1 - \chi) \frac{(1 + \bar{r}(0, x_t))^{\alpha}}{1 + \rho} \) in the next period. The first-order response of tax revenue to a small tax introduction is positive: \(\left. \frac{dR(T_\varepsilon, x_t)}{d\varepsilon} \right|_{\varepsilon = 0} = \frac{\alpha}{1 - \alpha} \left(1 + \frac{\alpha}{\beta(1 - \alpha)} \right)^{-\beta} \bar{T}_1 > 0 \). Under the assumption that \(\bar{T}_0 = \bar{T}_1 \), we establish the following condition under which a small positive tax increases the initial young agent’s lifetime welfare (16):

\[
\frac{dU^y}{d\varepsilon} \bigg|_{\varepsilon = 0} > 0 \Leftrightarrow (1 - \chi) \left(\frac{(1 + \bar{r}(0, x_t))^{\alpha}}{1 + \rho} - 1 \right) \bar{T}_0 > 0.
\]

With \(\chi \in [0, 1] \), a small tax increases the lifetime welfare of the young generation if and only if \(\chi < 1 \) and \((1 + \bar{r}(0, x_t))^{\alpha} > (1 + \rho) \). A small tax creates a zero first order welfare effect for the young generation that receives all tax revenue (\(\chi = 1 \)). Condition (b) in the Proposition is equivalent to \(\bar{r}(0, x_t) > (1 + \rho)^{\frac{1}{\beta}} - 1 \). For \(\rho > 0 \), the expression on the right side of the previous inequality is positive. Thus, a necessary condition for the young to benefit from a tax is that the resource is below its 0-tax steady state, and is in the process of sufficiently strong recovery.

A.6 Proof of Proposition 5

Proof. The last equation in system (1) implies that \(p(T_t, x_{t+1})^{-\alpha} = p(T_t, x_t)^{-\alpha} (1 + \bar{r}(T_t, x_t))^{\alpha} \). This equality and the fact that the young generation’s welfare is linear in \(\chi \), from equation (16), implies that

\[
\frac{dU^y}{d\chi} < 0 \Leftrightarrow \left(\frac{(1 + \bar{r}(T_0, x_0))^{\alpha}}{1 + \rho} - 1 \right) \bar{T}_0 > 0.
\]
We also have \(\frac{d\rho}{d\tau} > 0 \). This inequality and inequalities (19) and (20) imply that if the young benefit from a small tax, then they prefer to receive all of the tax revenue when they are old, i.e. they prefer \(\chi = 0 \). In contrast, if the young are harmed by a small tax, then provided that the tax is small they prefer to receive all of the tax revenue when young (\(\chi = 1 \)).

A.7 Proof of Proposition 6

Proof. With \(\xi \) the share of the old generation’s tax revenue transferred to the young in the period when the tax is first imposed, the first period’s tax receipts are now \((\chi_0 + (1 - \chi_0)\xi)R_0 \) for the young and \((1 - \chi_0)(1 - \xi)R_0 \) for the old. Under the assumption that current and next period tax rates are changed by the same small amount and that \(\chi \) is constant, an argument that parallels the derivation in Appendix A.5 leads to the following condition for the young to benefit from the combined transfer and tax:

\[
\frac{dU^y_0}{d\varepsilon} \bigg|_{\varepsilon=0} > 0 \Leftrightarrow (1 - \chi) \left(\frac{(1 + \bar{r}(0, x_0))^\alpha}{1 + \rho} - (1 - \xi) \right) T_0 > 0.
\]

Setting \(\xi = 0 \), equation (21) reproduces equation (19). For

\[
\xi > \xi^{\text{crit}} \equiv 1 - \frac{(1 + \bar{r}(0, x_0))^\alpha}{1 + \rho}
\]

the young strictly prefer the combined tax and transfer compared to the BAU status quo. Even if the resource is degrading on the BAU trajectory, \(\xi^{\text{crit}} < 1 \). Therefore, by transferring less than their entire share of the tax revenue to the young, the old can make the young better off under a small tax. Because Proposition 3 states that the tax improves the old generation’s welfare even if they receive none of the tax revenue, the old are obviously better off under the combined tax and transfer, compared to the status quo.

A.8 Proof of Proposition 7

Proof. Using a derivation parallel to that contained in Appendix A.5, we have

\[
\frac{dU^y_0}{d\varepsilon} \bigg|_{\varepsilon=0} > 0 \Leftrightarrow (1 - \chi) \left(e^{-(a-b)\alpha} \frac{(1 + \bar{r}(0, x_0))^\alpha}{1 + \rho} - 1 \right) T_0 > 0.
\]
The second inequality is equivalent to
\[\left(\frac{1 + \tilde{r}(0, x_0)}{e^{(a-b)}} \right)^\alpha > 1 + \rho. \] (22)

The left side of inequality (22) is decreasing in \(a - b\), so an increase in \(a - b\) decreases the set of parameter values and initial conditions under which the inequality is satisfied, i.e. the circumstances under which the young benefit from the tax. ■

B Appendix for Referee

This appendix collects information not intended to be published.

B.1 Future generations

Merely in order to avoid uninteresting complications, we assume that for future generations the tax is constant: \(\bar{T}_0 = \bar{T}_1 = \bar{T}_2\ldots\). The life-time welfare of the next young generation is

\[U^y_1(\varepsilon) = \mu p(\bar{T}_1\varepsilon, x_1)^{-\alpha} \left(w(\bar{T}_1\varepsilon) + \chi R(\bar{T}_1\varepsilon) + \frac{(1 + \tilde{r}(\bar{T}_1\varepsilon, x_1))^{\alpha}}{1 + \rho} (1 - \chi) R(\bar{T}_2\varepsilon) \right). \]

Differentiating this expression with respect to \(\varepsilon\) gives

\[\frac{dU^y_1}{d\varepsilon} = \frac{d}{d\varepsilon} \mu P_1^{-\alpha}(w(\bar{T}_1\varepsilon) + \chi R(\bar{T}_1\varepsilon)) + \frac{d}{d\varepsilon} \left[\mu P_1^{-\alpha} \left(1 + \tilde{r}(\bar{T}_1\varepsilon, x_1) \right)^\alpha \frac{1}{1 + \rho} (1 - \chi) R(\bar{T}_2\varepsilon) \right]. \]

Using the simplifications of Appendix A.5, especially the fact that \(R(0) = 0\), and the fact that \(\frac{\partial P_1^{-\alpha}}{\partial x_1} = \alpha P_1^{-\alpha} x_1^{-1}\), the expression simplifies to

\[\left. \frac{dU^y_1}{d\varepsilon} \right|_{\varepsilon=0} > 0 \Leftrightarrow \bar{T}_1 P_1^{-\alpha}(1 - \chi) \left(\frac{(1 + \tilde{r}(0, x_1))^{\alpha}}{1 + \rho} - 1 \right) \left. \frac{dR}{d\varepsilon} \right|_{\varepsilon=0} > -\bar{T}_0 w(0) \frac{\partial P_1^{-\alpha}}{\partial x_1} \frac{\partial x_1}{\partial \bar{T}_0} \]

\[\Leftrightarrow (1 - \chi) \left(\frac{(1 + \tilde{r}(0, x_1))^{\alpha}}{1 + \rho} - 1 \right) \bar{T}_0 > - \left(w(0) \alpha x_1^{-1} \frac{\partial x_1}{\partial \bar{T}_0} \right) \left(\frac{1}{dR/d\varepsilon|_{\varepsilon=0}} \right) \bar{T}_0 \]

38
Comparing this condition to inequality (19), we see that when the stock is degrading (i.e. $\bar{r}(0, x_0) < 0$), a small tax is more likely to benefit the next period’s young generation compared to today’s, which always loses in the absence of transfers. The difference arises for two reasons: A lower stock increases the BAU growth rate, $\delta \bar{\rho}(0, \tau_0) = -r < 0$, so that the left side is less negative. The right side of the inequality above is negative. Therefore, the condition here is weaker than the condition in inequality (19). In fact, it is satisfied for any initial stock value in the calibration used in Section 7.

B.2 Numerical Method
We approximate $\Upsilon(x_{t+1})$ and $\bar{\sigma}(x_{t+1}, \Upsilon(x_{t+1})) \equiv \Phi(x_{t+1})$ as polynomials in x_{t+1}, and find coefficients of those polynomials so that the solution to

$$\max_{T_t} \mu P^{-\alpha} (x_t, T_t) \Upsilon (T_t) + \frac{1}{1+\rho} \mu \left\{ P^{-\alpha} (x_{t+1}, \Upsilon(x_{t+1})) \pi (\Upsilon (x_{t+1})) + \Phi(x_{t+1}) + R(\Upsilon(x_{t+1})) \right\}$$

subject to equation (10) approximately equals $\Upsilon(x_t)$. We use 13-degree Chebyshev polynomials evaluated at 13 Chebyshev nodes on the $[0.1, 0.9]$ interval. At each node the following conditions have to be approximately satisfied

$$\Phi(x_t) = \frac{1}{1+\rho} \left\{ P^{-\alpha} (x_{t+1}, \Upsilon(x_{t+1})) \pi (\Upsilon (x_{t+1})) + \Phi(x_{t+1}) + R(\Upsilon(x_{t+1})) \right\}$$

$$\frac{d}{dx_t} \left[\mu P^{-\alpha} (x_t, T_t) \Upsilon (T_t) + \frac{1}{1+\rho} \Omega \right] = 0$$

with $\Omega \equiv \mu \left\{ P^{-\alpha} (x_{t+1}, \Upsilon(x_{t+1})) \pi (\Upsilon (x_{t+1})) + \Phi(x_{t+1}) + R(\Upsilon(x_{t+1})) \right\}$

subject to $x_{t+1} = (1 + \bar{r}(x_t, T_t))x_t$ and $T_t = \Upsilon(x_t)$. Each node gives two non-linear equations in the coefficients of the two polynomials. If the number of nodes equals the degree of approximation (i.e. the number of coefficients of each polynomial), the system of non-linear equations can be solved using a root-finding method. We employ Mathmatica’s FindRoot command which solves the system in less than a minute on a standard personal computer. We increased the number of nodes and degree of approximation to 16 in the social planner’s problem to arrive at satisfactory levels of accuracy.

Evaluating the equation system (23) using the solution approximations gives a statistic for the goodness of fit. The figures 5 and 6 illustrate that the residual errors are 5 orders of magnitudes below the solution values.
Figure 5: Deviation of asset price approximation from true value outside of approximation nodes for the efficient bargaining (solid) and the social planner’s (dot-dashed) problems.

Figure 6: Deviation of policy function approximation from true value outside of approximation nodes for the efficient bargaining (solid) and the social planner’s (dot-dashed) problems.
In the text we presented the solution for $\chi = 0$ for reasons explained in Section 5. Here we discuss the $\chi = 1$ case, where in each period the young receives all of the tax revenue. This change reduces the incentive for generations to preserve the resource and consequently lower tax rates are chosen at all levels of the stock, x. Figure 7 plots the policy function for the efficient bargaining problem for $\chi = 0$ (solid) and $\chi = 1$ (dotted). At its maximal difference, the $\chi = 0$ policy function lies 20% below the case reported in the text. This considerable difference in the policy function, however, has little impact on the value function or the transition equation of the stock variable. The steady state under the less conservative tax policy is at 0.38 which is only 5% under the $\chi = 0$ equilibrium level.