Police-powers, regulatory takings and the efficient compensation of domestic and foreign investors*

Emma Aisbett†, Larry Karp‡, and Carol McAusland§

June 5, 2007

Abstract

In customary international and public law, “takings” resulting from regulations designed to protect the public good are generally excluded from compensation rules; this exclusion is known as a police powers carve-out (PPCO). Increasingly, this PPCO is being challenged, particularly in international investment law. This paper analyzes the efficient properties of a PPCO in a model with endogenous regulation, investment and entry. We design a one-parameter family of carve-out/compensation schemes that induce efficient regulation and firm level investment even when the regulator suffers fiscal illusion and the social benefit from regulation is private information to the regulator. We show that offering a carve-out reduces the subsidy to risky industry implicit in compensation rules; thus, a carve-out can mitigate the entry problem.

Keywords: regulatory takings, carve-out, expropriation, environment, foreign direct investment, NAFTA, National Treatment,

*Our thanks to seminar participants at Yale and Iowa State Universities, Resources for the Future, and University of California, Berkeley.
†Department of Agricultural and Resource Economics, 207 Giannini Hall, University of California, Berkeley CA 94720 aisbett@are.berkeley.edu
‡Department of Agricultural and Resource Economics, 207 Giannini Hall, University of California, Berkeley CA 94720 karp@are.berkeley.edu
§Department of Agricultural and Resource Economics, 2200 Symons Hall, University of Maryland, College Park MD 20742 cmcausland@arec.umd.edu
JEL classification numbers F21, H4, K3, Q58
1 Introduction

Over the past 15 years a number of attempts have been made to make regulatory takings compensable. Chapter 11 of the North American Free Trade Agreement (NAFTA) requires host governments to compensate foreign investors for losses arising from any “measures tantamount to ... expropriation” (NAFTA Article 1110, paragraph. 1, emphasis added). Investors have used NAFTA to sue host governments for a number of environment related regulations, including backfilling rules designed to protect native sacred sites, a municipality’s refusal to grant operating permits for a hazardous waste facility, a ban on the import of one gasoline additive and the use of another.\(^1\) At the federal level, bills have been introduced into Congress that would render compensable losses in property values arising from the Endangered Species Act (ESA), the Clean Water Act and the Farm Bill.\(^2\) Ballot initiatives have appeared in a number of states mandating compensation for some forms of regulatory takings. For example, in 2004 Oregon voters passed Ballot Measure 37, entitling a property owner to compensation for new land use regulation that “has the effect of reducing the fair market value of the property” (\textit{Oregon State Law 197.352} n.d., Subsection 1).

Although the Fifth Amendment to the U.S. Constitution states “…nor shall private property be taken for public use, without just compensation”, most courts refrain from classifying regulatory takings as compensable. U.S. courts have historically acknowledged a carve-out, i.e. a standing exclusion, for takings arising from government exercising its police powers, that is, the state’s right to regulate behavior.\(^3\)

\(^1\)These cases are, respectively, Glamis Gold Ltd. v. United States of America (see U.S. Department of State (2005a)), Metacelad Corporation v. United Mexican States (see U.S. Department of State (2005b)), Ethyl Corporation v. Canada (see Canada Department of Foreign Affairs (2004), and Methanex Corporation v. United States of America (see UNCITRAL Tribunal Methanex Corp. v. United States of America (2005)).

\(^3\)Notable exceptions in include Pennsylvania Coal Co. v. Mahon 260 U.S. 393, 415 (1922) and Lucas v. South Carolina Coastal Council 112 S. Ct. 2886, 2895 (1992). In the Pennsylvania Coal case, state
The possibility that regulators have “fiscal illusion”, i.e. that they discount the costs that regulations impose on a group of private citizens, is the central efficiency argument for making regulatory takings compensable.\(^4\) Regulators with fiscal illusion tend to regulate too often. State and municipal governments are elected to maximize local welfare, not the joint welfare of citizens and foreign investors; the government may discount the regulatory costs borne by subsidiaries of foreign multinationals. In addition, the regulatory environment may mandate fiscal illusion: although the Endangered Species Act requires its Secretary to consider economic costs when determining critical habitat, whether a species gets listed in the first place must be based “solely on the basis of the best scientific and commercial data available....”\(^5\) Making takings compensable is one way of disciplining regulators.

Just as with outright takings, compensation for regulatory takings distorts investment decisions. Blume, Rubinfeld and Shapiro (1984) (hereafter referred to as BRS) show that compensation insures investors against states of the world in which their land would have higher value in the hands of government; as a result property owners over-invest if they are guaranteed compensation for subsequent takings. BRS show that lump-sum compensation remedies this problem of excessive (implicit) insurance. Nevertheless, even lump sum compensation transfers rents from society to investors and thus is an implicit subsidy to industries subject to regulatory risk. This subsidy generates excessive entry into those industries.

We propose a mechanism that addresses both the fiscal illusion and insurance problems yet still grants a carve-out for seemingly bona fide public regulation. We examine the efficiency properties of a police powers carve-out (PPCO)—a rule under which the

\(^4\)There are also compelling fairness arguments favoring compensation. See, for example, Michelman (1967), Fischel and Shapiro (1989), and Niemann and Shapiro (2005). This paper, however, examines only efficiency.

\(^5\)Endangered Species Act of 1974, Section 4.b.3; see also Innes, Polasky and Tschirhart (1998, p.47).
regulator is exempt from paying compensation if and only if the court perceives that the
social benefits from regulation are sufficiently high; otherwise, takings are compensable.
We show that an appropriately designed PPCO induces efficient regulation despite fiscal
illusion even when there is asymmetric information between the regulator and the court.
We also show that for any PPCO there exists a linear compensation scheme that induces
both efficient regulation and firm level investment if investors are non-strategic.

PPCOs have received little attention in Takings analyses. The exception is Miceli and
Segerson (1994) who propose an Ex Post rule under which a regulator is exempt from
paying compensation if and only if the taking is socially efficient. Their analysis assumes
a full information environment in which courts can perfectly observe the social costs and
benefits of a takings. In practice, courts charged with adjudicating takings cases receive
noisy signals of the social benefits from takings. This informational asymmetry between
courts and regulators is particularly likely in the case of environmental regulation where
the regulating agency has intangible hands-on knowledge of the damages avoided via reg-
ulation. The courts, in contrast, must rely on second hand accounts—expert witnesses and
a paper trail of often conflicting scientific reports—to estimate avoided damage.¹

Unlike previous research on Takings, we also examine the effect that the compensation
and carve-out have on entry. Compensation rules transfer expected rents from society to
investors, increasing entry above the efficient level. Broadening the carve-out tends to
reduce the size of the implicit transfer to investors, so granting a PPCO can mitigate the
entry problem. Broadening the carve-out does not eliminate this transfer, so our proposal
does not induce efficient entry.

Although this paper applies to the problem of carve-outs and regulatory takings in gen-
eral, we pay special attention to the case where investors are foreign nationals. There are

¹Hermalin (1995) similarly examines compensation schemes when information is asymmetric and the
regulator suffers fiscal illusion. Hermalin’s analysis allows for strategic investors—our baseline model does
not—but excludes the possibility of a PPCO. Hermalin argues efficient investment and regulation are pos-
sible if the state can “demand payments from its citizens in exchange for not taking their property.” (p.75)
Nosal (2001) similarly proposes a scheme involving a transfer from individuals to the state. We do not grant
the regulator the power to extort payments from landowners, as this would generate its own moral hazard
problem.
more than 2,500 international investment agreements (IIAs), including bilateral investment treaties, and regional agreements such as Chapter 11 of the NAFTA. The vast majority of these agreements give foreign investors the right to file a compensation claim against a host government using an international tribunal. In contrast to the participating country’s domestic law (on which domestic investors must rely) international investment treaties generally contain strict definitions of expropriation. According to the letter of many IIAs there is no PPCO for regulations to protect health, safety, or the environment, and thus any new regulations for these purposes may be construed as regulatory takings worthy of compensation. Despite the clear letter of the law, several tribunals have granted PPCOs in their rulings, precipitating a lively debate among legal scholars and practitioners.7

The reluctance of tribunals to apply the strict definitions included in most investment agreements is probably driven by political rather than economic considerations. A PPCO has particular political appeal when the defending host is a developing country government that tries to introduce tougher environmental standards, and the investor a large multinational from a wealthy country. Developing countries are the defendants in the vast majority of cases, and host governments claimed protection of the public good as the primary motive for their allegedly expropriatory actions in nearly a quarter of the international investment agreement cases for which we were able to find information.8 The expropriation clauses found in IIAs apply only to foreign investors. These clauses therefore promote entry by foreign firms at the expense of domestic firms, i.e. they create a non-level playing field. Moreover, National Treatment rules (which require that host governments treat foreigners no less favorably than domestic investors) prevent host governments from charging foreigners up front taxes that would offset this implicit subsidy.

We focus on production externalities, while most of the Takings literature assumes that the transfer of private property into public hands increases social welfare. In that literature, takings provide new public goods at the expense of investors or property owners. However

7See for example Been and Beauvais (2003), Tschen (1999), and Turk (2005).
8Seven cases out of twenty nine. Source: the website of the International Centre for the Settlement of Investment Disputes.
the investor-to-state lawsuits prompted by NAFTA’s Chapter 11 that have drawn the most criticism have concerned environmental regulation. Accordingly, in our model a taking benefits society by avoiding damage. Since these regulations protect the public good, they fall under the usual definition of a state’s police powers. Much of our analysis is equally valid under either interpretation, and many of the arguments we offer in defense of a carve-out for health, safety and environmental regulations also extend to carve-outs for regulation that provides additional public benefits.

2 Model

This section first describes the model and then studies the benchmark of socially efficient regulation and investment.

2.1 Agents

There are three agents in our model, a representative investor, a regulator, and a court. All agents are risk neutral.

The perfectly competitive investor chooses investment level k taking the rental price for capital, r, as given. Here we treat the number of firms in the industry (normalized to 1) as given. Section 5.2 analyzes the entry decision. An investor whose project is not regulated earns variable profits $\pi(k)$, where

$$\pi(k) = pq - c(k, q);$$

q is output and c is a cost function that is increasing in q and decreasing in k. The equilibrium price and quantity are $p(k)$ and $q(p)$, with $p(k) = c_q(q, k)$. Because firms are price takers, $S'(k) = -c_k(q, k)$ evaluated at $q = q(p(k))$. Let $U(p(k))$ denote consumer surplus while pecuniary social surplus from the project is $S(k) = U + \pi$.

The regulator decides whether to shut the project down. If the project goes unregu-
lated the investment causes harm H, we refer to this harm as *environmental damage*, but other interpretations are equally valid. When the investor chooses k, H is a non-negative random variable with PDF $f(H)$ and CDF $F(H)$. When the regulator decides whether to shut down the project, she knows the realized value of H. Regulation causes a loss of surplus $S(k)$ and avoids the environmental cost H.

Regulation leads to an investor claim for compensation. The *court* determines whether the regulator must compensate the investor and the size of the compensation payment. The court observes a noisy signal of harm, ηH. When the regulator decides whether to shut down the project, η is a random variable with PDF $g(\eta)$ and CDF $G(\eta)$.

The three stages of the model are:

- **First Stage [Investment]:** the investor chooses investment level
- **\(\langle\text{Nature reveals } H \text{ to regulator}\rangle\)**
- **Second Stage [Regulation]:** the regulator decides whether to regulate
- **\(\langle\text{Nature reveals } H\eta \text{ to the court}\rangle\)**
- **Third Stage [Arbitration]:** the court decides whether the regulator must pay compensation.

We use the following terms:

Ex ante expectation: expectation before any uncertainty is resolved

Second stage expectation: expectation after the level of harm is realized but before the noise in the court’s signal is realized

Ex post efficiency: efficient given investment level k and realized harm H

9In practice, the harm arising when the project is unregulated may be a function of k. In footnote 19 we show that in such cases an additional policy tool—a capital tax—is appropriate.

10Our model does not allow for asymmetric information regarding investor profits. This restriction is reasonable when the entity impacted by regulation is a firm: the market price or share value captures the value of the “taken” enterprise. This assumption is less defensible when the subject is a household facing new restrictions on the use of private property,
2.2 Benchmark—Socially efficient regulation and investment

Regulation is ex post efficient if and only if $H > S(k)$; the probability of (efficient) regulation is therefore $1 - F(S(k))$. Under efficient regulation, the expected social welfare for given k is

$$V(k) \equiv E_H \max \{0, S(k) - H\} = \int_0^{S(k)} (S(k) - H)f(H)dH.$$

The socially optimal level of k maximizes $V(k) - rk$ giving the first order condition

$$S'(k)F(S(k)) = r,$$

which simplifies to

$$-c_k (q (p (k)), k) F(S(k)) = r. \quad (1)$$

We use * to denote the optimal level of a variable or function, so k^* is the socially optimal level of investment and $F^* = F(S(k^*))$. For convenience we assume $F^* \pi^* - rk^* > 0$: the firm’s variable profits are positive under socially efficient investment and regulation.

The following sections analyze regulation and investment in the decentralized setting. As usual we begin our analysis with the final stage of the game.

3 Arbitration

The court observes a noisy signal, $H \eta$, of damages where η is a random variable. For simplicity of exposition we assume that the support of η is the positive half-line, except where we explicitly state otherwise. We also assume that the distribution of η has no mass points. If the signal is unbiased, then $E \eta = 1$. If the court is equally likely to overstate as to understate true damages, then $G(1) = 0.5$.

The court applies the following rule: if $\eta H > \chi(k)$ then the regulator need not compensate the investor. If instead $\eta H \leq \chi(k)$ then the regulator must pay the investor com-
pensation $\theta(k)$.

The function $\chi(k)$ is the minimum level of the damage signal necessary for the court to accept a police powers defense from the regulator; a court who observes damage $\eta H < \chi(k)$ rejects the police powers defense and requires that compensation be paid. Thus, the function $\chi(k)$ is an inverse measure of the police powers carve-out. Hereafter we refer to $\chi(k)$ as simply the carve-out. Given two carve-outs, $\chi(k)$ and $\bar{\chi}(k)$, we say that $\chi(k)$ is a broader carve-out if $\chi(k) \leq \bar{\chi}(k)$ and the inequality is strict for a set of positive measure. Denote the carve-out-compensation scheme applied by the court as $M(k, H\eta)$:

$$M(k, H\eta) = \begin{cases} 0 & \text{if } H\eta > \chi(k) \\ \theta(k) & \text{if } H\eta \leq \chi(k) \end{cases}.$$ (2)

We assume M is predetermined by either the law of the land or an international investment agreement; the court has no discretionary power when adjudicating cases. We design M in order to induce efficient regulation and investment, conditional on previous entry.

4 Regulatory Stage

A regulator who values a dollar of lost profits less than a dollar of consumer surplus or a dollar of environmental damage has “fiscal illusion”. We model fiscal illusion using the parameter $\beta \in [0, 1]$. β is the weight that the regulator gives to a dollar of investor payoffs, relative to a dollar of consumer welfare or environmental harm; $1 - \beta$ reflects the regulator’s degree of fiscal illusion.11

When deciding whether to shut down the project, the regulator knows H but not η. In the absence of regulation, the regulator’s payoff is

$$V^N(k, H) = U(k) + \beta \pi(k) - H$$

11Brennan and Boyd (2006) employ a political support model to endogenize fiscal illusion. They argue in favor of manipulating compensation levels so as to encourage participation by underrepresented parties. We abstract from political economy concerns and treat β as exogenous.
and with regulation the expected payoff is

$$V_R(k, H) = -[1 - \beta]E_\eta(M(k, H\eta)) = -[1 - \beta]\theta(k)G\left(\frac{\chi(k)}{H}\right).$$

The regulator shuts down the project if and only if

$$V_N = U(k) + \beta\pi(k) - H < -[1 - \beta]\theta(k)G\left(\frac{\chi(k)}{H}\right) = V_R,$$

or, equivalently,

$$V_N = S(k) - [1 - \beta]\pi(k) - H < -[1 - \beta]\theta(k)G\left(\frac{\chi(k)}{H}\right) = V_R.$$

Proposition 1 When

$$\theta(k) = \frac{\pi(k)}{G\left(\frac{\chi(k)}{S(k)}\right)}$$

the regulator shuts down the project if and only if it is ex post efficient to do so.

Proof. Regulation is ex post efficient if and only if $S(k) - H < 0$. The regulator will shut down the project if and only if $V_N < V_R$. Subtracting V_R from both sides and substituting $\pi(k)/G\left(\frac{\chi(k)}{S(k)}\right)$ for $\theta(k)$ implies regulation occurs if and only if $S(k) - H - [1 - \beta]\pi(k)\left[1 - \frac{G\left(\frac{\chi(k)}{S(k)}\right)}{G\left(\frac{\chi(k)}{S(k)}\right)}\right] < 0$. As G is non-decreasing in its argument, $1 - \frac{G\left(\frac{\chi(k)}{S(k)}\right)}{G\left(\frac{\chi(k)}{S(k)}\right)} \begin{cases} > 0 \\
= \end{cases}$

for $H \begin{cases} > S(k) \\
= S(k) \\
< S(k) \end{cases}$. Hence the regulator will shut down the project if and only if $H > S(k)$. ■

The following Remarks follow from Equation (5).

Remark 1 When $\beta < 1$, all carve-out schemes that induce efficient regulation require
that the regulator’s expected compensation equal the firm’s lost profits \(\pi(k) \) when realized harm \(H \) equals \(S(k) \).

This result mirrors a general principle in enforcement economics: “[t]he optimal fine equals the harm, properly inflated for the chance of not being detected” (Polinsky and Shavell 1992, p.133). In our setting, the compensation rule (5) does not lead to full cost-internalization for all realized \(H \). When \(H > S(k) \), for example, the regulator’s expected compensation payout is less than \(\pi(k) \). This inequality makes shutting down the project more attractive to the regulator than to a social planner. However, because this under-internalization only occurs when \(H > S(k) \)—i.e. when the project should be shut down anyways—the regulator’s actions are ex post efficient.\(^{12}\)

Remark 2 Define strict compensation as \(M(k, H, \eta) = \pi(k) \forall \eta \) (i.e. \(\chi(k) = \infty \)); strict compensation induces efficient regulation.

The language of NAFTA’s Chapter 11 suggests there should be no carve-out even for bona fide environmental regulation; investors are always entitled to compensation equal to the market value of the “taken” firm or property. This interpretation matches our definition of strict compensation. Remark 2 states that strict compensation rules induce efficient regulation. The next section shows that they also induce over-investment.

Remark 3 The compensation scheme that induces ex post efficient regulation given carve-out \(\chi(k) \) is independent of \(\beta \) provided \(\beta < 1 \).

The appropriate penalty for correcting the regulator’s fiscal illusion does not depend on the magnitude of fiscal illusion. This conclusion follows from equation (4): the regulator’s decision rule is identical to the social planner’s at the pivotal damage level \(H = S(k) \) only when the expected penalty equals \(\pi(k) \). Since the probability that the police powers

\(^{12}\)Similarly, when \(H < S(k) \) the regulator’s (second stage) expected payout is greater than \(\pi(k) \), making regulation less attractive to the regulator than it would be to a social planner.
defense is rejected is independent of \(\beta \), so is the compensation rule necessary for ex post efficiency.\(^{13}\)

The discussion above focuses on cases where \(\beta < 1 \), although the compensation rule in equation (5) also induces efficient regulation if \(\beta = 1 \). In this case, though, there are an infinite number of compensation schemes that induce efficient regulation, because the regulator views any outlays as mere transfers. With this in mind, from here forward we restrict our attention to cases with \(\beta < 1 \).

Remark 4 When there is noise in the court’s damage signal (i.e. the support of \(\eta \) is not degenerate), any compensation scheme that involves a carve-out \((\chi(k) < \infty) \) requires \(\theta(k) > \pi(k) \).\(^{14}\)

A regulator who is sometimes exempt from paying compensation, must on other occasions pay more than actual damages.

\(^{13}\)Remark 3 begs an interesting question. If the problem is that the regulator fails to internalize fraction \([1 - \beta]\) of the investor’s costs, why isn’t the appropriate solution a penalty with expected value \([1 - \beta]\pi(k)\), i.e. a penalty equal to the uninternalized externality from regulation? The answer lies with revenue recycling. The entire penalty is recycled to the investor, whose welfare receives weight \(\beta \) in the regulator’s objective function. Thus, fraction \(\beta \) of any penalty \(Y \) is viewed as a benefit from the regulator’s perspective. When \(Y = [1 - \beta]\pi \) the regulator sees \(\beta[1 - \beta]\pi \) as a benefit from regulation and so will want to shut down the project too often (i.e. at some \(H \) less than \(S(k) \)). Of course the mechanism designer could attempt to correct for this recycling effect by topping up the penalty, setting the penalty equal to \(Y^* = [1 - \beta]\pi + \beta[1 - \beta]\pi \), but so long as the full value of the penalty goes to the investor there will be the same feedback effect. Continuing ad infinitum suggests the appropriate penalty would equal \(Y_\infty = [1 - \beta]\pi + \beta[1 - \beta]\pi + \beta^2[1 - \beta]\pi + \ldots \). Using the property \(1 + \beta + \beta^2 + \ldots = \frac{1}{1 - \beta} \) we see that the only penalty inducing full cost internalization at \(H = S(k) \) in the presence of revenue recycling and fiscal illusion is a penalty with expected value of \(\pi \).

\(^{14}\)This statement relies on the assumption that the support of \(\eta \) is unbounded above. Suppose instead that the least upper bound of the support of \(\eta \) is \(\hat{\eta} < \infty \). In this case, strict compensation transfers expected rents to the investor without promoting efficiency, because there are circumstances where the court awards compensation even though it knows that regulation is justified. For any signal greater than \(S(k)\hat{\eta} \) the court knows that regulation is justified. The compensation scheme can set \(\theta = \pi \) (its lower bound) and use the carve-out \(\chi(k) = S(k)\hat{\eta} \). The regulator’s ex ante expected savings relative to the strict carve-out is

\[
\pi \int_{S(k)}^{\infty} \left(1 - G \left(\frac{S(k)\hat{\eta}}{H} \right) \right) f(H) dH.
\]
Remark 5 There are states of the world in which the court commits a type II error, i.e. the courts reject a valid police powers defense.

For $H > S(k)$, $G \left(\frac{\chi(k)}{H} \right)$ measures the probability, conditional on H, that the court commits a type II error. Provided that $\chi(k)/H$ is greater than the lower bound of the support of η, the probability of a type II error is positive. Thus, there are states of the world in which the regulator must compensate the investor even though the courts know that regulation is always socially efficient in equilibrium.

Remark 6 If the court observes H without noise, any carve-out that satisfies $\chi(k) \geq S(k)$, together with the compensation rule $\theta = \pi$, induces efficient regulation.

If $\chi(k) > S(k)$ the regulator pays compensation for $H \in (\chi(k), S(k)]$ even though the court knows that regulation is socially optimal. This result is similar to Miceli and Segerson’s Ex Post rule, which stipulates that the regulator pays strict compensation if and only if the taking is socially inefficient given (realized) benefits. Miceli and Segerson (1994) consider only the case in which the court perfectly observes the benefits (equivalent to foregone damages in our model) from a taking; our variant on this rule stipulates that, when the court observes H perfectly, any rule that renders the regulator liable for compensation whenever realized H is less than $S(k)$ induces efficient regulation.

Remark 7 If the firm generates no externalities but there are non-pecuniary benefits B from shutting down the project, where B is a random variable with PDF f and CDF F, then regulation is ex post efficient whenever the carve-out/compensation scheme satisfies equation (5).

In much of the Takings literature, the continued operation of the firm does not cause damages, but precludes benefits B that would arise if the property were in public hands. At least with regards to expectations formed after the realization of H (or B), this approach is mathematically equivalent to ours; eliminating the H term from V^N and adding a B term to V^R confirms this claim. Provided that the compensation scheme satisfies equation (5),
the carve-out is ex post efficient regardless of whether regulation is defensive—as with environmental and other regulations designed to limit externalities—or proactive as with conventional takings and seizures.

4.1 Compensation as a transfer to industry

Remarks 4 and 5 relate to the regulator’s burden under a carve-out/compensation scheme given a realized harm level H. In this subsection we examine the relationship between carve-out breadth and the regulator’s burden before the level of harm has been realized (but after the firm has chosen k).

Begin by defining

$$ R(k, \chi(k)) = \int_{S(k)}^{\infty} G \left(\frac{\chi(k)}{H} \right) f(H) dH, \quad (6) $$

the ex ante probability that the regulator has to pay compensation, and

$$ T(k, \chi(k), \theta(k)) = \theta(k) R(k, \chi(k)) = \int_{S(k)}^{\infty} \theta(k) G \left(\frac{\chi(k; \rho)}{H} \right) f(H) dH, \quad (7) $$

the regulator’s ex ante expected compensation outlay.

Proposition 2 Define $T_s(k) = [1 - F(S(k))] \pi(k)$ as the transfer implicit in a strict compensation rule and $T(k, \cdot)$ as the transfer implicit in any ex post efficient compensation scheme with a carve-out $\chi(k)$. If there exists H_o such that

$$ G \left(\frac{\chi(k)}{S(k)} \right) > G \left(\frac{\chi(k)}{H_o} \right) \quad \text{and} \quad f(H_o) > 0 \quad (8) $$

then $T(k, \cdot) < T_s(k)$.

Proof. By (5) $T(k, \cdot) = \frac{\pi(k)}{G \left(\frac{\chi(k)}{S(k)} \right)} \int_{S(k)}^{\infty} G \left(\frac{\chi(k)}{H} \right) f(H) dH$. Bringing the $\frac{1}{G \left(\frac{\chi(k)}{S(k)} \right)}$ term
inside the integral gives
\[T(k, \cdot) = \pi(k) \int_{S(k)}^{\infty} \frac{G\left(\frac{\chi(k)}{H}\right)}{G\left(\frac{\chi(k)}{S(k)}\right)} f(H) dH. \]
Because \(\frac{G\left(\frac{\chi(k)}{H}\right)}{G\left(\frac{\chi(k)}{S(k)}\right)} \leq 1 \) for all \(H \geq S(k) \) and, by (8), there exists some \(H_o \) for which
\[\frac{G\left(\frac{\chi(k)}{H_o}\right)}{G\left(\frac{\chi(k)}{S(k)}\right)} f(H_o) < f(H_o), \]
then \(\Psi < 1 - F(S(k)). \]

Proposition 2 confirms that some carve-out is cheaper for the regulator than no carve-out. Given that a carve-out offers the regulator a chance that takings will not be compensable, this result is not surprising. However it also is not a given, since the regulator pays more than lost profits whenever the court rejects the police powers defense. The key lies in the design of \(\theta(k) \). As noted earlier, \(\theta(k) \) is chosen so that expected payout \(\theta(k)G\left(\frac{\chi(k)}{H}\right) \) exactly equals \(\pi(k) \) when realized \(H \) equals \(S(k) \); thus, when realized \(H \) is greater than \(S(k) \)—i.e. in all cases in which regulation actually occurs—the expected payout is less than \(\pi \). Integrating over \(H > S(k) \) yields
\[T(k, \cdot) < [1 - F(S(k))]\pi(k). \]
Distinguishing between some carve-out and none is not hair splitting. The NAFTA text explicitly states that takings resulting from regulation “for a public purpose” (North American Free Trade Agreement n.d., Article 1110, para. 1) are compensable.\(^{15, 16}\)

Next, we ask how broadening an existing carve-out affects the regulator’s expected payout. We answer this question in three steps. We begin by showing that broadening

\(^{15, 16}\)Some courts have taken this new language to heart while others have not. When adjudicating a lawsuit between Mexico and Metalclad, a US waste disposal company, a tribunal ruled that expropriation includes “...incidental interference...even if not necessarily to the obvious benefit of the host State.” (International Centre for Settlement of Investment Disputes 2000, para. 103). Subsequently, when adjudicating the claim by Methanex, a Canadian producer of methanol, against the United States for California’s impending ban on the use of MTBE (in which methanol is an input), a different tribunal concluded “...as a matter of general international law, a non-discriminatory regulation for a public purpose, which is enacted in accordance with due process and, which affects, inter alia, a foreign investor or investment is not deemed expropriatory and compensable....” (UNCITRAL Tribunal Methanex Corp. v. United States of America 2005, p. 278) Because precedence does not have the same standing in international law as in some domestic courts the Methanex ruling does not reinstate the PPCO for future NAFTA lawsuits.

Other bills have acknowledged a PPCO for only a subset of regulations. O.S.L. 197.352 explicitly acknowledges a PPCO for land use regulation “for the protection of public health and safety” (Subsection 3) but not for other regulations, for example those designed to provide new public goods at the expense of landowners.
the carve-out raises the compensation level \(\theta(k) \) necessary for ex post efficient regulation. We then obtain a necessary and sufficient condition under which broadening the carve-out decreases the expected payout conditional on the realization of \(H \). This condition depends on the curvature of the noise CDF. Our third step gives a necessary and sufficient condition under which a broader carve-out reduces the unconditional expected payout, \(T \). We show that for some distributions this condition is always satisfied, but for other distributions and parameter values a broader carve-out increases the expected payout.

Step 1: the relationship between \(\theta(k) \) and \(\chi(k) \)

Broadening the carve-out lowers the conditional probability courts reject the PPCO defense. Ceteris paribus, this change lowers the regulator’s expected costs from regulation, causing the regulator to regulate more often. Thus, in order to maintain regulatory efficiency, a broader carve-out requires a higher \(\theta \) in order to satisfy equation (5). Define

\[
\mu(\eta) \equiv g(\eta)/G(\eta),
\]

the elasticity of the noise CDF. We also introduce a parameter \(\rho \) in order to discuss a change that broadens the carve-out. Let \(\chi(k) \) be an arbitrary carve-out and let \(\epsilon(k) \geq 0 \) be an arbitrary function, where the inequality is strict for an interval that includes the current value of \(k \). Define \(\chi(k; \rho) = \chi(k) - \rho \epsilon(k) \), with \(\rho \geq 0 \), so \(\chi(\rho) \leq 0 \); the inequality is strict for an interval that includes the current value of \(k \). Thus, a larger value of \(\rho \) corresponds to a broader carve-out. Log differentiating equation (5) gives

\[
\hat{\theta}/\hat{\rho} = -\mu \left(\frac{\chi(k; \rho)}{S(k)} \right) \frac{\chi(\rho) \rho}{\chi(k; \rho)} > 0
\]

(9)

where the hat “\(^*\)” indicates percentage change, e.g. \(\hat{\rho} = d\rho/\rho \). Equation (9) confirms that broadening the carve-out requires higher compensation.
Step 2: Second stage expected compensation payment

The curvature of $G(\cdot)$ (the CDF of the noise in the court’s signal) evaluated at $\frac{\chi(k)}{S(k)}$ determines the relationship between θ and the breadth of the carve-out. The relation between the breadth of the carve-out and the second-stage expected compensation payment, $\theta(k)G\left(\frac{\chi(k; \rho)}{H}\right)$, also depends on the shape of $G(\cdot)$ evaluated at $\eta = \chi(k)/H$. The following lemma and proposition use distributions with unbounded support, but it is straightforward to confirm that the results are unchanged when η or H have finite supports.

Lemma 1 For $H > S(k)$, broadening the PPCO lowers the regulator’s (second stage) expected payout $\theta(k)G(\chi(k)/H)$ if and only if $\mu(\chi(k; \rho)/H) > \mu(\chi(k; \rho)/S(k))$.

Proof.

$$
\frac{d}{d\rho}\theta(k)G\left(\frac{\chi(k; \rho)}{H}\right) = \frac{\theta(k)G\left(\frac{\chi(k; \rho)}{H}\right)}{\rho} \left[\mu\left(\frac{\chi(k; \rho)}{H}\right) \frac{\chi(\rho; k)}{\chi(k; \rho)} + \frac{\hat{\theta}}{\rho} \right] = \frac{\theta(k)G\left(\frac{\chi(k; \rho)}{H}\right)}{\rho} \frac{\chi(\rho; k)}{\chi(k; \rho)} \left[\mu\left(\frac{\chi(k; \rho)}{H}\right) - \mu\left(\frac{\chi(k; \rho)}{S(k)}\right) \right].
$$

Step 3: The relationship between T and $\chi(k)$

We now discuss the relation between the breadth of the carve-out and the ex ante expected payout, T, defined in equation (7). Broadening the carve-out makes compensation less likely but larger when it is paid. The effect of the carve-out on T depends both on how the elasticity of G varies along its support and on the distribution of H, as the following proposition describes:

Proposition 3 (a) Within the class of compensation schemes that induce efficient regulation, a necessary and sufficient condition for a broader carve-out to reduce the regulator’s
expected payment $T(\chi(k; \rho))$ is

$$
\int_{S(k)}^{\infty} \left[\mu \left(\frac{\chi(k; \rho)}{H} \right) - \mu \left(\frac{\chi(k; \rho)}{S(k)} \right) \right] G \left(\frac{\chi(k; \rho)}{H} \right) f(H) dH > 0 \tag{10}
$$

(b) A sufficient condition for a broader carve-out to reduce the regulator’s expected payout is that $\mu(\eta)$ is a decreasing function for all $\eta \geq \frac{\chi(k; \rho)}{S(k)}$.

Proof. (a) Differentiating T with respect to ρ, factoring out the $\theta \frac{\chi}{\chi}$ terms (which are independent of H), and converting to elasticities gives

$$
\frac{dT(\chi(k; \rho))}{d\rho} = \theta(k) \frac{\chi}{\chi} \int_{S(k)}^{\infty} \left[\mu \left(\frac{\chi(k; \rho)}{H} \right) - \mu \left(\frac{\chi(k; \rho)}{S(k)} \right) \right] G \left(\frac{\chi(k; \rho)}{H} \right) f(H) dH.
$$

Because $\theta \frac{\chi}{\chi}$ is negative, inequality (10) is a necessary and sufficient condition for $dT/d\rho < 0$.

(b) If μ is a decreasing function of η then $\mu \left(\frac{\chi}{H} \right) > \mu \left(\frac{\chi}{S(k)} \right)$ for all $H > S(k)$.

Not surprisingly, μ decreasing in η is a sufficient condition for T to be decreasing in the breadth of the carve-out: when $\mu'(\eta) < 0$, the second-stage expected payout is decreasing in the breadth of the carve-out for all H, so the ex ante expected transfer must also be decreasing. However, as part (a) points out, even if μ is not monotone decreasing in η it is still possible for $dT/d\rho$ to be negative so long as any harm levels at which $\mu(\chi/H) < \mu(\chi/S)$ are sufficiently unlikely.

We know from Proposition 2 that a carve-out leads to lower expected costs for the regulator, compared to no carve-out. Therefore, it is not possible—for any distribution of η—that broadening the carve-out always increases the regulator’s expected costs. In order to show that the expected payoff can be non-monotonic in the breadth of the carve-out, it is sufficient to show that in some cases inequality (10) is violated. We demonstrate this possibility using the following:

Example 1 Suppose that $\eta \sim N(1, \sigma^2)$ (so that the signal is unbiased) and let $H \sim U[0, b]$ with $b > 1$; let $S = 1$, so $\bar{z} = \chi$. Making a change of variables, we can write the
integral in inequality (10) as

\[\frac{\chi}{b} \Theta \quad \text{with} \quad \Theta \equiv \int_{\frac{\chi}{b}}^{x} \left(g(z) z - \frac{G(z)}{G(\bar{z})} g(\bar{z}) \frac{\bar{z}}{z^2} \right) \frac{dz}{z^2}. \]

We assume that \(\chi > 0 \), so a broader carve-out increases the regulator’s expected costs if and only if \(\Theta < 0 \). Define \(y \) as the probability that the court rejects the police powers defense when \(H = S \). Suppose that \(b = 2 = \sigma \). Figure 1 shows the graph of \(y \) as a function of the carve-out \(\chi \) (the solid curve) and the graph of \(10\Theta \). For this example, \(\Theta < 0 \) iff \(\chi < 2.45 \), at which value \(y \approx 0.77 \). Thus, the regulator benefits from a broader carve-out iff under the status quo carve-out the probability that the court rejects the police powers defense (when \(H = S \)) is greater than 0.77.

The sufficient condition for the regulator to prefer a broader carve-out (unlike the necessary and sufficient condition) is independent of the distribution of harm. For a number of well-known distributions, it is easy to confirm that \(\mu(\eta) \) is either (a) decreasing for all \(\eta \) or (b) decreasing for \(\eta \) sufficiently large. The sufficient condition that \(\mu(\eta) \) is decreasing for \(\eta \geq \frac{\chi(k,\rho)}{S(k)} \) is easier to satisfy if \(\chi(k) \) is large, i.e. if the carve-out is narrow. This observation is consistent with Proposition 2, which states that some carve-out is always better for the regulator than no carve-out.

The following Remark gives examples of distributions and ranges for which \(\mu(\eta) \) is decreasing. In all cases, the proofs rely on direct calculation; these are available on request.

Remark 8

a) For the exponential and the Weibull distributions, \(\mu(\eta) \) is strictly decreasing. When \(\eta \sim U[a, b] \), \(\mu(\eta) \) is strictly decreasing for \(a > 0 \). b) For the Gamma and the Chi-squared distributions, a sufficient condition for \(\mu(\eta) \) to be decreasing is \(\eta \geq E\eta \). For the Beta distribution, a sufficient condition for \(\mu(\eta) \) to be decreasing is that \(\eta \) is greater than or equal to a constant that depends on the parameters of the distribution.\(^{17}\) For the

\(^{17}\)The Beta density is \(n^{n-1}(1-\eta)^{n-1} \), where \(v \) and \(w \) are positive parameters, with \(E\eta = \frac{v}{v+w} \). The constant mentioned in Remark 8 is \(\frac{n}{v+w} \).
Figure 1: Solid curve: graph of probability that court rejects police powers defense when $H = S$. Dashed curve: 10Θ
Normal distribution (with mean $\bar{\eta}$ and variance σ^2), a necessary and sufficient condition for $\mu(\eta)$ to be decreasing is that $\eta \geq 1.16\sigma + \bar{\eta}$. (The probability that this inequality is satisfied is approximately 0.12.)

For example if η is Normal, Proposition 3 and Remark 8 imply that a broader carve-out (a smaller $\chi(k)$) always benefits the regulator if $\chi(k) \geq S(k)(1.16\sigma + \bar{\eta})$. Using the parameters from Example 1 ($\bar{\eta} = 1 = S$, and $\sigma = 2$) this inequality requires $\chi \geq 3.32$. However, Example 1 shows that (when the harm is uniformly distributed), the regulator prefers a broader carve-out whenever $\chi \geq 2.45$. The difference in bounds shows that the sufficient condition does not provide a tight bound. For the Gamma and Chi-squared distributions, a broader carve-out benefits the regulator if $\chi(k) \geq S(k)E(\eta)$; for the exponential, Weibull and (positive) Uniform distributions, a broader carve-out always benefits the regulator.

We summarize the results of this section as follows. It is possible to induce efficient regulation using a carve-out. Under any such scheme, the regulator’s ex ante expected payout is less than it would be under a strict compensation rule. If the elasticity of the CDF of the court’s observation error is a decreasing function of the realized error, then further broadening an already existing carve-out always decreases the regulator’s expected payments. This condition always holds for some distributions, and it holds for sufficiently large observation shocks for other distributions.

5 Investment

This section restricts the linear compensation function common in the Takings literature, so that it satisfies condition (5). Throughout this section we assume the investor is non-strategic, i.e. the investor takes the probabilities of regulation and compensation as exogenous; Section 6 offers a limited analysis of the efficient compensation scheme when the investor is strategic.

Let $1 - \tilde{F}$ and \tilde{R} denote the ex ante probabilities of regulation and compensation. The
non-strategic investor views \(\tilde{F} \) and \(\tilde{R} \) as parameters. The firm’s expected profits are

\[
\tilde{F}\pi(k) - rk + \tilde{R}\theta(k)
\]

and the firm’s first order condition for investment is

\[
\tilde{F}\pi'(k) + \tilde{R}\theta'(k) = r.
\] (11)

The probability that the court rejects the police powers defense must be positive; otherwise, the regulator would shut down the project even when it is not socially optimal to do so. Therefore, \(\tilde{R} > 0 \). This inequality, and comparison of equations (1) and (11) shows that the latter generates \(k^* \) if and only if

\[
\theta'(k^*) = 0.
\] (12)

We emphasize the linear compensation scheme (as in BRS):

\[
\theta(k) = \delta\pi(k) + \gamma rk.
\] (13)

For the linear compensation

\[
\theta'(k^*) = -\delta c_k (p(k^*), k^*) + \gamma r = -\delta c_k - \gamma c_k F^* = - (\delta + \gamma F^*) c_k,
\]

where the second equality uses equation (1). Setting this expression equal to 0 gives the condition

\[
-\gamma = \frac{\delta}{F^*},
\]

so the linear compensation scheme reduces to

\[
\theta(k) = \frac{\delta}{F^*} (F^*\pi(k) - rk).
\] (14)
Taking into account the different notation, this result reproduces Theorem 2 in BRS. Under this linear scheme, the firm’s expected profits (including compensation) are

\[F^*\pi + \frac{R^* \delta}{F^*} (F^*\pi - rk) - rk = \left(1 + \frac{R^* \delta}{F^*} \right) (F^*\pi - rk). \]

In summary, we have

Remark 9 The only linear compensation scheme that induces efficient investment for the domestic firm is equivalent to an ad valorem subsidy of \(\frac{R^* \delta}{F^*} \) on expected profits.

Using equations (5) and (14), the carve-out is

\[\hat{\chi}(k) = S(k) \phi(k; \delta) \text{ with } \phi(k; \delta) \equiv G^{-1} \left(\frac{F^*\pi}{\delta (F^*\pi - rk)} \right) = G^{-1} \left(\frac{\pi}{\theta} \right). \]

(15)

Thus, under the linear compensation scheme with carve-out, there is a one-parameter family of rules, indexed by \(\delta \), that induces the efficient level of investment and regulation. (The condition \(\theta > \pi \) requires \(\delta > \frac{F^*\pi(k^*)}{F^*\pi(k^*) - rk^*} \).) The court rejects the police powers defense if and only if its estimate of harm, \(H\eta \), is less than \(\phi(k) S(k) \). If the court rejects the police powers defense, the firm receives a fraction \(\frac{\delta}{F^*} > 1 \) of its expected gross profits absent compensation, \(F^*\pi - rk \). The compensation depends on gross profits (i.e. inclusive of investment costs) rather than variable profits.

How does this compensation rule compare to those proposed elsewhere in the Takings literature and international and domestic law? NAFTA’s Chapter 11 stipulates that “[c]ompensation shall be equivalent to the fair market value of the expropriated investment immediately before the expropriation took place”.\(^{18}\) That is, NAFTA requires “strict” compensation that depends only on variable profits and ignores sunk costs. However (like BRS) we find that strict compensation is distortionary: unless compensation is lump sum or proportional to the investor’s objective function absent compensation, it induces ex-

cessive investment.19,20 Conversely, Miceli and Segerson’s Ex Post rule mandates strict compensation, a result that is sensitive to the information environment. In their model the court perfectly observes social benefits and costs from a taking, and it awards compensation only when a taking is inefficient. Anticipating this, the government regulates/takes a project only if it is socially efficient; in equilibrium \textit{compensation is never paid}. Under Miceli and Segerson’s Ex Post rule with perfect information, the firms’ expected payoff is $F^* \pi - rk$, so investment is efficient. In our model with asymmetric information, the ex ante probability of compensation must be positive, i.e. $R > 0$, to prevent excessive regulation. Under strict compensation with $R > 0$, the firm’s ex ante expected profits equal $[F^* + R] \pi(k) - rk$, which would lead to over-investment.

5.1 Size of the transfer

Here we discuss the magnitude of the implicit transfer T. Remark 9 states that it is proportional to expected profits absent compensation. We use an example to show how T varies with the size of the carve-out. We restrict attention to equilibrium behavior (thus dropping k as an argument) and to the family of carve-out/compensation schemes satisfying (14) and (15). We treat θ as the policy parameter; equation (15) determines χ as a function of θ.

Choose units so that $\pi^* = 1$, so the condition $\theta > \pi^*$ (by Remark 2) implies $\theta > 1$.

19In some cases distorting investment choices might be desirable. Consider the case where damage equals $= H h(k)$ where H is a random variable and $h'(k) > 0$. In this case, investors ignore the investment externality even if regulation is efficient and compensation is lump-sum. However, for this problem a simple investment tax is sufficient. It is straightforward to show that a first-period capital tax $\tau^* \equiv h'(k^*) \int_0^{S(k^*)/h(k^*)} H f(H)dH$ induces efficient investment when paired with the following compensation scheme: $\theta(k) = \frac{\delta}{\tau^*} [F^* \pi(k) - (r + \tau^*) k]$ and $\hat{\chi}(k) = S(k) \phi(k; \delta)$ with $\phi(k; \delta) \equiv G^{-1} \left(\frac{F^* \pi}{\pi - \frac{F^* \pi}{\pi - \frac{F^* \pi}{\pi}} + \frac{F^* \pi}{\pi}} \right) = G^{-1} \left(\frac{\pi}{\pi} \right)$. Notably, the efficient investment tax is independent of β.

20Unlike BRS, under our compensation rule there are states in which regulation (a taking) occurs but the investor receives no compensation.
The transfer to an investor under compensation level θ is

$$T(\theta) = \theta \int_{S}^{\infty} G \left(\frac{G^{-1}(\frac{1}{\theta}) S}{H} \right) f(H)dH.$$

(16)

We noted that when the observation error is exponentially distributed, a larger carve-out decreases the regulator’s expected payment. In order to get an idea of the magnitude of this effect, we consider the case where both the damage parameter H and the observation errors are exponentially distributed. Let $g(\eta) = e^{-\eta}$ (so that $E\eta = 1$) and $f(H) = \lambda e^{-\lambda H}$, so $EH = \frac{1}{\lambda}$. For this specialization, we have $G^{-1}(\frac{1}{\theta}) = -\ln(\frac{\theta - 1}{\theta})$. Using this relation we have

$$R \left(SG^{-1} \left(\frac{1}{\theta} \right) \right) = \int_{S}^{\infty} G \left(-\frac{S \ln \left(\frac{\theta - 1}{\theta} \right)}{H} \right) \lambda e^{-\lambda H} dH$$

$$= \int_{S}^{\infty} \left(1 - \exp \left(\frac{S \ln \left(\frac{\theta - 1}{\theta} \right)}{H} \right) \right) \lambda e^{-\lambda H} dH,$$

so

$$T = \theta \int_{S}^{\infty} \left(1 - \exp \left(\frac{S \ln \left(\frac{\theta - 1}{\theta} \right)}{H} \right) \right) \lambda e^{-\lambda H} dH.$$

(17)

The model has two primitive parameters, S, the social surplus at the efficient level of investment, and λ, the hazard rate for damages, and one policy variable, θ. From Proposition 3 and Remark 8 we know that T is a decreasing function of θ. From equation (17) we know that as $\theta \to 1^+$, $R \to 1 - F^*$, i.e. the court never accepts the police powers defense, so the regulator compensates whenever it regulates. As $\theta \to \infty$, using l’Hôpital’s Rule we have $T \to \int_{S}^{\infty} \left(\frac{S}{H} \lambda e^{-\lambda H} \right) dH$. Although this integral does not have a closed form expression, it is useful for our numerical example.

Example 2 Suppose that $S = 2$ and $\lambda = 1.15$. In view of the normalization $\pi^* = 1$, the choice $S = 2$ means that consumers and the firm share equally in the social surplus (given the efficient level of investment). The choice $\lambda = 1.15$ means that $F^* = 0.89974$, i.e.
there is approximately a 10% chance of regulation. From the comments above, the upper bound on T (as $\theta \to 1^+$) is $1 - 0.89974 = 0.10026$ and the minimum value (as $\theta \to \infty$) is $\int_S^{\infty} \left(\frac{S}{H} \lambda e^{-\lambda H} \right) dH = 0.0748$.

Figure 2: Expected transfer as a function of θ for the exponential model with $S = 1$ and $\lambda = 1.15$.

Figure 2 shows the expected transfer as θ ranges between $1 + 10^{-8}$ and 7. Over this interval, T falls from 0.10025 to 0.076, close to the theoretical max and min. The firm’s expected variable profits + compensation payments ($F^*\pi + T$) range from 0.99999 to 0.97574. Expected consumer surplus less compensation payments ($F^* (S - \pi) - T$) ranges from 0.7995 to 0.8237. Compare this to the case where regulation is efficient but there is no compensation paid (e.g. if $\beta = 1$ and $\theta = 0$), where the firm’s expected variable profit is 0.9. Compensation reduces the value of consumer surplus minus compensation payments by 8.4% to 11% while the investor’s profit rises by an equal percentage. These
amounts bound the percentage chance of efficient regulation, 10%.

Note that T does not approach zero as the carve-out is infinitely broadened (i.e. as $\theta \to \infty$). In this example at least, even the broadest carve-out scheme involves a positive expected transfer to the investor.

5.2 Entry Problem

A compensation scheme that implicitly transfers rents to an industry facing regulatory risk raises a familiar concern: when industry size is endogenous, compensation induces inefficiency. In the appendix we extend the model to include a 0th stage in which a continuum of entrants with heterogeneous entry costs decide whether to enter the industry. We show that offering investors some chance of being compensated for regulatory takings raises their expected returns from entry. Compensation induces some firms to incur the fixed costs associated with entry even though the expected social return from their entry is negative. Compensation payments induce inefficiently large industries as a result. Reducing T when T is positive unambiguously raises social welfare.

A first step toward solving the entry problem is to reduce the size of the transfer implicit in a compensation scheme. Although we cannot guarantee that broadening a carve-out always reduces T, Proposition 2 verifies that T is always smaller when there is some carve-out rather than none, and Remark 8 shows that a broader carve-out reduces the expected transfer for several different distributions.

Subjecting different classes of investors to different compensation rules can lower welfare. This rather obvious point is important because compensation rules in IIAs such as NAFTA’s Chapter 11 entitle only foreign investors to (possible) compensation for government actions “tantamount” to expropriation. This compensation tilts the playing field in favor of foreign firms. With endogenous entry, this asymmetric treatment is inefficient, in addition to being “unfair”. Consider the following scenario. Firms of a particular nationality are heterogeneous, differentiated by their fixed costs of entry. Firms of all types are rival in that they are linked through the output market. Absent compensation and assum-
ing ex post efficient regulation, the market sorts firms, inducing entry by only the low cost firms of either nationality. When only foreign firms are entitled to compensation, foreign firms that choose to enter the market receive a subsidy on their ex ante variable profits. This subsidy induces entry by some high fixed cost foreign firms that would otherwise stay out; their entry crowds out some relatively efficient domestic firms that would otherwise enter. This outcome exhibits both too much entry and allocative efficiency in which some of the wrong firms enter.

Concern that governments will actively tilt domestic playing fields to disadvantage foreign investors/firms is the prime rationale for National Treatment rules. These rules prevent governments from treating foreign goods/investors/firms less favorably than their domestic counterparts in like circumstances. National Treatment rules appear in almost all modern trade and investment treaties. Our analysis suggests the National Treatment and Expropriation clauses are contradictory: the latter causes domestic and foreign investors to be in “unlike circumstances”, but the former does not recognize this induced difference. We do not advocate that National Treatment rules be dropped, nor do we advocate that all investors be entitled to compensation for regulatory takings. Instead, the modest goal of this paper is show that granting a PPCO for environmental and other public regulations can induce efficient regulation and firm level investment; a PPCO can also provide some relief from the entry and level playing field problems inherent in expropriation/compensation rules.

Other solutions to the entry and level playing field problems are also imperfect. If entrants were charged an up front “right of establishment” fee equal to T then the compensation scheme would be self-financing in expectation and offer a net expected subsidy of zero. However, introducing up front taxes creates its own moral hazard problem. A regulator/host government that is free to set the tax has an incentive to choose a tax greater than T in order to capture rents for the state at the expense of investors. Moreover, up front access fees cannot be used as solution to the level playing field problem created by NAFTA and other IIAs: charging foreign (but not domestic) firms a fee for the right to establishment would violate National Treatment rules.
6 Strategic Investors

Our baseline models assumes investors are non-strategic. This assumption isn’t problematic if industry contains many atomistic firms and regulation is industry wide. However in many instances only a subset of investors are subject to a takings—as when a tract of homes is seized to make way for a new road that will service homes remaining in the community—and so an investor may reasonably view the probability of regulation and compensation as a function of her own investment. Our goal in this section is to highlight obstacles to designing an efficient compensation scheme when investors are strategic. We note that the ex post efficiency of a carve-out satisfying equation (5) is unaffected by whether investors are strategic or not. In what follows we restrict attention to investors that have already chosen to enter the industry.

A strategic investor chooses k to

$$\max_k F(S(k))\pi(k) - r k + \theta(k)R(k)$$

where $R(k)$ is defined in equation (6). Differentiating with respect to k and rearranging gives the first order condition

$$\begin{align*}
\text{“a”} & = F(S(k))\pi'(k) - r + \left[\pi(k) - \theta(k)G\left(\frac{\chi(k)}{S(k)}\right) \right] f(S(k))S'(k) \\
& + R(k)\theta'(k) + \int_{S(k)}^{\infty} G'(\frac{\chi(k)}{H}) \frac{\chi'(k)}{H} f(H)dH = 0.
\end{align*}$$

If regulation is ex post efficient, then by equation (5) the collection of terms denoted “b” equals zero. The collection of terms denoted “a” equals zero at the socially efficient level of investment k^*.

Remark 10 Any scheme $\{\theta(k), \chi(k)\}$ satisfying equation (5) and the following conditions induces efficient firm level investment:

28
\textit{C1.} \(\Delta(k) = 0 \) \textit{when evaluated at} \(k^* \)

\textit{C2.} \(\Delta'(k) \leq 0 \),

\textit{where C2 ensures the investor’s objective function is concave.}

If the court has a great deal of knowledge, for example if the court knows \(\pi(k^*) \) and \(S(k^*) \), then fixing \(\chi(k) = \bar{\chi} \) for all \(k \) and offering lump sum compensation

\[
\theta(k) = \frac{\pi(k^*)}{G \left(\frac{\bar{\chi}}{S(k^*)} \right)} \quad \forall k
\]

induces efficient regulation and firm level investment. This solution requires that the court is able to calculate \(\pi \) and \(S \) at the efficient level of investment. A court that has this knowledge is able to deduce \(k^* \) and can use a much simpler mechanism: the rule “no compensation \textit{unless} \(k = k^* \)” as under Miceli and Segerson’s (1994) Ex Ante Rule.

Our analytic framework is consistent with the assumption that the court has this level of knowledge. As a practical matter, though, it may be costly for the court to learn enough about the functions \(\pi(k) \) and \(S(k) \) to calculate \(k^* \). We devote the remainder of this section to analyzing a PPCO-compensation scheme requiring the court only to observe the equilibrium values of \(\pi \) and \(S \), i.e. a scheme that uses only market signals.

One seemingly obvious candidate is to set an absolute carve-out: \(\chi'(k) = 0 \), which by Remark 10 must be paired with \(\theta'(k^*) = 0 \). Differentiating \(\theta(k) \) under condition (5) gives

\[
\theta'(k) = \frac{\phi_k}{G} \left[1 - \frac{\pi(k)}{S(k)} \frac{\bar{\chi}}{S(k^*)} \right], \quad \text{indicating} \quad \theta'(k) = 0 \quad \text{at} \quad k^* \quad \text{if and only if}
\]

\[
\frac{\pi(k^*)}{S(k^*)} \frac{\bar{\chi}}{S(k^*)} = 1.
\]

As this condition holds over a set of measure zero, we conclude that fixing the carve-out at a constant value and basing compensation on market information generally leads to inefficient firm level investment when investors are strategic. Having thus ruled out carve-out/compensation schemes exhibiting a fixed carve-out, we conclude that an efficient scheme must have a carve-out \(\chi \) and compensation scheme \(\theta \) that depend oppositely on \(k \): if the “bar” for the police powers defense is increasing in investment, i.e. \(\chi'(k) > 0 \) then compensation must be decreasing in investment.
7 Conclusion

There is a valid efficiency argument for making regulatory takings compensable. When
regulators suffer fiscal illusion, compensation requirements force them to internalize costs
borne by investors and property owners. Compensation is a tool for inducing efficient
regulation.

However compensation also distorts investment and entry decisions. Basing compen-
sation on market value insures investors against states of the world in which regulation
is socially optimal. Even when compensation packages are lump-sum, they serve as an
implicit subsidy to industry facing regulatory risk, generating excessive entry.

This paper shows that a carve-out—a standing exclusion from compensation rules—
for environmental and other public regulations can induce efficient regulation; when paired
with an appropriate compensation package, the resulting carve-out/compensation scheme
induces efficient firm level investment by non-strategic investors.

We explored the properties of such a carve-out/compensation scheme when the court
has noisy information about the level of harm that regulation is designed to avoid. The
court must be prepared to reject the police powers defense in order to discourage excessive
regulation. There are states of the world in which the court orders compensation even
though it knows that in equilibrium regulation is socially efficient.

When the court rejects the police powers defense, the regulator pays damages exceed-
ing investor losses. This compensation level reflects a standard result in the enforcement
literature: if the probability a cheater goes unpunished is positive, then for a cheater who is
catched the punishment must exceed the crime. In our model, the regulator has private infor-
mation about the probability of being caught. Consequently, our carve-out/compensation
scheme equates expected payouts and lost profits only at a particular margin; there, the
harm equals the pecuniary benefit from the investment project, so social welfare is identi-
cal with and without regulation.

With this compensation structure, a broader carve-out (in general) has an ambiguous
effect on the level of the expected transfer to firms. However, the expected transfer is
lower under any carve-out, compared to under strict compensation (no carve-out). We obtained a sufficient condition under which a broader carve-out decreases the expected transfer. This condition always holds for a number of well-known distributions, and for other distributions it holds provided that the carve-out is not extremely broad. A lower expected transfer reduces the problem of excessive entry. It is also important to reduce the expected transfer if there is a deadweight cost of raising public funds (a feature that could easily be incorporated into our model).

Thus far U.S. courts have accepted the police powers carve-out, but their status in international law is uncertain. When domestic courts accept a carve-out, but courts arbitrating disputes under International Investment Treaties (such as Chapter 11 of NAFTA) reject it, foreign investors obtain an advantage over national investors. In this case, there is tension between the Expropriation and the National Treatment clauses of International Investment Treaties.

References

International Centre for Settlement of Investment Disputes, “Metalclad Corp. v. United Mexican States (Award), ICSID Case No. ARB(AF)/97/1 para. 103 (Aug. 30, 2000),” 2000.

Appendix: Relationship between \(T \) and social welfare when entry is endogenous.

In this appendix we add a 0th “entry” stage to the model in which compensation satisfies \(\theta'(k^*) = 0 \) (as detailed in section 5) and firms are non-strategic, i.e. they take the probabilities of regulation, \(F \), and compensation, \(R \), as exogenous.
Suppose there is a continuum of potential entrants uniformly distributed over the unit interval and indexed by \(n \). Let \(I(n) \) denote the fixed cost of entry for firm \(n \); to make things simple we assume \(I \) is continuously differentiable in \(n \) and order firms so that \(I'(n) > 0 \). Let \(\bar{n} \) identify the firm just indifferent between entering and not in equilibrium; \(\bar{n} \) also measures the fraction of potential entrants who actually enter the industry in equilibrium.

We continue to assume firms are atomistic in input and output markets and define \(q \) and \(k \) as per firm output and variable investment; we assume the variable cost function \(c(q, k) \) is identical across firms. We further assume marginal cost \(c_q \) is increasing in \(q \). Thus, for all entrants variable investment and output supply decisions are identical and satisfy \(r = -c_k(q, k)F \) and \(p = c_q(q, k) \) where \(p \) is the equilibrium price which satisfies the goods market equilibrium condition \(Q(p) = nq \) in which \(Q(p) \) is aggregate demand. Although we take \(r \) as exogenous, we allow equilibrium price to depend on the level of entry. We write equilibrium values as functions of \(\bar{n} \): \(p(\bar{n}), q(\bar{n}), k(\bar{n}) \).

Define

\[
W(\bar{n}) = F(S(\bar{n}))S(\bar{n}) - \bar{n}rk(\bar{n}) + \int_{0}^{S(\bar{n})} Hf(H) dH - \int_{0}^{\bar{n}} I(n) dn
\]

as aggregate social welfare, where

\[
S(\bar{n}) \equiv \int_{0}^{q(\bar{n})} p(Q) dQ - \bar{n}c(q(\bar{n}), k(\bar{n})).
\]

This welfare measure implicitly assumes harm \(H \) is independent of the number of entrants; compensation payments and receipts do not appear in \(W(\bar{n}) \) as they are transfers from a social welfare perspective.

Note, this rule reflects regulation that is ex post efficient and satisfies the rule “regulate if and only if \(H > S(\bar{n}) \).”

Differentiating \(W \) with respect to \(\bar{n} \) gives

\[
\frac{dW}{d\bar{n}} = F(S(\bar{n}))[pq - c] - rk - I(\bar{n}).
\]
Thus the marginal effect of entry on social welfare is merely the difference between the marginal entrant’s expected variable costs and her investment costs. This is negative whenever \(T > 0 \), since the marginal entrant’s fixed costs satisfy
\[
I(\bar{n}) = F(S(\bar{n}))[pq - c] - rk + T.
\]
Because reducing \(T \) inhibits entry\(^{21}\), broadening the carve-out unambiguously raises welfare whenever equation (10) holds.

\(^{21}\)To verify, examine the expected payoff of the marginal entrant:

\[
\left[F + \int_{\infty}^{\infty} \frac{G(x/H)}{G(x/S)} f(H)dH \right] [pq - c] - rk - I(\bar{n}),
\]

which is zero in equilibrium. Now consider an increase in the breadth of the carve-out. Holding \(\bar{n} \) constant, when (10) holds then broadening the carve-out reduces
\[
\int_{\infty}^{\infty} \frac{G(x/H)}{G(x/S)} f(H)dH,
\]
rendering the marginal entrants expected payoff negative. She will choose not to enter.