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Abstract

Formal analysis plans limit false discoveries by registering and multiplicity adjusting sta-

tistical tests. As each registered test reduces power on other tests, researchers prune hypotheses

based on prior knowledge, often by combining related indicators into evenly-weighted indices.

We propose two improvements to maximize learning within analysis plans. We develop data-

driven optimized indices that can yield more powerful tests than evenly-weighted indices. and

discuss organizing the logical structure of an analysis plan into a gated tree that directs type

I error towards these high-powered tests. In simulations we show that researchers may prefer

these “optimus gates” across a wide range of data-generating processes. We then assess our

strategy using the community-driven development (CDD) application from Casey et al. (2012),

a novel RCT on cash transfers and integrated development in the DRC, and the Oregon Health

Insurance Experiment from Finkelstein et al. (2012). We find substantial power gains in all

applications, meaningfully changing the conclusions of Casey et al. (2012).
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1 Introduction

A classic tradeoff in data analysis exists between estimating large numbers of parameters and gen-

erating results that do not reproduce in new samples. In computer science and machine learning

this problem is known as “overfitting”; in biostatistics it manifests itself in “large-scale multiple

testing.” In the past decade it has become a critical issue in empirical microeconomics with the

widespread use of field experiments.1 Researchers designing field experiments often face high

fixed costs in setting up the experiment and low marginal costs in adding additional survey out-

comes. Increasing sample size is expensive, and the samples in many field experiments are too

small to detect anything less than a large effect. Given these constraints and the focus on positive

results in economics and other social sciences (Gerber and Malhotra 2008; Yong 2012), researchers

face strong incentives to test for effects on many outcomes or subgroups and then emphasize the

subset of significant results. Unfortunately this behavior maximizes the chances of “false discov-

eries” (type I errors) that do not replicate in new samples.

Economists have a range of formal and informal tools available to limit false discoveries. Statis-

tical methods that control the familywise error rate (FWER) or false discovery rate (FDR) formally

test whether p-values are more extreme than would be expected under the null hypothesis based

on the number of reported results (List et al., 2019). Credibly implementing these procedures,

however, requires documenting the full set of conducted tests, usually through a preanalysis plan

(PAP).2 With a PAP, the researcher publicly documents the set of hypotheses that she intends to

test prior to collecting the data, allowing formal control of type I error. Informal methods that limit

false discoveries are also available; for example, registering a set of hypotheses through the AEA

registry, or basing an analysis on a well-described (and perhaps registered) theory. Documenting

the intent to pursue a particular direction of research demonstrates that the overall line of inquiry

was not influenced by sample characteristics but allows researchers to respond to new ideas and

information in the analysis, albeit at the cost of being unable to credibly control FWER at a specific

value.

The tension between formal and informal control of false discoveries is driven by a tradeoff

between statistical power and false discoveries. The fact that all hypotheses in a PAP must be

1It is also an issue in many observational studies, but it is difficult to establish when a researcher first had access to

the data in an observational study. Establishing this timeline is critical to any method for limiting false discoveries.
2This method follows an approach used for decades in biostatistics (Simes 1986; Horton and Smith 1999) and

appeared in economics at least as early as Neumark (2001). Casey et al. (2012) established best practices and popu-

larized the use of PAPs among empirical microeconomics using a case of a Community-Driven Development (CDD)

program in Sierra Leone. Both field experiments and PAPs have increased sharply in prevalence since 2010 (Currie

et al. 2020).
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anticipated constrains researchers and generates concerns about type II errors — failures to reject

false hypotheses. Since each hypothesis included in a PAP that controls FWER increases test crit-

ical values for other hypotheses, power depends on the researcher correctly anticipating the set

of hypotheses which are likely false and excluding those which are not. Individual researchers

care about power, and the field as a whole suffers if novel discoveries are precluded or tests lack

power to detect economically meaningful effects (Czibor et al., 2019). Consolidating or other-

wise reducing the number hypotheses can thus be attractive. Casey et al. (2012), for example,

suggest combining outcome indicators into a range of unweighted summary indices to minimize

the number of tests conducted. Olken (2015) recommends prespecifying a very small number of

primary hypotheses, and foregoing formal FWER control over remaining hypotheses of interest.

Banerjee et al. (2020) propose parallel streams for a “populated PAP”, which reports the primary

effects of an intervention, and a separate analysis in an academic paper, which foregoes control

of false discoveries across the non-prespecified hypotheses. Such an approach balances the desire

to demonstrate meaningful positive results on some indicators against the cost that novel findings

may represent false discoveries.

This paper builds on Banerjee et al. (2020)’s insights to develop a key advantage of analysis

plans: by formally controlling type I error we can generate statistical tests of correct size for any

hypothesis. In doing so, we integrate and nest insights from classical econometrics, biostatistics,

and machine learning (ML). We propose two tools to increase power on hypotheses of interest.

First, we suggest an algorithm which maximizes power over the set of potential summary index

hypotheses, allowing researchers to summarize many outcome variables in a single high-powered

“optimus” test. As an index test, the optimus index retains the interpretation of an average treat-

ment effect across multiple outcome indicators. Our approach strives to divorce anticipation of the

most relevant indicators of interest from multiple inference control and instead uses the data to in-

form researchers as to which candidate index hypotheses are likely to represent high-powered tests.

This approach leverages the analysis plan to avoid what would otherwise be a data-mining exer-

cise resulting in tests with incorrect size. Second, we consider gatekeeping approaches to integrate

the logical structure of an economic argument into the allocation of type I error. Gatekeeping ap-

proaches test hypotheses in serial rather than in parallel; in doing so they generate higher-powered

tests on the first hypotheses examined at the potential cost of lower power on hypotheses tested

subsequently. We demonstrate that combining gatekeeping with the optimized index generates a

powerful test structure which yields substantial gains over existing methods of controlling false

discoveries. We expect this structure may be applicable in many economic contexts.

We consider three empirical applications. First, we reconsider the community-driven develop-
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ment (CDD) intervention studied by Casey et al. (2012). This application has several advantages: it

is the seminal application which popularized PAPs among microeconomists, and its PAP organizes

indicators into families and suggests a clear logical structure for hypothesis tests. We adapt the pure

PAP suggested by Casey et al. (2012) into a gatekeeping structure with optimized index tests. We

find that the additional power generated by these tools would have led to important differences in

the qualitative and quantitative understanding of the effects of the CDD program. Second, we con-

sider a novel randomized controlled trial that evaluates the impacts of an integrated development

program with and without large-scale cash transfers in the Eastern Democratic Republic of the

Congo (DRC). Here we find that a PAP based on Optimus gates would replicate several findings in

the literature on large-scale cash transfers and that it would identify a novel psychosocial effect of

receiving cash that other analysis plans would miss. We discuss the differences in conclusions on

the effects of the two programs allowed by the (higher power) gated optimus approach. Finally, we

consider the Oregon Health Insurance Experiment (OHIE), analyzed in Finkelstein et al. (2012).

The analysis of OHIE was also prespecified. In contrast to Casey et al. (2012), however, the sam-

ple was large, effect sizes were more homogeneous, and the PAP-guided analysis yielded strong

evidence in support of the effects of health insurance on healthcare utilization and some health

outcomes. We thus treat the positive results presented in Finkelstein et al. (2012) as the true data

generating process (DGP) and demonstrate that, in samples an order of magnitude smaller than

the original sample, a gated optimus approach would have substantially higher statistical power to

reject the null hypothesis than other available estimators.

The tools developed in this paper allow precise control of type I error and speak directly to

two costs of formal analysis plans identified in Banerjee et al. (2020). First, statistical power

may be greatly boosted by researchers using the optimus index over any other potential index that

they could identify. Since the algorithm is prespecified, readers and reviewers need not worry

about cherry-picking or the potential for false discoveries. Second, analysis plans based on these

methods can be simple. To implement an optimus index test, one needs only know which indicators

are grouped into which families of hypotheses. We suggest a simple gatekeeping structure which

will be intuitive in many contexts: a first-stage gate that measures whether variables related to

program implementation respond to treatment, a second-stage gate that tests one or more optimus

indices in parallel, and a final stage that tests individual outcome indicators. Since the use of the

optimus index generates high-power tests at each of the gates, researchers can concentrate error on

each set of tests knowing that they have identified the highest power potential test to run. While

the use of these tools does not replace the need for analysis and research beyond the registered

analyses, the tools may greatly expand what can be learned through the rigorously-controlled PAP
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whenever power is not abundant.

While the optimus approach yields tests of the correct size, interpretation of effect sizes is a

separate issue. We propose using a K-fold hold-out sample to form the optimus index, and demon-

strate that the K-fold optimus regression coefficient is an unbiased estimator of a weighted average

of treatment effects. The optimus weights towards outcomes with larger (true) treatment effects,

however, so it does not represent the estimated effect size for the average outcome indicator, which

could be reported separately. Nevertheless, as we demonstrate in our applications, the optimus

coefficient is often smaller in magnitude than the average coefficient on outcome indicators with

positive results in a conventional PAP, because its higher power reduces the bias inherent in focus-

ing on significant results (Andrews and Kasy, 2019).

The paper proceeds as follows. First, we set up a research environment in which researchers

have access to a large number of outcome indicators (i.e. hypotheses) and are interested in test-

ing for treatment effects on these outcomes. We then suggest that many of these indicators may

be measurements of underlying latent variables, and discuss potential index tests deriving from

these latent variable hypotheses. Next, we introduce the optimus index, and discuss gatekeeping

approaches to error allocation. Section 3 describes numerical simulations, and Sections 4, 5, and 6

discuss and present results for our applications. Section 7 concludes with recommendations.

2 Background

To structure the discussion, consider the case of a researcher who conducts a field experiment

which assigns treatment, T , to a random fraction of the sample. For each participant i, she collects

data on a set of H outcomes, {Yi1, Yi2, ..., YiH}. These outcomes may be a mixture of individual

variables and indices that aggregate multiple variables. They map to H hypotheses, where the

underlying relationship is

Yih = βhTi + εih (1)

The researcher wishes to test the null hypothesis H0
h : βh = 0 against the two-sided alternative

HA
h : βh ̸= 0. Using the sample data, we can estimate the average treatment effect, β̂h, and an

accompanying standard error, s.e.(β̂h), that is an estimate of σh (the standard deviation of β̂h).

These are used to form a t-statistic under the null hypothesis, t̂h = β̂h−0

s.e.(β̂h)
. Using the t-distribution

with N − 1 degrees of freedom, the researcher can find a critical value of tα/2.3 If the estimated

3Let t ∼ tN−1(0, 1) be distributed according to the centered t-distribution with N − 1 degrees of freedom and

standard deviation of 1. The probability of t falling anywhere above the critical value tα/2 or below −tα/2 is α.
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t̂h falls above tα/2 or below −tα/2, we reject the null hypothesis H0
h at the α significance level. As

scientific convention, we take α = 0.05.

The set H = {1, ..., H} enumerates all candidate outcome variables Yh, where h ∈ H is

associated with a hypothesis as described above. In most field experiments the implementation of

the treatment is expensive, but measuring an additional outcome has low marginal cost. Often H

is therefore large.

We denote the benchmark objective function as the Simple Rejection Problem. In the Simple

Rejection Problem, the researcher maximizes the expected sum of statistically significant treatment

effects. This objective function accords with one of the definitions of power that Romano et al.

(2010) propose (p. 95), and we use it throughout the paper. The researcher forms expectations

about rejections according to a prior belief Fh over {βh, σh} and selects a subset of hypotheses to

test, H′ ⊆ H, that solves

max
H′∈2H

E

[∑
h∈H′

I{|t̂h| > tα/2}

]
= max

H′∈2H

∑
h∈H′

PFh

(
|t̂h| > tα/2

)
(2)

There is no constraint in the maximization problem above, so the maximizing subset, H∗,

is the subset of hypotheses with a positive probability of rejection. Since even true hypotheses

reject at rate α, the maximizing subset is H∗ = H, and the researcher tests for effects on every

possible outcome. This solution naturally opens the door to false discoveries, and limiting these

false discoveries is a critical issue in most empirical disciplines (Sterling 1959).

2.1 False Discovery Problem

The fundamental problem with testing every hypothesis in H is that in any hypothesis test there is a

chance that the sample statistic falls in the rejection region, even if the null hypothesis is true. This

false discovery problem leads to costly but ultimately futile future research, as well as potentially

dangerous policy. More broadly, it erodes the trust that the public has in the results that researchers

find. Thus it is important to minimize the rejection of true hypotheses, or the type I error rate.4

Returning to the researcher’s decision in Equation (2), in the worst-case scenario all the null

hypotheses in H are true. Even though the study contains no false hypotheses, it still rejects

α · |H| of the hypotheses in expectation. As an example, suppose 100 hypotheses are tested at

4This paper is not the first to discuss the false discovery problem in the context of randomized experiments in

economics or the general social sciences. For example, see Anderson (2008), Anderson and Magruder (2017), and

Fafchamps and Labonne (2017) for related discussions of these issues and techniques for controlling the type I error

rate.
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a significance level of 0.05. Even if all 100 null hypotheses are true, we expect the study to

(incorrectly) reject five of the null hypotheses, generating five significant findings.

To address this issue, multiplicity adjustments work to control the overall type I error rate of the

study. This error rate is either the probability that the study makes at least one incorrect rejection

— the familywise error rate — or the expected proportion of rejections that are incorrect — the

false discovery rate. The simplest adjustment is the Bonferroni correction, which controls FWER.

With the Bonferroni correction, we divide α by the number of hypotheses tested, in this case, |H′|.5

The researcher’s problem becomes6

max
H′∈2H

E

[∑
h∈H′

I{|t̂h| > tα/2|H′|}

]
= max

H′∈2H

∑
h∈H′

PFh

(
|t̂h| > tα/2|H′|

)
(3)

where tα/2|H′| is the critical value above which a standard t-statistic has probability α
2|H′| of falling.

The critical value tα/2|H′| increases with |H′|; for example, tα/2|H′| = 3.49 if |H′| = 100. In this

example, a hypothesis that would reject with 80% probability prior to multiplicity adjustment — a

common benchmark in study design — would reject with only 24% probability after multiplicity

adjustment. The more hypotheses the researcher tests, the higher the critical value becomes, and

the lower the probability of rejecting a given hypothesis becomes.

A straightforward response to this tension is to reduce the dimensionality of H′, and a fre-

quently utilized tool to do so is to aggregate related indicators into a small number of index hy-

potheses (Kling et al., 2007). Ideally, this preserves the economic result identified by the test while

paying a double dividend for power: it reduces the number of hypotheses tested and generates

indices with smaller standard deviations than their underlying components.

At the same time, whether the researcher aggregates indicators or not, the validity of the mul-

tiplicity adjustment requires honest disclosure of H′, which creates an incentive problem for re-

searchers. A researcher motivated to increase rejections could test every hypothesis in H but report

a subset, Hr, that contains only hypotheses with large t-statistics. In many cases |Hr| << |H|,
and the multiplicity adjustment for each test becomes much less severe.7 Thus, multiplicity adjust-

ments are only effective when researchers can credibly communicate the number of hypotheses

they have tested.
5More sophisticated adjustments exist that minimize the power reduction associated with additional tests. Nev-

ertheless, it is inherent in the control of FWER, or the probability of making any type I error (i.e. false rejection),

that adding more tests requires more stringent adjustment of p-values. Otherwise, the probability of making at least

one error rises. The only case in which FWER would not rise would be the case in which the new test is perfectly

correlated with one or more of the existing tests. In this case the new test does not represent new information.
6Here I{·} is the indicator function, equal to 1 if the condition {·} is true, and equal to 0 otherwise.
7When there exist many candidate index hypotheses, the problem is arguably greater: researchers motivated to find

rejections can curate the selection of indicators into an index with the best in-sample performance.
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2.2 Preanalysis Plans

One way to credibly communicate the number of hypotheses to be tested is to file a preanalysis

plan. A PAP describes in detail the analyses that a researcher intends to perform, including the

construction of any index hypotheses. An effective PAP requires that the researcher upload it

to a public site, such as the AEA RCT Registry, prior to collecting her data. With a publicly

registered PAP, the researcher “ties her hands” with respect to the analysis, thus preventing “cherry

picking” of results or “p-hacking.” Formally, readers can be confident that the reported set of

tested hypotheses, Hr, represents the true set of tested hypotheses, H′. In what follows, we define

the exhaustive PAP to indicate the PAP which prespecifies every hypothesis in H, that is the PAP

where Hr = H′ = H.

In addition to specifying the hypotheses to be tested, an effective PAP must specify some form

of multiplicity adjustment for statistical tests (assuming it tests more than one hypothesis). Without

any multiplicity adjustment, the researcher’s optimal strategy is to include as many hypotheses as

possible, even those that may be very unlikely to reject or of little interest, since the option value

of including any given hypothesis test in the PAP is weakly positive. The constraints on the PAP

thus become the researcher’s creativity and value of time.

Multiplicity adjustments formalize the implicit tradeoff that motivates PAPs to begin with.

Each additional test has option value in that it may reject and be of interest, but it also carries an

explicit cost in that it reduces the power of other included tests. These adjustments thus impose

discipline on the researcher’s hypothesis selection process.

2.3 Aggregate Hypotheses in PAPs

In many contexts, a number of indicator variables may correspond to the same latent economic

or conceptual hypothesis. In such cases, we may be able to partition the hypothesis set H into G

groups, such that Hg contains the hypotheses belonging to group g. We may then test one aggregate

hypothesis per group, for G total tests, rather than executing a full H tests. In general, H << G.

There are two well-established approaches within the literature for aggregating hypotheses in

this context. The first, which has been infrequently utilized in PAPs to date, is a Wald test. A

Wald test imposes no further restrictions on the data-generating process and tests the joint null

hypothesis βhg = 0 ∀ h ∈ g, following a seemingly unrelated regression (SUR) of all outcomes in

group g on treatment. Ludwig et al. (2019) demonstrate that an asymptotically equivalent test is to

estimate a “reverse regression” of treatment on all outcomes in group g,

Ti =
∑
h∈g

θhgyihg + vig (4)
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and use an F -test to test the hypothesis that θhg = 0 ∀ h ∈ g.

A second approach — more widely utilized in the modern empirical literature — supposes that

treatment effects are weakly monotonic within a group.8 Then we can represent the data generating

process as

y∗ig = δgTi + ε∗ig (5)

yihg = γhgy
∗
ig + uihg ∀ h ∈ Hg

γhg ∈ [0, c)

Now βhg = δgγhg. In these cases, the researcher may be primarily interested in rejecting the

hypothesis Hg : δg = 0; then, rejecting any convex combination of the indicators in Hg suffices to

reject Hg. This insight motivates reducing the problem of dimensionality in the hypothesis space

through the construction of an aggregate index hypothesis, which are often unweighted averages

of outcomes (Kling et al., 2007). That is, researchers test βȳ = 0 by estimating the regression

1

|Hg|
∑
h∈Hg

yihg = βȳTi + νig (6)

for hypotheses in group g. More generally, they may test a weighted version of the index

w′
gyig = βwgTi + νiwg (7)

where yig is a |Hg| × 1 column vector of outcomes in group g, wg is a |Hg| × 1 column vector of

weights summing to one (and otherwise unrestricted), and βwg and νiwg are scalars. They may use

generalized least squares (GLS) weights to increase power (O’Brien, 1984; Anderson, 2008); then,

w′
g = (1′Σ−1

g 1)−1(1′Σ−1
g ), where 1 is a column vector of ones and Σg is the covariance matrix for

yig. The GLS index shifts weight towards outcomes that are uncorrelated with other outcomes.

In practice, many authors follow Kling et al. (2007) in using unweighted mean indices across

all outcomes in a group g. In what follows, we define the index containing an unweighted average

of all standardized outcomes in group g as the KLK index for that group. This is a natural choice:

if hypotheses are homogeneous with respect to βhg and Σg (i.e. all outcomes have the same stan-

dardized treatment effects and are equally correlated with each other), the KLK index maximizes

statistical power (see Corollary 1.2 in Appendix A2.1). On the other hand, if there is dispersion in

the distribution of βhg or the elements of Σg, then an index based off the hypotheses with larger

8This weak monotonicity assumption, expressed in Equation (5) as γhg ∈ [0, c), assists with interpretation of

the estimated treatment effect, but the test we propose maintains the correct size even if weak monotonicity fails.

Nevertheless, higher power estimators that do not impose weak monotonicity may be possible if the indicators are not

weakly monotonic.
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treatment effects or lower covariances can be more powerful than the KLK index. Of course, de-

signing such an index would require researchers to correctly anticipate the vector βhg and matrix

Σg, which is often unrealistic.

Both a Wald test and the latent index test allow the researcher to correct p-values only for

the number of groups G, not the number of indicator hypotheses H . However, the two have a

range of different properties. First, neither is universally more powerful. Panel (a) of Figure 1

presents 80% power isoquants for the two estimators for a range of pairs of treatment effects,

β1 and β2, when there are two independent standardized outcomes; isoquants closer to the origin

represent more powerful tests. The figure reveals that the Wald test is (much) more powerful in

cases where the two treatment effects are opposite in sign, and somewhat more powerful when

one treatment effect is zero and the other is not. However, the KLK index has a power advantage

when the two treatment effects are similar in magnitude and sign. Thus, KLK indices have a

power advantage over Wald tests if researchers have organized their hypothesis groups to feature

outcomes where they anticipate similar treatment effects. GLS weighted indices that account for

correlations between outcomes might further increase power.

Second, tests based on indices also yield a meaningful point estimate β̂wg , which allows re-

searchers to infer that the regression coefficient is the effect on a (weighted) average of outcomes

in a well-specified index. In contrast, the Wald test does not yield an estimate of a (weighted) av-

erage treatment effect. If the member hypotheses in the index have similar treatment effects, then

estimating Equation (6) leads to a higher-powered test than testing any individual hypothesis in

isolation (see Corollary 1.1 in Appendix A2.1). We speculate that the utility of this point estimate,

combined with higher power in the case of similar treatment effects, are two reasons why all PAPs

that we are aware of elect to test unweighted (or weighted) index hypotheses rather than Wald tests.

Nevertheless, mean indices are not costless. Specifying a weight vector wg in advance changes

the null hypothesis to βwg = 0; rejecting this null is sufficient but not necessary to reject δg = 0.

The change in the null hypothesis increases the possibility of type II error if researcher priors are

inaccurate. In particular, if the researcher does not correctly anticipate the full vector of indicator

effects and covariance matrix of those effects, then they may design indices which increase the

likelihood of type II error for the null of δg = 0. For example, they may place high weights on

outcomes that are unaffected or are highly correlated with other outcomes; in this case the index

test may have lower power than testing individual indicators, even after multiplicity adjustment.
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2.4 Optimized Aggregate Indices

The use of an analysis plan opens the opportunity to identify and test other index hypotheses.

Specifically, an analysis plan can define an algorithm allowing the data to suggest a high-powered

index hypothesis. Suppose that a researcher receives utility from rejecting Hg : δg = 0, the family-

level hypothesis in Equation (5), but no additional utility from rejecting individual indicator-level

hypotheses Hhg : βhg = 0. Then the researcher will wish to maximize power across possible

indices composed of elements of Hg, the index “donor pool”. We define the “optimus index”,

which maximizes power across potential indices for group g:

max
wg

PFHg

(
|t̂ȳwg

| > tc
)
. (8)

Deriving the optimus index requires knowledge of the DGP, which we denote FHg . Specifi-

cally it requires the coefficients βhg and the covariance matrix Σg for all h ∈ Hg. Let βg be a

|Hg| × 1 column vector containing βhg for all h ∈ Hg. In Appendix A2.1 we derive the following

proposition for known βg and Σg:

Proposition 1. Consider an index ȳiwg = w′
gyig. Let β̂wg be the regression coefficient from

estimating Equation (7) and let σβ̂wg
=

√
V(β̂wg). A one-sided test of βwg = 0 based on β̂wg/σβ̂wg

with critical value Φ−1(1− α) has power Φ( βg
′wg√

w′
gΣgwg

+ Φ−1(α)).

Panel (b) of Figure 1 presents 80% power isoquants for the power-maximizing optimus index

against power isoquants from a KLK index, again under the assumption of two independent out-

comes.9 Panel (c) of Figure 1 presents the same isoquants for the optimus index against those of a

Wald test. We see two patterns. First, consistent the discussion in Section 2.3, the optimus index

and the KLK index have the same power when the two outcome variables have the same associated

treatment effects. This follows as the equal KLK weights are optimal in that case (Corollary 1.2 in

Appendix A2.1). However, whenever there is heterogeneity in treatment effects, the optimus test

is more powerful, with the 80% isoquant much closer to the center in cases where there is sub-

stantial heterogeneity in treatment effects (for example, when one outcome is uncorrelated with

treatment). Second, compared to the Wald test, the optimus has greater power except in the case

where treatment effects are opposite signed and similar in magnitude.

The challenge with implementing this higher powered index is that researchers are unlikely to

have detailed priors about the vector of treatment effects βg or the covariance matrix Σg; knowledge

of βg obviates estimating it. An absence of detailed priors may inform why researchers generally

9The figure presumes that we maximize optimus power among sets of weakly monotonic weights, as we propose

later.
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default to the KLK index, which contains an unweighted average of all indicators in the donor set

Hg. Access to sample estimates, however, can generate a higher powered test. A natural approach

for deriving the optimus index is to replace βg and Σg with sample estimates β̂g and Σ̂g. Doing

so, however, results in an overestimate of the test’s power (and the treatment effect size), since the

procedure heavily weights outcomes with the largest t-statistics, which would likely experience

mean reversion in a hold-out sample. In essence, there is an overfitting problem; specifically, the

estimates β̂hg and Σ̂g are overdispersed relative to the true βhg and Σg (the largest β̂hg is likely large

both because the true βhg is large and because it experienced a sampling error shock of the same

sign as βhg). In Appendix A2.2 we demonstrate formally that utilizing the full sample to estimate

β̂hg and Σ̂g forming the optimus using these estimates results in a biased estimator:

Proposition 2. Let ωg = argmaxwg
Φ(

β̂′
gwg√

wgΣ̂gwg

+ Φ−1(α)), where β̂g and Σ̂g are sample

estimates of βg and Σg. Let βωg = E[βg
′ωg | ωg]. Consider an index ȳiωg = ω′

gyig. A regression of

ȳiωg on Ti yields a biased estimate of βωg .

To address this bias we incorporate several machine-learning techniques when deriving the

optimus index. First, we utilize sample splitting. With sample splitting, researchers can estimate

β̂hg and Σ̂g in a training sample and then apply the derived optimus index in a test sample. For the

simulations and applications we incorporate 5-fold sample splitting (Hastie et al. 2009, p. 242).

For each fold, we estimate the optimus index using the data that omits that fold, and then apply

the estimated optimus index weights to the omitted fold. Aggregating these indices across folds

generates an optimus test that can be implemented on the full sample. As different folds of the data

may feature different constructions of the optimus index, rejecting the optimus test using a K-fold

approach implies that there is a mean treatment effect on a subset of variables in group G, where

the weights of the specific component indicators may be summarized across the full sample.

In Appendix A2.2 we formally demonstrate that estimating Equation (7) using the K-fold

version of the optimus test produces an unbiased estimator of the expected weighted average of the

elements of βg , with weights determined by the K-fold procedure:

Proposition 3. Randomly assign N observations to K folds. For each fold k, compute weights

ω−k,g = argmaxw−k,g
Φ(

β̂′
−k,gw−k,g√

w−k,gΣ̂−k,gw−k,g

+ Φ−1(α)), where β̂−k,g and Σ̂−k,g are estimates of βg

and Σg using all observations not in fold k. Let T̃ be a demeaned N × 1 vector of treatment

assignments and Ỹg be a N × 1 vector of weighted outcomes, with element i equal to ω′
−k,gyig.

The K-fold optimus estimator (T̃′T̃)−1T̃′Ỹg is unbiased for E[βg
′ω−k,g].

Proposition 3 states that the optimus K-fold procedure is unbiased for a weighted average of
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treatment coefficients βg, with weights equal to the expected optimus K-fold weights. Further-

more, the average weights across folds, ω̄g = 1
K

∑
k ω−k,g, represent an unbiased estimate of the

expected weights due to the random assignment of folds. Thus in our applications we report the

average optimus weight (across folds) that each outcome receives.

Nevertheless, the t-statistic for the K-fold optimus estimator is not distributed t, because each

fold is ultimately used both to form the optimus weights and to estimate the treatment effect (see

Corollary 3.1 in Appendix A2.2). Therefore, test statistics from this approach should be tested

against critical values generated by randomization inference (that is, randomly permuting treatment

across the full sample and implementing the procedure on these random treatment permutations

many times).

While the K-fold optimus is unbiased, the overdispersion in estimates of βg may reduce the

finite sample efficiency of the estimator. To counteract the overdispersion that tends to arise in

estimates of βg, we modify the objective function in Proposition 1 to include a penalty for indices

that concentrate weight on a smaller number of indicators. Specifically, we evaluate

max
wg

Φ(
β̂′
gwg√

w′
gΣ̂gwg

+ Φ−1(α))− λHHIwg (9)

where HHIwg represents the Herfindhal-Hirschmann index (HHI) for weights wg (i.e.
∑

h∈Hg
w2

hg).

This penalty index, which by construction must lie on the unit interval, encourages the optimus test

to be a well-defined index hypothesis which presents average treatment effects across a range of

variables rather than, for example, selecting the single indicator with the most significant t-statistic.

In the simulations, we experiment with a range of values of λ to determine which penalty weight

generates the highest power index across different DGPs. In the applications we apply the preferred

penalty weight from the simulations.10

In addition, the off-diagonal elements of the estimated covariance matrix, Σ̂g, may be highly

overdispersed, and small or negative off-diagonal entries can have substantial effects on the in-

dices’ predicted power. To address this overdispersion we derive an Empirical Bayes shrinkage

estimator for Σ̂g and use it to shrink the off-diagonal elements of Σ̂g in our applications (see Ap-

pendix A3).

Finally, it is common in the existing literature to assume that effects on individual indicators,

appropriately transformed, are weakly monotonic. This weak monotonicity assumption leverages

the underlying latent index model of Equation (5). Formally, it implies that the index loadings,
10In an actual application one could also tune the penalty weight using cross-validation. Doing so in our applica-

tions, however, would be computationally prohibitive, in part because we draw multiple samples to explore perfor-

mance in different scenarios.
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γhg, are weakly positive (or weakly negative). Enforcing weak monotonicity is also appealing

because a mixture of positive and negative weights confounds the directional interpretation of the

weighted index, regardless of the underlying DGP.11 Thus researchers may wish to restrict the

optimus weights to be weakly monotonic, as we do in our simulations and applications. The only

downside to this restiction is that if the true loadings are not weakly monotonic, then an index that

mixes positive and negative weights could be more powerful, though less interpretable.

These approaches together leverage an analysis plan to identify an index test which is highly

powered, controls type I error, and is an unbiased estimator of a well-defined weighted average

of treatment effects across variables in a given family. The cost of doing so is that the researcher

does not test the unweighted average across indicators comprising the KLK index; instead, the

data determines which outcomes are most strongly associated with treatment in a way that the re-

searcher need not anticipate ex ante. The benefit of doing so is a reduction in type II error. We

explore the extent of these benefits by simulation in Section 3 and in applications in Sections 4,

5, and 6. Because it maximizes power, the optimus index places more weight on outcomes with

larger treatment effects βh, and which are relatively uncorrelated with each other.12 These weights

are estimated, and may be of inherent interest themselves; we explore these in our applications.

Thus, the costs of using the optimus test depend on the difference in inherent interest between the

KLK index and alternative weighted average indices of outcome variables in family g. In inves-

tigations where the researcher selects the KLK index due to a well-defined theory that suggests

homogeneous treatment effects across outcomes in family g, these costs could be significant. In

investigations where the researcher anticipates heterogeneous treatment effects but selects a KLK

index to maximize statistical power because they have uninformed priors, they may be small.

The optimus test has clear analogues in other tests that have been implemented or proposed in

the literature. For example, while the optimus test maximizes the expected t-statistic of the index in

the confirmation sample (E[β̂/σ̂]), O’Brien’s GLS weights minimize the standard error (E[σ̂]). As

such, if treatment effects are uniform among the hypotheses in a group, the two should converge

to the same weighted index. Similarly, while the optimus test focuses on maximizing power to

detect mean treatment effects on a subset of indicators in the data, the machine learning based test

11The possibility of a mixture of positive and negative weights is a key reason why researchers often avoid the

GLS-weighted index (Pocock et al., 1987; Dallow et al., 2008).
12Note that heavily weighted outcomes in this framework are distinct from those that would be selected by running

a principal component analysis (PCA) on outcome variables. PCA maximizes the variance of the resulting linear

combination and thus places weight on highly correlated outcome variables, rather than relatively independent ones. To

the authors’ knowledge there is not an analogous procedure for PCA that focuses on treatment effects and incorporates

effect heterogeneity.
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in Ludwig et al. (2019) (hereafter LMS) flexibly tests the sharp null hypothesis of any treatment

effects across the marginal and joint distributions of outcomes.13 The finite sample performance

of the two estimators, as well as the DGP (i.e. whether the primary treatment effects lie on the

mean effects of treatment or on the joint distribution of outcomes), determine which of these two

procedures has greater power. As in most econometric applications, imposing additional structure

can improve precision if that structure is consistent with the DGP. In our applications we test the

optimus index alongside the LMS procedure.

2.5 Optimizing Error Allocations through Gatekeeping

A second contributor to type II error that challenges PAPs in economics is the misallocation of type

I error. Tests which limit false discoveries by controlling type I error often treat hypothesis tests

concurrently and uniformly. This strategy may lead to allocating type I error to some hypotheses

which are of researcher interest only conditional on other rejections; if these latter rejections fail

to materialize, then type I error goes wasted.

Gatekeeping strategies define the propagation of type I error across hypotheses. The key insight

is that when a test rejects, its type I error can be recycled to another test in a prespecified manner.

Formally, a gatekeeping strategy controls FWER at level α across sequential families of hypotheses

F1, ..., FM . Each family represents a “gate” that must be passed. In a serial gatekeeping strategy,

hypotheses in family Fj are tested iff all hypotheses in family Fj−1 are rejected using p-values

that are multiplicity adjusted within family j − 1. In a parallel gatekeeping strategy, hypotheses

in family Fj are tested iff at least one hypothesis in family Fj−1 is rejected using p-values that

are multiplicity adjusted within family j − 1 (Dmitrienko and Tamhane 2007). Tree-structured

gatekeeping strategies may be most relevant to field experiment practitioners (Dmitrienko et al.

2007; Bretz et al. 2011), as they allow researchers to precisely specify how type I error flows

between hypotheses.

As a simple example, consider a field experiment with imperfect compliance and a relatively

small sample. A reasonable tree-structured gatekeeping strategy in this context could specify three

families: F1, F2, F3. F1 contains the first-stage t-statistic, F2 contains one or more aggregate index

tests, and F3 contains the outcomes comprising the aggregate indices. The researcher first tests

F1 with no multiplicity adjustment. If F1 rejects — i.e. there was a first-stage effect — she

then tests for any aggregate effect on outcomes via the test(s) in F2. Failure to reject F1 and F2

precludes testing of individual outcomes, but in this context it is unlikely the researcher could

13In the Ludwig et al. (2019) case, the researcher inverts the problem and uses split sample and ML methods to

predict treatment using outcome variables.
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generate compelling findings absent a first-stage or overall effect. If an aggregate index in F2

rejects, the individual indicators in F3 comprising that index could be tested in parallel.14

As the example makes clear, using gatekeeping changes the nature of misallocation error. With-

out the use of gates, researchers spread type I error across many hypotheses, running the risk of

reducing power on false hypotheses by including true ones. Using a gate allows researchers to

concentrate type I error on a high-powered test, but that advantage comes with a cost: failing to

reject the gate prevents formal testing of the indicators comprising the index test within the gate.

Gatekeeping methods are therefore likely to be most useful when there exist tests that have a high

probability of rejecting under the alternate hypothesis (e.g. an optimus index) and when the value

of some rejections increases conditional on other rejections.

For researchers with latent index hypotheses like Equation (5), the power advantages of aggre-

gate index hypotheses render them as natural gates. For a researcher with a prespecified plan and

incomplete knowledge of the underlying DGP, writing a PAP that uses KLK indices as gates may

be sensible. For two reasons, however, we anticipate that using optimus tests as gates will have

significant advantages for many researchers. First, since the optimus gate maximizes statistical

power among tests of mean treatment effects, using an optimus test as a gate both maximizes the

chance of producing statistical evidence for a mean treatment effect across a group of variables and

minimizes the risk of failing to pass the gate, which would preclude tests of component indicators.

The simulations and applications below explore the potential power differences between KLK in-

dex and optimus gates. Second, some research designs may be complex, with many potential sets

of hypothesis families. In this case, anticipating a network and path for the propagation of type

I error across families and hypotheses quickly becomes intractable (Olken, 2015; Banerjee et al.,

2020). By selecting indicators within a family which have the strongest relationship to treatment,

optimus gates control type I error over indices that are most related to treatment. In many cases,

the optimus test may help simplify analysis design by identifying an index of variables with strong

treatment effects instead of requiring the researcher to anticipate this set.

14If the outcomes of the field experiment can be partitioned into G groups, then a reasonable tree-structured gate-

keeping strategy in this context could specify four families: F1, ..., F4. F1 contains the first-stage t-statistic, F2 an

optimus index test across all outcomes in the study, F3 optimus or KLK index tests for each group g of the G groups,

and F4 the indicators comprising those indices. The researcher first tests F1 with no multiplicity adjustment. If F1

rejects — i.e. there was a first-stage effect — she then tests for any aggregate effect on outcomes using the optimus

index in F2 — a high-powered test suited to her small sample. If F2 rejects she then tests for effects on the G groups in

F3, multiplicity adjusting for G tests. Finally, any group that rejects would have its component indicators tested in F4,

with α/G type I error to allocate across all indicators in that group. Failure to reject a family at any stage precludes

testing of subsequent families.
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3 Analysis Plan Simulations

When combining our test strategies with FWER control procedures more sophisticated than the

Bonferroni correction, it is infeasible to analytically calculate power. We thus turn to Monte Carlo

simulations to evaluate the performance of different strategies across a wide range of potential data

generating processes. For the optimus test, the simulations also give us insight into reasonable

values for the HHI penalty weight in Equation (9).

3.1 Simulation Environment

We perform a series of Monte Carlo simulations that establish the power of our strategies relative

to KLK indices or an exhaustive PAP under a variety of scenarios. In this context we use “power”

to refer to the probability that a single test rejects or, when considering multiple tests, the expected

number of rejections. Power depends on some parameters that the researcher has direct control

over (number of tests, use of an aggregate index or gatekeeping strategy), some that she has limited

control over (sample size), and others that she has no control over (share of hypotheses that are

false, effect sizes, and inter-test correlation structure).

Effect size and sample size are fundamental to statistical power. These two factors interact to

generate the sampling distribution of the test statistic, which determines power. The question of

what t-statistics a researcher might expect to find thus informs her expected power. To limit the

parameter space of interest we conducted a literature review of field experiments with the goal of

determining the empirical distribution of published t-statistics (described in Appendix A1). This

literature review concluded that the median t-statistic in published field experiments was 2.6. We

thus simulated DGPs in which the expected t-statistic for a false hypothesis, E[th | βh ̸= 0], ranged

from 1.5 to 4.0.

To assess the performance of optimus indices and gatekeeping strategies across a range of

contexts, we set up the following simulation environment. First, there are H outcomes with H

corresponding hypotheses. Of these H hypotheses, H1 are false, and the remainder true. False

hypotheses have a normalized mean “effect size” of µt = E[th | βh ̸= 0], where the data-generating

process draws a coefficient βh using the degenerate distribution (homogeneous treatment effects) or

a gamma distribution with shape parameter 2µt and scale parameter µt/2 (heterogeneous treatment

effects). True hypotheses have βh = 0. A fraction r of outcomes are correlated with correlation

coefficient ρ, generating correlated tests.

Let the H × 1 column vector β represent the H coefficients. To test for robustness in a broad

range of environments we vary total hypotheses (H), the number of false hypotheses (H1), average
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effect size (µt), inter-outcome correlations (ρ), the share of outcomes that are correlated (r), and

the coefficient DGP (degenerate or gamma distributions) across simulations (see Table 1).

To simulate a K-fold optimus index, we draw K = 5 column vectors of coefficients, each

dimension H × 1, centered at β. Each element in each vector has variance K, such that the

average of β̂hk across all K vectors — i.e. the “full-sample coefficient” — has unit variance.

The full-sample coefficients are thus distributed standard normal around β and can be treated as

t-statistics. We generate two aggregate indices from the H outcomes. One is a KLK index that

includes all H outcomes, equally weighted. The second is an optimus index that solves Equation

(8). Due to computational constraints, in the simulations we only consider unweighted optimus

indices, i.e. those in which the non-zero weights are identical.15 The KLK index is based off of

full-sample coefficients, β̂. The optimus index is derived K times using the K folds. For each

fold k, the optimus index is derived using β̂−k, i.e. coefficients estimated while omitting fold k,

and then applied to fold k. We average the resulting K optimus indices across the K folds. We

consider optimus objective functions (Equation (9)) that apply values of λ = 0, 0.01, 0.1, 0.5, 1, 2,

and 4 for the HHI penalty weight.

For gatekeeping purposes we apply either the KLK index or the optimus index as an initial gate.

For large H this structure simulates a scenario in which the index tests for any effect study-wide

and serves as a gate for the entire study; for small H it simulates a scenario in which the index

tests for an effect on a subgroup and serves as a gate for that subgroup. If the gate rejects, we

test all the coefficients in β. We simulate Wald tests by forming F-statistics from the full-sample

coefficients and the known covariance matrix.16 We also simulate exhaustive PAPs by testing all

the coefficients in β without any indices, and we simulate “parallel plans” in which we test an index

in parallel with all the coefficients in β (i.e. we simultaneously conduct H + 1 tests). We correct

for multiple hypothesis testing with a Romano-Wolf (RW) algorithm that controls FWER.17,18 To

15Accordingly, we benchmark the optimus against an unweighted KLK index as opposed to, for example, a GLS-

weighted index.
16The F-statistics take the form (β̂

′
Σ−1

g β̂/H)/(χ2
N−K−H/(N −K −H)). Σg is the known coefficient covariance

matrix, and we use N −K = 220, the approximate degrees of freedom of our first application.
17To run these simulations we generate positively correlated test statistics. Most FWER control procedures that

incorporate dependence between test statistics, such as the free step-down resampling method or the step-wise method

in Romano and Wolf (2005), rely on resampling to determine the correlation structure. Resampling is computationally

infeasible in our simulations, so we instead developed a rejection-region FWER control method based off the results

in Romano and Wolf (2005) that leverages the known correlation structure of our DGP.
18In both simulations and applications we use the RW algorithm as we are focused on estimating weighted average

treatment effects for an individual treatment on many outcomes. We refer readers in more complicated environments

(such as multiple heterogeneous treatment effects or multiple treatment comparisons) to List et al. (2019).
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ensure the correct test size for our K-fold optimus index, we simulate the null distribution when

setting β = 0 and reject based on that distribution.

3.2 Simulation Results

Table 1 presents the different parameter values used in the simulations. We simulate power —

i.e. the expected number of rejections — for 2,600 combinations of parameter values in total.

In the discussion we also focus on “more empirically relevant” parameter values, which include

combinations for which µt ≤ 3 and H1/H ≤ 0.5 (i.e. studies with moderate power), based on

surveys we conducted of field experiments and PAPs (see Appendix A1). Results for the optimus

index depend in part on the value of the HHI penalty weight, λ. In general average power across

different parameter values did not vary strongly with λ, but overall the optimus appeared to perform

best with λ = 0.5. We thus report results using λ = 0.5 for the simulations and applications.

We first consider the scenario in which a researcher wishes to perform an aggregate index or

omnibus test. Table 2 characterizes the tradeoffs between using an optimus index or a KLK index.

Column (1) reports average power over all parameter combinations, while Columns (2) through (5)

report average power over parameter combinations that are more empirically relevant. Columns (3)

and (4), in particular, focus on small families (H ≤ 20) and large families (H ≥ 50) respectively.

Column (3) thus simulates a scenario in which a researcher tests an index corresponding to a subset

of hypotheses (e.g. educational outcomes in a conditional cash transfer experiment that measures

effects on educational, health, and financial outcomes), while Column (4) simulates a scenario in

which a researcher tests for any treatment effect across all outcomes.

Table 2 reports average power of a K-fold optimus index relative to a KLK index. Row 1

summarizes the case in which the researcher tests the index in isolation; thus there is no multiplicity

adjustment. In this case, the optimus test is between 1.8 and 3.5 times more powerful than the KLK

index on average. Row 2 summarizes the case in which the researcher tests the index in parallel

with an exhaustive PAP, multiplicity adjusting all tests. The optimus index averages between 3.6

and 15.9 times the power of the KLK index, with order of magnitude gains in power when there

are many hypotheses. In summary, as power becomes more scarce (with increasingly heavier

multiplicity adjustments), the advantage of the optimus index becomes more stark.

Row 3 summarizes the average size (number of indicator variables) of an optimus index for

each set of parameter combinations. Across all parameter combinations the optimus contains an

average of 17.1 variables (Column (1)). Among smaller families, the optimus averages 4.9 vari-

ables (Column (3)), and among larger families it averages 18.5 variables (Column (4)). The results

demonstrate that the optimus, while smaller than the KLK index, still tends to capture effects
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averaged across at least 5 to 20 variables.

The results in Table 2 suggest that researchers should generally prefer the optimus index unless

they get many times more utility from rejecting the KLK index. The only case in which the KLK

index averages more than half the power of the optimus index is the first row entry — i.e. an index

test in isolation — in Column (1). In this scenario, however, it is unlikely that the researcher wishes

to test only one hypothesis (the index) across the entire study. More likely, the index serves as a

gate that, if passed, allows the researcher to test other hypotheses. When the index serves as a gate,

then power becomes more important since rejecting the gate opens the door to further tests. In that

context a KLK index is typically unattractive (see Appendix Table A4).

Researchers may test the optimus index in a serial (i.e. as a gate) or parallel (i.e. in conjunction

with many other hypotheses) fashion. Table 3 analyzes the relative power of a K-fold optimus-

gated plan versus a plan that tests the K-fold optimus index in parallel. The optimus-gated plan

first tests an optimus index for evidence of any treatment effect; if the index rejects, it then tests

prespecified individual outcomes. The optimus-parallel plan tests the same hypotheses, including

the optimus index, but conducts all tests simultaneously (i.e. there is no gate). A value of 1.00 in

a cell implies the two strategies have identical power. Each row corresponds to a different weight

that the researcher assigns the index test, with a weight of 1.0 implying that rejecting the index is

of equivalent value to rejecting a single outcome.

Regardless of weight, the optimus-gated plan is higher power on average than the optimus-

parallel plan, with power advantages increasing as the optimus index becomes more intrinsically

interesting. The intuition is that when few hypotheses are false, the power of the optimus index is

much higher than the power of the typical indicator variable, and it is beneficial to concentrate type

I error on the index (via gating). Alternatively, when many hypotheses are false, the optimus index

is highly powered, and there is little downside to using it as a gate. Moreover, the strong preference

to use the index as a gate when the optimus test is more interesting (i.e. its weight is higher) is

clear: if rejecting the index test is more valuable than rejecting a single outcome, then there are

substantial benefits to concentrating power on the index test first and, if it rejects, recycling the

type I error to test individual outcomes.

To illustrate the distribution of relative power, Figure 2 plots histograms of the relative power of

an optimus-gated PAP against a KLK index-gated PAP. Figures 2a and 2b correspond to Columns

(1) and (2) of Table 2 respectively.19 The optimus-gated PAP dominates the KLK index-gated PAP

in most cases across all parameter combinations and virtually all cases across more empirically

19In this figure we apply an index weight of 2 to the optimus index (i.e. rejecting the optimus is twice as interesting

as rejecting a single indicator) to ensure that a gatekeeping plan is preferred over a parallel test plan. The KLK index

also receives a weight of 2, except in the last two panels, where it receives a weight of 4.
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relevant parameter combinations. Figures 2c and 2d plot distributions for small and large families

respectively (Columns (3) and (4) of Table 2). The mean power advantage is higher for large

families, but in both cases the optimus-gated plan dominates the KLK index-gated plan for virtually

all of the plotted parameter combinations. Figures 2e and 2f reproduce 2c and 2d but apply double

weight to rejecting the KLK index, relative to the optimus index (a weight of 4 versus 2). Even

with double weight on the KLK index, the optimus-gated plan continues to dominate the KLK

index-gated plan in most scenarios. Overall, the figure suggests that researchers will prefer an

optimus-gated plan over a KLK index-gated plan in most cases, and almost universally prefer it

when working with large families.

An omnibus F-test represents an alternative gate that researchers might consider over an index

test. In our simulations, a researcher would on average be indifferent between using an F-test

gate and an optimus gate if she placed 17% more weight on the F-test than the optimus (i.e. the

optimus is on average more powerful). For smaller families (H ≤ 20) the researcher is indifferent

between the two tests when placing 20% less weight on the F-test than the optimus, and for larger

families (H ≥ 50) the researcher is indifferent between the two tests when placing 63% more

weight on the F-test than the optimus (i.e. the F-test is slightly more powerful on average in

small families and less powerful on average in large ones). When considering a KLK index gate,

a researcher would on average be indifferent between using an F-test gate and a KLK gate if

he placed approximately 200% more weight on the KLK index than the F-test. The prevalence

of KLK-type index tests in analysis plans thus suggests that researchers value index rejections

substantially more than omnibus rejections.

For researchers deciding whether to test any index at all, Figure 3 plots histograms of the

relative power of optimus-parallel and optimus-gated plans, with index weights of 1 and 3, against

an exhaustive PAP with no index tests. Figures 3a and 3b plot distributions for an optimus-parallel

plan in which the index receives weights 1 and 3 respectively (with a weight of 1 again implying

that rejecting the index is of equivalent value to rejecting a single outcome). The mean power

advantage is higher when the optimus weight is higher, but in both cases the optimus-parallel plan

dominates the exhaustive PAP for all parameter combinations. Figures 3c and 3d reproduce the

first two panels but switch to an optimus-gated plan (which is generally preferred over the parallel

plan). The advantage of the optimus-index plans becomes even more decisive.20

20Plans that include indices have a natural advantage over those that do not because they test an extra hypothesis.

In some cases, however, an outcome may reject both as part of an index and by itself. Appendix Figure A1 reproduces

Figure 3 but includes a double-rejection adjustment, described in Appendix A4, that ensures that researchers do not

receive extra utility from rejecting the same hypothesis twice. While the distribution of power ratios shifts left, the

plans which include indices dominate an exhaustive PAP in virtually all cases.
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In summary, the simulations suggest that adding an optimus test in parallel to a PAP uniformly

dominates ignoring the optimus test for researchers who place any nontrivial value on rejecting

the optimus test. Furthermore, our results indicate that adopting an optimus-gated plan will be

superior to the parallel plan for most researchers, with particularly large gains for those who find

the (optimus) index test to be of intrinsic interest or who anticipate relatively low power in their

analysis plan. This straightforward conclusion belies the multidimensional nature of these research

strategies, with each dimension potentially interacting with the others. In principle researchers may

choose no index, an optimus index, or a KLK index, and a gatekeeping test strategy or a parallel

test strategy. Appendix A4 examines the relative power of the different combinations of research

strategies. It finds that, on average, plans with indices outperform plans without indices, and plans

with optimus indices outperform plans with (unweighted) KLK indices. Thus, in most cases,

the best strategy for a researcher is to include an optimus index test, typically as a gate, though

researchers who are indifferent between rejecting an optimus index or an omnibus F-test might

consider the latter as the gate.

4 Application: GoBiFo Revisited

Casey et al. (2012) document the impacts of GoBiFo (GBF), a community-driven development

(CDD) intervention in Sierra Leone. To control false discoveries in a survey collecting hundreds

of outcomes, they developed a preanalysis plan comprising of 12 KLK index hypotheses. We

summarize the Casey et al. (2012) discussion of the institutional details of GoBiFo here before

noting several features of the evaluation that make it an appealing choice of an application.

CDD programs are an important outlet for international donor funding, and GBF had a variety

of features common to CDD-type programs in the developing world. First, it provided block grants,

training, and business start-up capital based on community proposals with a goal of enhancing

public-goods access. These grants were substantial relative to local living standards: financial

outlays were $4,667 per village, or about $100 per household. 43% of grants were used for local

public goods (e.g. community centers, sports fields, school repairs, and sanitation); 40% applied

to agriculture and livestock or fishing management (e.g. seed multiplication, communal farming,

or goat herding); and the remaining 17% went to skills training and small business development

initiatives. Casey et al. (2012) describe these facets as the “hardware” of the GBF intervention.

On top of block grants to create new public goods, GBF had several features meant to build

democratic institutions, which may be particularly relevant in the traditional authority context of

Sierra Leone. GBF established Village Development Committees (VDCs), which both submitted
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grant proposals and would play a role in coordinating local governance, and instituted partici-

pation requirements for historically marginalized groups, such as women and youth. GBF staff

monitored inclusiveness and democratization at substantial cost — monitoring and facilitating this

institution building cost about as much as the actual development grants given out. Casey et al.

(2012) describe this facet of GBF as the “software” effects of the CDD program.

Casey et al. (2012) introduce a PAP with twelve KLK index hypotheses, listed in Table 4. The

PAP also specifies t-statistics and FWER-adjusted p-values, reported in the paper. These 12 index

hypotheses are split into two groups. The first three hypotheses relate to the “hardware” of public-

goods provision in the village, and in all three cases Casey et al. find strong evidence that the

“hardware” of public-goods provision changed. These hypotheses confirm that GBF was success-

fully implemented and led to an outlay of funds and investment in public goods. The remaining

nine hypotheses relate to the “software” of the program, examining a range of outcomes, including

participation in collective action, trust of leaders, participation in local governance, and reductions

in crime and conflict in the community. Casey et al. (2012) find no statistically significant evidence

that GBF affected any of these outcomes. Ultimately they conclude that the program was imple-

mented as planned and led to some expenditures and a change in the public-goods environment,

but that there is no evidence that it changed the social institutions governing these villages.

The evaluation of GBF makes for a natural test application of our methods for several reasons.

First, as one of the seminal papers introducing preanalysis plans to economists, it represents a

carefully thought out and well-regarded PAP that has become a template for PAPs in the literature.

Second, the results are mixed. On the one hand, the study had more than adequate statistical power

to detect effects on the hardware hypotheses. However, the null effects on the software hypotheses

may reflect either a lack of impact on these institutions or a lack of statistical power to detect these

effects, given the number of prespecified hypotheses and the indicators selected to join each index

hypothesis. As such, there may be an opportunity to learn more about the impacts of this program

if procedures with greater statistical power can be leveraged. Finally, the PAP slots naturally into

a gatekeeping environment. Casey et al. clearly delineate two meta-hypotheses: that GBF was

implemented successfully and influenced the “hardware” of public goods provision, and that GBF

influenced the institutional “software” that underlies public goods provision. In our framework,

this suggests a natural gate structure to the hypotheses, which we develop below.

We begin by replicating results from Casey et al. (2012). The twelve hypotheses in Casey et al.

(2012) are each average treatment effects across the whole sample, estimated by comparing endline

treatment and control outcomes. Thus, the primary results in the PAP and the initial presentation
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come from estimating

yv = βTv + γXv + εv

where Xv are covariates used for stratification and Tv is an indicator for treatment status. In all

cases, the outcome variable yv refers to a KLK index hypothesis, constructed by normalizing and

summing indicator variables which relate to a particular hypothesis about the intervention.

4.1 Alternate Indices and Gates in GoBiFo

The hypotheses presented in GoBiFo are heterogeneous in the number and types of outcome vari-

ables which enter each index. Inputs to index hypotheses include outcomes verifiable through

administrative data, objective and subjective survey data questions, and behaviors elicited through

“supervised community activities” — for example, direct observation of how community mem-

bers stored and shared a tarpaulin gifted by the survey team. These different data sources lead

to heterogeneous index variables, with as few as seven and as many as 47 variables averaged in

the construction of each hypothesis’s index. In this context, it seems plausible that treatment ef-

fects would be heterogeneous within indices, and that there exist alternate specifications for these

indices which might have also yielded similar levels of intrinsic interest.

To generate a gated optimus index approach, we propose that a logical gating meta-hypothesis

is whether there are any impacts on the (aggregate) set of hardware hypotheses that serve as a “first

stage” for GBF. If GBF had no impacts on any of the indicators in the hardware section — i.e.

the program was not implemented and did not deliver public goods — readers would have good

cause for skepticism about any positive statistical results that follow. If GBF was implemented

successfully, so that some hardware indicators responded to treatment, then it is plausible that the

program might have impacts on institutional software. Researcher priors over which hardware el-

ements are critical to generate software change, however, may not be detailed; as such, conducting

an optimus-index test for “were there hardware effects?” may serve as a high-powered gate.

The second meta-hypothesis refers to software effects. If GBF had hardware effects, it is

natural to test whether there were any software effects. As such, conducting an optimus test over

all the variables which comprise the nine software hypotheses represents a high-powered test of

this meta-hypothesis.21

Finally, if we conclude that there were both hardware and software effects, we may wonder

which of the 12 finer hardware and software hypotheses were impacted by GBF. Once again, if

21In practice, the GBF PAP prespecified a number of variables which contribute to multiple different hypotheses. In

some cases, a variable appears in both hardware and software hypotheses. For our implementation, we eliminate all

indicator variables that appear in any hardware hypothesis from the set of candidate software variables.
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researchers do not have strong preferences over the weights assigned to indicator variables, they

can construct an optimus-style index of the variables belonging to each hypothesis and anticipate

greater statistical power than regressions using KLK indices, based on the results in Section 3.2.22

Figure 4 summarizes the gating structure we use for GBF. For each of the index hypotheses —

hardware effects, software effects, and the 12 prespecified hypotheses — we implement the opti-

mus approach using 5-fold CV. Since it is impossible for us to “preregister” the fold assignments,

we generate results using many different fold assignments and record the distribution of p-values

across the different fold assignments. Specifically, we assign five folds at random 200 times, strati-

fying each draw of five folds on treatment. In each of these 200 iterations, we compute p-values by

comparing actual test statistics to those generated by the same procedure when randomly permut-

ing treatment under the null hypothesis 80 times. When examining multiple comparisons (in the

analysis of the 12 hypotheses) we compute p-values using the Romano and Wolf (2005) algorithm.

Following Chernozukhov et al. (2018) and Romano and DiCiccio (2019), we conservatively reject

a hypothesis only if the median p-value of that hypothesis across the 200 5-fold assignments is less

than α/2. For optimus indices, we apply a HHI penalty weight of λ = 0.5 in the objective function

(based on results from Section 3).

We benchmark these results against four alternatives. First, we consider the results presented

in Casey et al. (2012) based on their original PAP, which tests all hypotheses in parallel. Second,

we construct a gatekeeping version of the original PAP, which uses KLK indices for hardware

and software outcomes. The hardware index includes all variables from Hypotheses 1–3, and the

software index includes all variables from Hypotheses 4–12 (omitting any variables also classified

as hardware). Third, we implement an omnibus F-test (Wald) by regressing treatment on the

relevant outcome indicators in each gate, as in Equation 4, and testing the joint hypothesis that all

indicators are unrelated to treatment. Fourth, we apply the Ludwig et al. (2019) omnibus procedure

to the same gates. To implement LMS we use an ensemble that combines a random forest with

an elastic net to predict treatment using the hardware dependent variables as a first gate; if we

pass that gate then we do the same for software variables. As Ludwig et al. (2019) also requires a

sample split, we follow the same procedure as for the optimus tests, estimating the LMS procedure

on 200 sets of five folds and computing p-values via permutation of the treatment indicator.

22If some of the hypotheses reject, the individual indicator hypotheses can then be tested in sequence if the larger

index gate hypotheses are rejected. To preserve the correct size of tests in this case, however, one needs to avoid using

sharpened p-values, because sharpened p-values recycle type I error within a parallel set of tests until it is exhausted

(e.g. one could not apply Romano-Wolf p-values). For brevity, we do not present those results here.
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4.2 GoBiFo Results

In Table 5 we consider whether we reject the null of no hardware effects using the original PAP,

KLK index, optimus gate, Wald, and LMS approaches. All five approaches reject the hardware

gate. We therefore conclude that any of these approaches would have (correctly) concluded that

GoBiFo had an effect on hardware outcomes, though the specific interpretations of each rejection

differ (as discussed in Section 2.4).

Since each approach rejects the hardware gate, we then consider whether GBF had impacts

on software variables. Recall that the original PAP for GBF failed to reject the null hypothesis

that GBF had no effect on software outcomes. Column (1) shows that combining all software

variables into a single KLK index does not change this conclusion. Columns (3) and (4) similarly

demonstrate that the F and LMS omnibus tests do not reject the null hypothesis of no relationship

between software variables and treatment; the median LMS p-value is 0.34, and the F-test p-value

is 0.07. In contrast, the optimus approach, reported in Column (2), decisively rejects the null

hypothesis of no software effects. Using the 5-fold optimus, the median p-value is 0.00, so that

we reject the null hypothesis that there was no relationship between GBF and software variables

at the conventional 5% significance level. On average, the optimus test produces an index that is a

weighted average of 22.8 indicator variables, 19 of which receive an average weight greater than

2.5%, and none of which receive an average weight above 10%.23 Appendix Table A1 reports the

variables appearing most frequently in the software optimus and their associated average weights.

Casey et al. (2012) note that one software variable — whether there is a community farm —

may be miscategorized as software, as it may have been directly built by the CDD grant. The third

row repeats the software optimus gate but excludes this variable; it still rejects the null based on an

average of 22 variables. None of the other test procedures comes close to rejecting the null when

excluding this variable.

In summary, when applying an optimus test we conclude that GBF affected some software out-

comes. Comparing point estimates between the KLK index (Column (1)) and the optimus (Column

(2)) illustrates why we see such a large difference. Column (1) indicates that GBF is associated

with a 0.03 standard deviation average increase across 144 distinct software indicators; Column

(2) indicates that across the 22.8 components of the optimus test, the weighted average effect is

0.15 standard deviations. Notably, the gap between the two estimates is of similar magnitude to

what we would expect if the treatment effects on all indicators excluded by the optimus were zero.

Using the gated approach, only the optimus test has sufficient power to pass the software gate.

23We count an indicator as appearing in the index if it receives at least as much weight as it would in a KLK index;

in this case that corresponds to 0.007 = 1
144 .
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After passing the gate we can then test which of the underlying hypotheses contribute to this rejec-

tion. We construct 12 optimus indices for the 12 underlying hypotheses and test them in parallel,

computing p-values using the Romano and Wolf (2005) algorithm. As presented in Table 4, we

find that the optimus gate approach rejects each of the three individual hardware hypotheses with

large weighted average effect sizes. Among the software hypotheses, only Hypothesis 6 (“GoB-

iFo changes local systems of authority, including the role and perception of traditional leaders

(chiefs)”) approaches marginal significance; adjusting for the 12 tested hypotheses, the median

Romano-Wolf p-value of 0.0625 would not quite reject at the 10% level based on the conservative

Chernozukhov et al. (2018) bound.24

Examining the indicator variables that receive the greatest weight in the software optimus in-

dex (Appendix Table A1) yields insights as to why we find limited evidence to reject individual

software hypotheses. First, the five most heavily weighted variables each correspond to different

underlying software hypotheses. Summing across all indicator components of the optimus, the

single hypothesis receiving the greatest aggregate weight is the marginally-significant Hypothesis

6; weights on indicators comprising Hypothesis 6 sum to 27% of the total weight.25 This pattern

suggests that the overall software effects were spread across the software hypotheses rather than

concentrated within one of them. Rather than belonging to a specific hypothesis proposed in the

PAP, what stands out in the variables selected for heavy weights is that they tend to focus on more

objective measurements, which are potentially more “upstream” in the theory of change, rather

than downstream and subjective indicators, such as those which examine beliefs and attitudes. In

addition to the presence of a community farm (Hypothesis 4), heavily weighted indicators include

whether the respondent has been in a recent physical fight (H11); whether minutes were taken

at a recent village council meeting (H5); whether they are a member of a women’s group (H8);

whether newly elected chiefs were young (H6); and whether the respondents can accurately name

the year of the next general election (H9). This trend indicates that the optimus is identifying treat-

ment effects that exist across an index of relatively objective measurements, perhaps because of

measurement error in subjective assessments or the amount of time needed for attitudinal change.

We conclude that GoBiFo had a meaningful effect on a subset of the software outcomes, that

24The optimus test for both Hypothesis 6 and Hypothesis 4, “Participation in GoBiFo increases collective action

and contributions to public good” have median naive p-values below 0.025, so that either of these might reject in an

analysis plan with fewer prespecified hypotheses. Interestingly, the optimus test for H4 yields a greater than 70%

weight on the community farm variable, lending support to the hypothesis that that variable is misclassified hardware

(included indicators and weights for each hypothesis are presented in Appendix Table A1).
25Two of the heavily-weighted indicators are components of both Hypothesis 6 and another hypothesis (in one case

Hypothesis 5, and in another Hypothesis 12); the repeated use of the same indicators across hypotheses indicates some

of the challenges in partitioning hypotheses in institutional analysis.
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that effect was distributed across prespecified hypotheses about software, and that of the consid-

ered approaches only the gated optimus test had the statistical power to detect it. In follow-up

work focused on community-level measures, Casey et al. (2023) similarly find the presence of

modest, but statistically significant short and long-run institutional effects at the community level,

supporting these conclusions.

5 Application: Cash and Livelihoods in the Democratic Re-

public of the Congo

Our second application is novel to the literature. This application evaluates two programs funded

by USAID and implemented in from 2019 to 2022 in Walungu, an isolated area in the Eastern

DRC. The first of these programs, termed Integrated Youth Development Activities (IYDA), aimed

to boost youth livelihoods through several interventions. Youth were encouraged to form savings

and lending groups, which were used as the basic infrastructure for a range of activities, includ-

ing trainings in financial literacy, work-readiness, and entrepreneurial skills. Participating youth

received cash grants of about $100 in early 2021, with a goal of kickstarting new businesses and

providing resilience to shocks, COVID-related or otherwise. The program was implemented in 100

randomly selected villages (out of 180), screened based on estimated population size; ultimately

savings and lending groups were formed and program activities initiated in three-quarters of these

100 villages. In the second program, one youth per household in 50 of the 100 treatment villages

(also randomly selected) received large cash transfers of $750. We thus test two potential hypothe-

ses. First, does IYDA boost development outcomes? Second, are large cash transfers, combined

with IYDA, effective at boosting development outcomes?26

These programs were conducted as part of a larger “cash benchmarking” exercise meant to

explore the effectiveness of cash versus direct development programming in several sites (see also

McIntosh and Zeitlin (2021, 2022)). It represents an interesting application of optimus gates for

several reasons. First, there exist many assessments of the impacts of large cash transfers (Ag-

garwal et al., 2022; Egger et al., 2019; Haushofer and Shapiro, 2016; McIntosh and Zeitlin, 2021,

2022). As such, we have reasonably-informed priors about what outcomes large cash transfers

impact in a development context. For example, each of the cited papers finds that large uncon-

ditional cash transfers improve outcomes related to food security and non-durable consumption.

26The design of this experiment does not allow us to directly compare large cash transfers against IYDA through a

2x2 design. This design was established before the current research team, including one of the authors of this paper

(Magruder), took over leadership of the project.
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Several (Aggarwal et al., 2022; Haushofer and Shapiro, 2016; McIntosh and Zeitlin, 2021, 2022)

find that it also improves subjective well-being, and some but not all studies find that cash grants

increase business assets and investments. Second, a concern with the goal of cash benchmarking

is that assets and food security may be relatively easy to measure, in contrast to the impacts of

building institutions like savings groups and life-skills trainings. While the implementing partner

of the IYDA intervention anticipated impacts on food security and business investment, it also an-

ticipated that the largest impacts of these programs would be on local institutions and psychosocial

resilience outcomes, for which, as demonstrated in Section 4, retaining statistical power along a

large set of candidate measurements can be challenging.

For this project, we focus on short-run results from a midline survey. Based on discussions

with the two implementing partners, we developed the gated analysis plan presented in Figure 5.

In the first gate, we assess whether either program took place in the treatment villages, compared

to the control villages. We perform this test with α type I error. If we fail to reject this gate, we

conclude that, at a minimum, the survey team coverage did not match the implementation activities

completed by the partners. In that case, any downstream effects of either program would likely not

be credible. Second, we examine two parallel gates. The first, focused on resilience outcomes,

examines impacts on a range of psychosocial and institutional resilience measurements proposed

by USAID’s preferred resilience tool. The second, focused on financial and economic outcomes,

covers many of the outcomes robustly associated with cash elsewhere, including food security and

asset investment. To avoid a preference for either set of outcomes, we assess each in parallel with

α/2 type I error. In each case, if we pass the gate, we examine subfamilies of outcomes. Financial

subfamilies are financial and work outcomes, and resilience subfamilies are adaptive capacity and

absorptive capacity, again derived from USAID’s preferred tool. Each of these subfamilies receives

α/4 type I error and are only tested if the larger enclosing gate rejects. Appendix Tables A6, A7,

and A8 list the specific outcomes enclosed by each of these gates.

Based on discussions with the USAID team and the implementing partners, we pre-specified

that we would implement this analysis plan both via KLK indices and optimus gates. In each case

we estimate the equation

yiv = β0 + β1IY DAv + β2Cashv + γXiv + uiv (10)

where IY DAv indicates whether village v was assigned to IYDA, Cashv indicates whether village

v was assinged to receive large cash transfers, and Xiv are pre-specified covariates (gender, age,

household size, and stratifying region and village size variables). In forming the optimus test,

we estimate the weights separately for each treatment, so that we can maximize power for each

treatment, and we include the other treatment as a control. While not pre-specified, for comparison
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purposes we also present an F-test in a reverse regression, where we include the relevant treatment

variable (IY DAv or Cashv) on the left-hand side and all outcomes belonging to the relevant family

on the right-hand side, as well as the other treatment variable and covariates Xiv. We conduct an

F-test on the coefficients of the outcomes to compare both the optimus and KLK approaches to the

Wald benchmark. In addition, we implement the LMS omnibus test, again predicting treatment via

an ensemble random forest and elastic net as in the GBF application.

Panel A of Table 6 reports the results from this analysis plan for the IYDA program. The first

row indicates that, under either the KLK or optimus plan, we successfully detect that the IYDA

program was implemented in treatment villages. In this case, the highest power derives from the

KLK index; Appendix Table A6 reveals that this occurs because the component indicators have

fairly homogeneous effect sizes — nearly all have a naive p-value between 0.06 and 0.23. This is

the case, highlighted in Panels (a) and (b) of Figure 1, where the most powerful index is the KLK

index, which also has power advantages over the Wald test. Nonetheless, the optimus index also

detects (at p < 0.05) that the program was implemented. The F and LMS omnibus tests do not

detect that the IYDA program was implemented at α < 0.05.

Since the KLK and optimus analysis plans pass the initial gate, we can examine downstream

resilience and economic outcomes. The next two rows of Table 6 indicate that we fail to reject

the hypothesis that either family of outcomes changed with IYDA under either analysis plan.27

Once again, Appendix Table A6 suggests a reason why: while there was a detectable difference

in program activities in treatment versus control villages, those differences are objectively small,

ranging between 0.1 and 0.34 standard deviations across different measures. This may be due to

the voluntary nature of treatment; a youth would need to opt-in to participating in savings groups

and livelihoods trainings, and many youths in control villages already participate in savings groups.

Nevertheless, conclusions differ across the four estimation approaches. With either the KLK

or optimus index, we detect the presence of program activities in treatment villages. This is a

meaningful outcome to implementation partners, who were tasked with implementing develop-

ment programs in a challenging context. With the KLK index, we fail to reject that an evenly-

weighted average of economic outcomes or resilience outcomes changed when the program was

implemented. With the optimus index, we fail to identify any weighted average of economic or re-

silience outcomes which is related to the presence of IYDA. With the F and LMS omnibus tests, we

27The optimus test for IYDA effects on resilience outcomes did not identify a consistent sign across folds, likely

because the most individually significant variable (resp. discusses savings with others) has a positive sign, while the

majority of other resilience variables are negatively related to IYDA. This pattern generates the point estimate of 0 and

p-value of 1 on the test. See Appendix Tables A6, A7, and A8 for outcome-by-outcome relationships with treatment.
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do not find evidence that the IYDA program was implemented successfully in treatment villages.28

Panel B of Table 6 reports estimated effects of cash transfers. Under any estimation strategy

we detect that cash transfers were differentially implemented in the villages assigned to receive

cash (p < 0.001 in all cases). Appendix Table A6 demonstrates that the optimus index (correctly)

identifies the variables related to treatment, as it places 86% of weight on either “Respondent

received a cash transfer” or “amount of cash transfers received.” Thus, the KLK and omnibus

approaches demonstrate that there is on average statistical evidence of all program activities in

cash villages, while the optimus approach provides additional evidence that cash was distributed

in cash villages.

Comparing Panel B to Panel A reveals that cash differs from IYDA in that the next gate demon-

strates downstream effects. In the KLK, optimus, and Wald tests we reject the hypothesis that

economic outcomes are not related to receiving cash. Examining the optimus weights in Appendix

Table A8, we see that the weight of the index is focused on five variables: food security, worked for

self, hours worked, savings, and remittances received. Thus, with the KLK index, we conclude that

the average of 18 economic variables increased by 0.09 standard deviations with cash. With the

optimus, we conclude that a weighted average of food security, labor supply, and financial position

improved by 0.17 standard deviations with cash. We note that these outcomes accord well with

results in the literature: absent careful curation, the optimus index selected a group of outcomes

similar to those elsewhere in the literature. With the Wald test, we conclude that 18 outcomes

jointly predict receiving cash. Looking at the two economic outcome subfamilies, we see that the

KLK and Wald tests identify impacts on financial outcomes, while the optimus is not quite signif-

icant on financial outcomes for the α < 0.025 error in this part of the analysis tree. None identify

impacts on work outcomes at α < 0.025, though all come close to significance.

We also observe that the optimus approach detects that Cash affects resilience outcomes, while

the KLK index fails to do so (the omnibus F-test is close to significance at α < 0.025). With the

F-test, we do not observe a point estimate as to whether resilience improves or deteriorates with

cash; however, the negative optimus point estimate implies, surprisingly, the latter. Examining the

optimus weights in Appendix Table A7, we see that the majority of estimated weight concentrates

on three variables: locus of control, participation in household financial decisions, and aspirations

for their childrens’ futures. Based on these results, we conclude that large cash transfers affected

a decline in a sense of agency for these youth. One possible explanation is that other household

members ultimately exerted control over household consumption decisions in response to the cash

transfer, limiting the sense of agency among the youthful recipients.29 Thus, with the KLK index

28We find no evidence that the IYDA intervention had downstream effects with any of the four tests.
29Another explanation is that access to this magnitude of money happened without any actions or agency on the part
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we fail to reject that cash was associated with an unweighted index of 21 resilience outcomes; with

a Wald approach we conclude that 21 resilience outcomes are marginally significantly related to

cash; and with the optimus test we conclude that access to cash reduced beliefs in own agency

by 0.14 standard deviations. While this result is novel in the literature on cash transfers, we note

that both the power of the optimus test and the youthfulness of the beneficiaries may each have

contributed to identifying it.

6 Application: The Oregon Health Insurance Experiment

As a final application we consider a high-profile health insurance lottery in Oregon. The lottery

enrolled tens of thousands applicants and randomly assigned Medicaid to a subset. Finkelstein et al.

(2012) documents causal effects on health care utilization and financial and health outcomes. Many

t-statistics for individual outcomes range between 5 and 10, so we treat OHIE as an opportunity to

test the performance of our techniques when the “true” DGP is known. To do this we take small

samples of the OHIE data, compare the power of an optimus-gated analysis plan to plans gated by

a KLK index or an omnibus test, and verify that the conclusions are consistent with the true DGP.

Appendix A5 details the background, methodology, and results from the OHIE application.

Briefly, at a 10% sample of the original data, all analytic approaches consistently conclude that the

OHIE lottery affected Medicaid coverage. The optimus and F omnibus tests correctly reject the

null hypothesis of no effect on any of 44 outcomes 71% and 73% of the time respectively, while

the KLK index and LMS omnibus tests reject only 58% and 38% of the time. In smaller (8%) and

larger (12% and 15%) samples the optimus consistently outperforms all other tests. Leveraging

the full dataset, we find that over 80% of the optimus weight gets assigned to variables with clear

evidence of treatment effects. Finally, when testing three subfamilies — utilization, health, and

financial outcomes — we find that the optimus index outperforms the KLK index and F and LMS

omnibus tests for all three subfamilies.

7 Conclusions and Recommendations

Analysis plans allow researchers to limit the rate of false discoveries through statistical adjustments

for multiple inference. They do so at a cost: formal tests for multiple inference are only available

for hypotheses which can be registered in an analysis plan, and these adjustments reduce power. If

researchers fail to anticipate which indicators are most impacted by treatment, or can be measured

of the recipients, which may have encouraged beliefs on the importance of fate versus direct action.
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with the least error, power concerns compound. These issues may lead to analysis plans which

foreclose true discoveries in attempts to avoid false ones. In large part for this reason, Banerjee

et al. (2020) emphasize the need for a central role of secondary evidence in academic research,

even at the risk of promoting results based on type I errors.

In this paper, we suggest an alternate approach for analysis plans. Rather than restricting at-

tention to the types of tests which can be easily anticipated, researchers can allow the data to

inform the most powerful tests to be run. In a sense, specifying straightforward and easily antic-

ipatable tests is an informal means of controlling false discoveries that becomes redundant when

an analysis plan allows formal control. This fact allows researchers to specify data-driven analysis

plans that can maximize the power of statistical tests. We propose the optimus gate as a method

for doing so: by maximizing power among weighted index hypotheses and directing type I er-

ror to that high-power index test, researchers can be guaranteed a high power, easily interpretable

test. We demonstrate in simulations and in three applications that this approach has substantial

power advantages over other available approaches. The tradeoff for this power is a loss of control

over which indices are being tested; researchers with strong priors over heterogeneity in treatment

effects and who anticipate that a test based on a particular weighted average treatment effect is

of more inherent interest than tests based on alternate weighted average treatment effects should

consider whether the gains in statistical power justify the loss of control.

The other challenge to the use of analysis plans to control false discoveries is complexity in

specifying algorithmic approaches. The optimus gate approach not only maximizes power among

available index hypotheses, it can also be straightforward to prespecify, as a researcher need only

categorize indicators into families. In many cases, particularly for researchers following the recom-

mendations of Banerjee et al. (2020) in forming a preanalysis plan, these families may be relatively

simple. For example, a straightforward gating structure would be to categorize indicators into first

stage indicators which document whether a program was successfully implemented and second

stage indicators which indicate whether a successfully implemented program influenced important

economic outcomes. A simple preanalysis plan may set optimus gates for the first stage hypothesis

followed by the second, and in doing so would guarantee that researchers have powerful tests of

the correct size for whether the program was implemented and whether it impacted outcomes. Re-

searchers with more time and stronger priors over which potential categories of effects a program

may have can add a third set of gates which test several of these categories in parallel; an additional

advantage of the optimus gate approach is that such a plan would not harm the statistical power of

the first two primary tests.

While the optimus approach will not be preferred in all scenarios, it can be attractive in many

33



scenarios in which researchers anticipate testing large numbers of outcomes with heterogeneous

effect sizes in a limited sample. In our experience this scenario is well-represented among field

experiments.
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Figures and Tables

Figure 1: 80% Power Isoquants for Aggregate Tests

(a) KLK versus Wald

(b) Optimus versus KLK (c) Optimus versus Wald
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Figure 2: Distribution of Relative Power of Optimus versus KLK Index Gatekeeping Strategy

(a) All parameter combinations
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Notes: Panels (a) and (b) correspond to Columns (1) and (2) of Table 2 respectively, Panels (c) and (e) correspond to

Column (3), and Panels (d) and (f) correspond to Column (4).
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Figure 3: Distribution of Relative Power of Optimus Plans versus Exhaustive PAP

(a) Parallel optimus plan (index weight = 1)
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(b) Parallel optimus plan (index weight = 3)
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(c) Gated optimus plan (index weight = 1)
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Figure 4: Optimus Gate analysis plan for Casey et al. (2012)
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Figure 5: Gated Analysis Plan for DRC Cash and Livelihoods

Cash Transfers or IYDA
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Table 1: Simulation Parameter Values

Parameter Values Mean Std Dev

Average “effect size” (E[th | βh ̸= 0]) 1.5, 2.0, 2.5, 3.0, 4.0 2.6 0.9

Total hypotheses (H) 10, 20, 50, 100, 200 76 69

Share false (H1/H) 0.1, 0.2, 0.5, 1.0 0.45 0.35

Correlation between outcomes (ρ) 0, 0.1, 0.2, 0.5, 0.7 0.35 0.25

Share of outcomes correlated (r) 0.2, 0.5, 1.0 0.6 0.34
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Table 2: Relative Power of Optimus Index v. KLK Index

(1) (2) (3) (4) (5)

Index test only 1.77 2.24 2.55 3.28 3.48

Index test in parallel w/PAP 3.64 5.98 6.07 15.9 13.8

Optimus index size 17.1 14.5 4.9 18.5 13.8

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports the geometric mean power ratio of an optimus

index to a KLK index. The index is tested by itself (first row) or in

parallel with an exhaustive PAP (second row).

Table 3: Relative Power of Optimus-Gated Plans v. Optimus-Parallel Plans

Optimus-index weight: (1) (2) (3) (4) (5)

1.0 1.04 1.06 1.05 1.08 1.07

2.0 1.11 1.17 1.24 1.19 1.30

3.0 1.15 1.24 1.37 1.27 1.46

4.0 1.18 1.29 1.47 1.32 1.59

5.0 1.21 1.33 1.54 1.37 1.69

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports, for a given optimus-index weight, the geo-

metric mean power ratio of an optimus-index gated exhaustive PAP

to an exhaustive PAP that tests the optimus index in parallel with the

other hypotheses.
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Table 4: GoBiFo Results: Individual Hypotheses

(1) (2) (3) (4)

KLK Index Optimus KLK Index

Size

Optimus

Index Size

Hardware

H1: GoBiFo Program Implementation
0.695 1.633 7 2.5

[0.00] [0.000]

H2: Participation in GoBiFo improves the quality of

local public service infrastructure

0.206 0.494 18 6.8

[0.00] [0.000]

H3: Participation in GoBiFo improves General

Economic Welfare

0.362 1.864 15 2.9

[0.00] [0.000]

Software

H4: Participation in GoBiFo increases collective

action and contributions to public goods.

-0.001 0.288 11 2.3

[1] [.15]

H5: GoBiFo increases inclusion and participation in

community planning and implementation

-0.002 -0.004 46 0.9

[1] [.962]

H6: GoBiFo challenges local systems of authority
0.052 0.183 25 6.4

[.74] [.063]

H7: Participation in GoBiFo increases trust
0.036 0.043 12 1.7

[1] [.938]

H8: Participation in GoBiFo builds and strengthens

community groups and networks

0.027 0.209 15 2.6

[1] [.35]

H9: Participation in GoBiFo increases access to

information about local governance

0.01 0.043 15 2.6

[1] [.925]

H10: GoBiFo increases public participation in local

governance

-0.028 -0.041 14 0.8

[1] [.95]

H11: By increasing trust, GoBiFo reduces crime and

conflict in the community.

0.014 0.139 8 2.2

[1] [.681]

H12: GoBiFo changes political and social attitudes
0.035 0.062 9 2.5

[1] [.887]

Notes: Brackets contain Romano-Wolf p-values that control FWER across all 12 hypotheses, computed based on

80 permutations of treatment under the null hypothesis. Optimus index p-values represent the median RW p-value

across 200 sets of 5-fold assignments (computed based on 80 permutations of treatment under the null hypothesis

per set of fold assignments).
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Table 5: GoBiFo Results: Gating Hypotheses

(1) (2) (3) (4) (5) (6)

KLK Index Optimus F Omnibus LMS

Omnibus

KLK Index

Size

Optimus

Index Size

Hardware 0.292 1.191 39 11.3

[0.000] [0.000] [0.000] [0.000]

Software 0.014 0.151 144 22.8

[.473] [0.000] [0.066] [.338]

Software (no Community Farm) 0.011 0.123 143 22.1

[.578] [.013] [.198] [.419]

Notes: Brackets contain p-values. Optimus and LMS omnibus p-values represent the median p-value across 200 sets

of 5-fold assignments, computed based on 80 permutations of treatment under the null hypothesis per set of fold

assignments.
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Table 6: DRC results: Effects of IYDA and Cash under different analysis plans

A. IYDA Treatment

(1) (2) (3) (4) (5)

Hypothesis KLK Optimus F Omnibus LMS Omnibus N

Program Activities 0.185 0.138

[0.005] [0.020] [0.159] [0.450] 1,743

Resilience Capacities -0.002 0

[0.953] [1.000] 1,415

Economic Outcomes 0.038 0.05

[0.109] [0.310] 1,415

B. Cash Transfer Treatment

Program Activities 0.893 2.108

[0.000] [0.000] [0.000] [0.000] 1,743

Resilience Capacities -0.028 -0.144

[0.443] [0.025] [0.029] [0.060] 1,415

Economic Outcomes 0.092 0.167

[0.002] [0.015] [0.009] [0.110] 1,415

Resilience Subfamilies

Absorbitive Capacity -0.191

[0.065] 1,415

Adaptive Capacity -0.124

[0.065] 1,415

Economic Subfamilies

Work Outcomes 0.059 0.149

[0.079] [0.115] [0.065] 1,415

Financial Outcomes 0.108 0.17

[0.010] [0.055] [0.015] 1,415

Notes: All optimus estimations present results from a single sample-split using

a pre-specified randomization seed. Romano-Wolf p-values in brackets; p-values

account for stratification and village-level clusters in treatment assignment.
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Appendix
Not For Print Publication

A1 Empirical Distribution of t-statistics

Our sample consists of papers on field experiments published from 2013 to 2015 in a set of ten

general-interest economics journals: American Economic Journal: Applied Economics, Ameri-

can Economic Journal: Economic Policy, American Economic Review, Econometrica, Economic

Journal, Journal of the European Economic Association, Journal of Political Economy, Quarterly

Journal of Economics, Review of Economic Studies, and Review of Economics and Statistics. We

defined a paper as involving field experiments if it mentioned “field experiment” in its abstract

or listed JEL Code C93. These criteria generated a sample of 61 papers. Using this sample we

recorded the t-statistic for each paper’s featured result. The median t-statistic was 2.6, the 10th

percentile t-statistic was 1.7, and the 90th percentile t-statistic was 7.0. Due to the likelihood of

publication bias and p-hacking (Franco et al. 2014), we interpret this distribution as an overesti-

mate of the ex ante t-statistic distribution that a researcher should expect when beginning a typical

field experiment. Nevertheless, the results imply that most researchers should (at best) expect sta-

tistical power that corresponds to mean “effect sizes” (i.e. t-statistics) of 2.0 to 3.0 in our power

simulations, and we focus our discussion on effect sizes in this range.

A2 Mathematical Proofs

Let ȳiwg = w′
gyig and β̂wg be the coefficient associated with a regression of ȳiwg on treatment

(represented by Equation (7)). Let all outcomes be standardized to have unit variance and let the

elements of wg sum to one.

A2.1 Index Power

Lemma 1. Let βg
′ = (β1g β2g ... β|Hg |g). For a given wg, let βwg = βg

′wg. A regression of ȳiwg

on treatment estimates βwg .

Proof: Let T̃ be a demeaned N × 1 vector of treatment assignments, y any N × 1 vector of

outcomes, and Yg the N × |Hg| matrix of outcomes in group g. A regression of y on treatment
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recovers β̂ = (T̃′T̃)−1(T̃′y). Thus a regression of ȳiwg on treatment yields

(T̃′T̃)−1(T̃′ȳwg) = (T̃′T̃)−1(T̃′Ygwg)

= (T̃′T̃)−1(T̃′Yg)wg = β̂′
gwg

For completeness note that β̂hg is a consistent estimator of βhg, so the regression coefficient is

a consistent estimator of βwg .

Lemma 2. For a given wg, let β̂wg be the coefficient associated with a regression of ȳiwg on

treatment. The variance of β̂wg is w′
gΣgwg, where Σg represents the covariance matrix for β̂g.

Proof: From Lemma 1, β̂wg = β̂′
gwg. Then

V(β̂wg) = V(β̂′
gwg) = w′

gV(β̂g)wg = w′
gΣgwg

Proposition 1. Consider an index ȳiwg = w′
gyig. Let β̂wg be the regression coefficient from esti-

mating Equation (7) and let σβ̂wg
=

√
V(β̂wg). A one-sided test of βwg = 0 based on β̂wg/σβ̂wg

with critical value Φ−1(1− α) has power Φ( βg
′wg√

w′
gΣgwg

+ Φ−1(α)).

Proof: Following convention, let β̂wg be distributed N(βwg ,V(β̂wg)). Applying Lemmas 1 and

2,

P(β̂wg/σβ̂wg
> Φ−1(1− α))

= P((β̂wg − βwg)/σβ̂wg
> −βwg/σβ̂wg

− Φ−1(α))

= P((βwg − β̂wg)/σβ̂wg
< βwg/σβ̂wg

+ Φ−1(α))

= Φ(βwg/σβ̂wg
+ Φ−1(α)))

= Φ( βg
′wg√

w′
gΣgwg

+ Φ−1(α)).

Corollary 1.1. Consider a flatly-weighted KLK index for family g, ȳi = 1
|Hg |

∑
h∈Hg

yihg. Let β̂ȳ

be the regression coefficient from a regression of ȳi on treatment. Suppose βhg = β ∀ h ∈ Hg.

Let σβ̂ȳ
=

√
V(β̂ȳ) and σβ̂hg

=
√

V(β̂hg). A test of β > 0 based on β̂ȳ/σβ̂ȳ
with critical value

Φ−1(1−α) is weakly more powerful than a test of β > 0 based on β̂hg/σβ̂hg
with the same critical

value.

Proof: Following convention, let β̂hg be distributed N(β, σ2
β̂hg

). Note that ȳi =
1′yig

|Hg | , so wg for

the KLK index is 1
|Hg | . Applying Proposition 1, the test based on β̂ȳ/σβ̂ȳ

has power Φ( βg
′1√

1′Σg1
+
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Φ−1(α)). In the special case in which wg contains a single non-zero element the test has power

Φ(
βhg

σβ̂hg

+ Φ−1(α)) ∀ h ∈ Hg. Then

P(β̂ȳ/σβ̂ȳ
> Φ−1(1− α))

= Φ( βg
′1√

1′Σg1
+ Φ−1(α))

= Φ( |Hg |β√
1′Σg1

+ Φ−1(α))

≥ Φ( |Hg |β√
|Hg |2σ2

β̂hg

+ Φ−1(α))

= Φ(
βhg

σβ̂hg

+ Φ−1(α))

= P(β̂hg/σβ̂hg
> Φ−1(1− α)).

Corollary 1.2. Consider a KLK index for family g, ȳi = 1
|Hg |

∑
h∈Hg

yihg, and an alternative index

w′
gyig with wg ̸∝ 1. Suppose βhg = β ∀ h ∈ Hg and Σg = σ2

β̂hg
[(1−ρ)·I+ρ·11′] for −1 ≤ ρ ≤ 1.

Let σβ̂ȳ
=

√
V(β̂ȳ) and σβ̂wg

=
√

V(β̂wg). A test of β > 0 based on β̂ȳ/σβ̂ȳ
with critical value

Φ−1(1−α) is weakly more powerful than a test of β > 0 based on β̂wg/σβ̂wg
with the same critical

value.

Proof: Applying Proposition 1, a test based on β̂wg/σβ̂wg
has power Φ( βg

′wg√
w′

gΣgwg
+ Φ−1(α)).

But βg
′wg = β since w′

g1 = 1, so maximizing power is equivalent to minimizing a(wg) =

w′
gΣgwg. The gradient of a(wg) is 2Σgwg and the Hessian is 2Σg; thus ∂a/∂whg = 2(whg +

ρ
∑
j ̸=h

wjg) ∀ h ∈ Hg. The optimal weights are therefore identical across hypotheses, with w∗
g =

1/|Hg| given the constraint that weights sum to one. These optimal weights yield the KLK index

ȳi.

A2.2 Full Sample and K-fold Optimus Results

Consider a “full sample” optimus test that does not use cross-validation. We start with a group-

level stacked version of the statistical model in Equation (1)

yig = βgTi + εig (11)

with yig, βg, and Ti as defined previously, and εig as an i.i.d. (across i ) |Hg| × 1 column vector

containing errors for all hypotheses h ∈ Hg. After estimating Equation (11) we identify the vector
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of weights ωg that solves

ωg = argmaxwg
Φ(

β̂′
gwg√

wgΣ̂gwg

+ Φ−1(α))

Proposition 2. Let ωg = argmaxwg
Φ(

β̂′
gwg√

wgΣ̂gwg

+Φ−1(α)), where β̂g and Σ̂g are sample estimates

of βg and Σg. Let βωg = E[βg
′ωg | ωg]. Consider an index ȳiωg = ω′

gyig. A regression of ȳiωg on Ti

yields a biased estimate of βωg .

Proof: The use of the sample estimators β̂g and Σ̂g implies that ωg is a function of Ti and

εig ∀ i. In particular, the solution maximizes a generally increasing function of β̂′
gwg = (βg

′ +

(T′T)−1T′εg)wg = βwg + (T′T)−1T′εgwg, where εg is a N × H matrix containing εig ∀ i. To

highlight this dependency we write ωg(T, εg). In the regression

ȳiωg = βωgTi + ωg(T, εg)
′εig

it is therefore generally the case that

E[ωg(T, εg)
′εig | Ti] ̸= 0

Developing the optimus test using the full sample thus generates a biased estimator of βωg ,

even when defining the target parameter to be conditional on the estimated optimus weights.

Proposition 3. Randomly assign N observations to K folds. For each fold k, compute weights

ω−k,g = argmaxw−k,g
Φ(

β̂′
−k,gw−k,g√

w−k,gΣ̂−k,gw−k,g

+ Φ−1(α)), where β̂−k,g and Σ̂−k,g are estimates of βg

and Σg using all observations not in fold k. Let T̃ be a demeaned N × 1 vector of treatment

assignments and Ỹg be a N × 1 vector of weighted outcomes, with element i equal to ω′
−k,gyig.

The K-fold optimus estimator (T̃′T̃)−1T̃′Ỹg is unbiased for E[βg
′ω−k,g].

Proof: Let p represent the proportion of treated observations (Ti = 1); thus
∑

i(Ti − T̄ )2 =

Np(1−p). Randomly assign N observations to K folds, stratifying folds on treatment Ti. Without

loss of generality, assume the fold index k weakly increases with i; we may write ki to refer to the

fold containing observation i. For each fold k, the optimus is derived from the other K − 1 folds,

with weights given by

ω−k,g = argmaxw−k,g
Φ(

β̂′
−k,gw−k,g√

w−k,gΣ̂−k,gw−k,g

+ Φ−1(α))
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where β̂−k,g and Σ̂−k,g are estimates of βg and Σg computed using all observations not in fold

k. Let T̃ be a demeaned N × 1 vector of treatment assignments and let

Ỹg =


ω′
−1,gy1g

ω′
−1,gy2g

...

ω′
−K,gyNg


The K-fold optimus estimator is (T̃′T̃)−1T̃′Ỹg. To show unbiasedness first note that E[T̃ 2

i ω
′
−ki,g

βg] =

E[T̃ 2
i ]E[ω′

−ki,g
βg] and E[T̃iω

′
−ki,g

εig] = 0 because ω−ki,g is a function of T−ki and ε−ki,g (i.e. data

from folds not containing i), and εig, εjg, Ti, and Tj are jointly independent ∀ i, j ∋ i ̸= j. Then

E[(T̃′T̃)−1T̃′Ỹg]

= E[

∑
i T̃iω

′
−ki,g

yig∑
i T̃

2
i

]

= E[

∑
i T̃iω

′
−ki,g

(βgTi + εig)

Np(1− p)
]

=

∑
iE[T̃ 2

i ω
′
−ki,g

βg]

Np(1− p)
+

∑
iE[T̃iω

′
−ki,g

εig]

Np(1− p)

=

∑
i E[T̃ 2

i ]E[ω′
−ki,g

βg]

Np(1− p)

=
p(1− p)

∑
i E[ω′

−ki,g
βg]

Np(1− p)

= E[ω′
−ki,g

βg]

Corollary 3.1. The OLS standard error for the K-fold optimus estimator (T̃′T̃)−1T̃′Ỹg is gener-

ally a biased estimate of the true standard error.

Proof: Let εωg = [ω′
−1,gε1g, ω

′
−1,gε2g, ..., ω

′
−K,gεNg]

′. The OLS standard error for the K-fold

optimus estimator relies on the assumption E[εωg ε
ω
g
′] = σ2I . But E[ω′

−ki,g
εig · ω′

−kj ,g
εjg] ̸= 0, even

when i ̸= j, because ω−ki,g is a function of ε−ki,g, which generally includes εjg.

A3 Shrinkage Estimator

In general the researcher does not know the covariance matrix for the outcomes, Σg, and must

estimate it. While the sample covariance matrix Σ̂g is consistent for Σg, in any finite sample the
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off-diagonal elements suffer from a regression-to-the-mean problem: Large covariance values in

the estimated matrix tend to be large both because the true σjk (the covariance between outcomes

j and k) is non-zero and because there has been a stochastic shock in the sample correlation that is

in the same direction as σjk. Using the raw estimate Σ̂g thus tends to over (under) allocate weight

to outcomes with abnormally high negative (positive) covariance entries. This suggests applying a

shrinkage estimator to the off-diagonal elements of the estimated covariance matrix.30

The shrinkage estimator we consider is the Empirical Bayes estimator. This estimator applies

Bayes Theorem:

P(σjk|σ̂jk) =
P(σ̂jk|σjk) · P(σjk)

P(σ̂jk)

Using the empirical distribution of the covariance entries for group g and applying the law of

iterated expectations we estimate:

P(σjk|σ̂jk) =
P(σ̂jk|σjk) · 2/(H2

g −Hg)∑Hg

l=1

∑Hg

m=l+1 P(σ̂jk|σjk = σ̂lm) · 2/(H2
g −Hg)

(12)

In this context Hg represents the number of outcomes in group g. Note that we only evaluate

P(σjk|σ̂jk) for values of σjk corresponding to points of support in the empirical distribution of

σ̂jk, and the denominator is a constant that ensures the posterior probabilities sum to one.31 To

understand the estimator’s operation, consider the largest σ̂jk, σ̂max. The posterior for σmax is

centered below σ̂max because σ̂max is the upper bound of the support for any posterior. Other

coefficient estimates σ̂lm “pull down” E[σmax], with each posterior point of support σ̂lm receiving

weight P(σ̂max|σmax = σ̂lm). Thus the estimator “shrinks” larger covariance entries towards the

empirical mean of the covariance entries. In practice we find that there tends to be too much

shrinkage; for our final estimate of σjk we use the (unweighted) average the Empirical Bayes

estimate of σjk (Equation (12)) and the raw estimate σ̂jk.

A4 Analyses of Plans Incorporating Index Tests

This appendix analyzes the relative power of a rich variety of plans that combine index tests with

exhaustive PAPs. First we establish that parallel test plans that include an index generally dominate

equivalent plans that lack an index, as long as rejecting the index is of nontrivial value. Table A2

reports average power for a plan that tests an index, in parallel with other hypotheses, relative to the

same plan without an index test. Panel A compares a PAP with an optimus index to the same PAP
30Note that the diagonal elements are all of similar magnitude due to the standardization of the outcomes.
31To compute P(σ̂jk|σjk) we appeal to the Central Limit Theorem and assume an approximately normal distribution

for σ̂jk.

53



without an optimus index, and Panel B compares a PAP with a KLK index to the same PAP without

a KLK index. Due to the optimus index’s power, plans with optimus indices are superior to their

equivalents without indices even when rejecting the index is only half as valuable as rejecting an

individual outcome (Panel A). PAPs with KLK indices are generally superior to their equivalents

without indices when the index weight is 0.5 (Panel B), but the advantage is not as pronounced as

it is with the optimus index (Panel A).

In high-powered cases in which many outcomes reject, rejecting the index along with many of

the outcomes comprising the index may be of limited value. Table A3 reproduces Table A2 but

applies a double-rejection adjustment so that the researcher does not receive double utility from

rejecting an indicator by itself and as part of an index. To achieve this, the correction multiplies

the index weight by 1 − a, where a is the fraction of index hypotheses that individually reject.32

While the value of adding an index as an additional test falls with the double-rejection adjustment,

the conclusions in Tables A2 and A3 are qualitatively similar. Thus, as long as researchers place a

nontrivial weight on rejecting an index, it is advantageous to include the index test.

Next we analyze the tradeoffs between using an optimus index or a KLK index in a variety of

scenarios. Table A4 presents the relative power of an optimus-gated PAP versus KLK index gated

PAPs for different index weights. The table reveals how much more valuable the KLK index needs

to be than the optimus index before researchers should switch from an optimus to a KLK index.

The weight applied to the optimus index varies across rows, while the weight applied to the KLK

index varies across columns. Panel A reports results for smaller families (Column (3) of Table

A2), while Panel B reports results for larger families (Column (4) of Table A2). A weight of 1.0

implies that a researcher values an index rejection equivalently to rejecting a single outcome.

For small families, if the optimus index has a weight of 1, the KLK index weight needs to

exceed 4 before a researcher is indifferent between using the KLK index or an optimus index.33

For large families, if the optimus index has a weight of 1, the researcher prefers it to the KLK index

even when she receives 8 times as much utility from rejecting the KLK index.

Table A5 presents, for different index weights, the relative power of PAPs that test an optimus

index in parallel with other hypotheses versus those that test a KLK index in parallel. As above,

these tables reveal how much more valuable the KLK index needs to be than the optimus index be-

fore researchers should switch from an optimus to a KLK index. Panel A reports results for smaller

32Since a will typically be much higher for the optimus index than the KLK index, the correction disproportionately

affects the optimus.
33It is tempting to assume that the indifference point for an optimus weight of 2 should be a KLK index weight of

8. This logic ignores the dual role that the indices play, however — they generate rejections themselves, and they gate

the testing of individual outcomes. Thus the power ratio of the two plans is not constant in the ratio of the two weights.
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families (Column (3) of Table A2), while Panel B reports results for larger families (Column (4)

of Table A2). For small families, if the optimus index has a weight of 1, the KLK index weight

needs to exceed 5 before a researcher is indifferent between using the KLK index or an optimus

index. For large families, if the optimus index has a weight of 1, the researcher prefers it to the

KLK index even when she receives 6 times as much utility from rejecting the KLK index.

A5 Application Details: The Oregon Health Insurance Exper-

iment

Finkelstein et al. (2012) examine the effects of a 2008 health insurance lottery in Oregon on health

care utilization, financial well-being, and self-reported health outcomes. In 2008 Oregon iden-

tified sufficient financial support to expand access to “OHP Standard” — a Medicaid-expansion

offering — to an additional 10,000 potential beneficiaries. To identify these beneficiaries, the

state proposed to allocate the plan by lottery among the 89,824 applicants who registered from

eligible households. The state selected 35,169 potential beneficiaries by lottery, of whom 30%

successfully enrolled in Medicaid. In comparing the randomly-selected beneficiaries to those who

were not selected, Finkelstein et al. (2012) combine rich administrative and survey data to provide

causal evidence on the effects of health insurance on health care utilization and financial and health

outcomes.

Finkelstein et al. (2012) follow a prespecified analysis plan. The PAP estimates the equation

yihj = β0 + β1lotteryh +Xihβ2 + εihj (13)

where yihj represents outcome j for individual i in household h, lotteryh indicates that household

h was a lottery winner, and Xih are covariates that determine the probability of winning the health-

insurance lottery (household size and survey-round fixed effects).34 Finkelstein et al. (2012) report

several key findings. First, access to health insurance boosted health-service utilization. Using

both administrative and survey data, lottery winners had more inpatient stays and outpatient visits

and were more likely to receive prescription drugs. They also engaged in more preventative care,

undergoing more cholesterol tests, high blood sugar tests, mammograms, and Pap smears. Consis-

tent with their utilization, they reported better access to health care: they were more likely to have

a usual clinic, a personal doctor, and to report receiving all needed medical care and prescription

34Specifications using administrative data also include covariates to improve precision. The administrative data,

however, are not publicly available.
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drugs. Finally, access to health care had a positive impact on perceived health: lottery winners

reported being in better health, both physically and mentally.35

The OHIE study, with a sample size in the tens of thousands, had more than adequate statistical

power — many t-statistics for individual indicators are on the order of 5 to 10. We thus treat OHIE

as an opportunity to test the performance of our techniques in a context in which we know the

“true” DGP. Specifically, we sample a small fraction of the OHIE data and compare the power of

an optimus-gated analysis plan to plans gated by a KLK index or the F or LMS omnibus tests and

to an exhaustive PAP that tests all outcomes in parallel (with no gate). We then verify that the

conclusions are consistent with the true DGP.

Figure A2 summarizes the structure of the OHIE analysis plan. As with GBF, a logical gating

meta-hypothesis is the existence of a first-stage effect — absent any effect on insurance status, it is

implausible that the lottery affected other outcomes. Assuming there is a first-stage effect, we can

then test whether any of the outcomes, including those related to utilization, financial strain, and

self-reported health, were affected. Finally, conditional on insurance having some effect, we can

test individual indicators to determine which were affected. We implement the optimus approach

using the same 5-fold CV algorithm described in Section 4.1.36

For each targeted sample size we draw 100 random samples, executing the analysis 100 times.

We consider samples that are 8%, 10%, 12%, and 15% of the original sample. At each sample size

we ask what power an exhaustive PAP, a gated KLK index approach, a gated optimus approach, or

the F or LMS omnibus tests would have. We focus on the survey data outcomes, as nearly all of the

administrative data outcomes are not publicly available. For simplicity we estimate intention-to-

treat (ITT) effects.37 We populate the family of outcomes using all measures listed in the original

PAP that could plausibly respond to treatment. The outcomes fall into three broad categories: care-

seeking behaviors, including outcomes related to health care utilization, preventative health care,

35Interestingly, Finkelstein et al. (2012) point out that a number of patterns suggest that this improvement in health

is not likely directly attributable to health service utilization, as these changes appear in survey data well before any

differences in health service utilization emerge.
36There are two subtle divergences from the GBF-analysis procedure. First, since we are not generating substantive

results for OHIE, we assume that the researcher could preregister the CV folds for the analysis, removing the need

to generate many sets of folds and apply the conservative Chernozukhov et al. (2018) bound for the median p-value.

Second, since OHIE treatment is only random conditional on covariates, we stratify the null treatment permutations

on covariates as well (i.e. we ensure that the average treatment probability in each covariate cell, after permutation,

matches the original treatment probability in that cell). This stratification is critical for generating tests of the correct

size.
37Instrumental variables estimates are approximately 3.5 times the ITT estimates; as documented in Section A5.1

the first-stage estimation error is trivial.
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and health care access; self-reported health outcomes; and financial outcomes. To ensure that our

conclusions comparing different approaches are not specific to the pooling of all outcomes into

a single family, we also explore the power of the optimus index and KLK index when applied

separately to each of the three subfamilies.38 Table A9 lists the indicators used across all three

subfamilies, alongside measurements of the ITT effects and FWER-adjusted p-values from the full

(100%) sample.39 The table reveals that at least nine (of the 44) individual indicators reject in the

100% sample, even when controlling FWER across all 44 tests, with at least one rejection in each

of the three subfamilies.

A5.1 OHIE Results

Table A10 reports average rejection rates for different families (rows) across different analysis

plans (columns). We focus on the 10% sample because it represents a scenario in which power

approaches, but does not reach, the 80% rule-of-thumb target. Table A12 presents analogous

results for the 8%, 12%, and 15% samples. The first-stage test for an effect on Medicaid coverage

is identical across all analysis plans. The lottery strongly increased Medicaid coverage in the

original study (F = 1, 930), and the first-stage rejects with 100% frequency in every sample.

Since all approaches reject the first stage, we then consider whether each approach finds that

OHIE impacted one or more of the 44 plausible outcomes. Column (1) reports the power to reject

this hypothesis for each approach. The optimus approach (correctly) concludes that OHIE affected

outcomes 71% of the time. This represents 22% higher power than the (unweighted) KLK index,

which rejects the null 58% of the time. The F omnibus tests rejects 73% of the time, while the LMS

omnibus test rejects 38% of the time, suggesting that its additional flexibility is not helpful in this

context. Finally, an exhaustive PAP that tests 44 indicators in parallel rejects one or more indicators

58% of the time, with a median rejection of one indicator (conditional on rejecting anything).

Column (2) of Table A10 reports average effect sizes where relevant. As expected, the average

38We note that these families are somewhat different from the indices reported in Finkelstein et al. (2012), who

report standardized effects at the sub-table level, often consisting of only two or three indicators. We adopt the larger

families to focus on highlighting statistical properties at much smaller subsamples, where aggregating over more

indicators would be attractive for statistical power. Nevertheless, we also report results for several small, homogeneous

table-level families defined in the OHIE PAP that formed the basis of Finkelstein et al. (2012).
39Our goal with the OHIE data is to compare the performance of different analytic strategies rather than to establish

novel substantive results. Thus we limit the 100% sample to individuals with complete data for the outcome indicators

we identify (N = 8, 141), rather than imputing data for missing outcomes. We take the 100% sample as the “true”

effects in the sense that they represent the estimands for estimates based on random subsamples of the data. These

estimates may not be unbiased for the true ITT effects, however, if OHIE outcome data are not missing at random.
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effect size for the optimus index, 0.09 standard deviations, is larger than the KLK index average

index effect size of 0.04 standard deviations. The gap between the two effect sizes is less pro-

nounced than in GoBiFo, reflecting the smaller family size and more modest effect heterogeneity

in OHIE. The gap between the two estimates is also smaller than what we would expect if the treat-

ment effects on all indicators excluded by the optimus were zero, suggesting that in this context the

optimus chooses indicators with larger effect sizes rather than all indicators with nonzero effects.

On average, the optimus procedure constructs an index that is a weighted average of 9.0 indi-

cator variables (Column (3)), six of which receive an average weight greater than 4%, and none

of which receive an average weight above 20%.40 Table A11 reports the variables appearing most

frequently in the optimus and their associated average weights. Outcomes that stand out include

indicators for (not) paying any out-of-pocket medical costs in the past six months, reporting the

usual place of care is a clinic, having any primary care visits, and getting all needed medical care

in the past six months.

Column (4) of Table A10 reports the “true” optimus and KLK index effect sizes, based on

the 100% sample. To compute these estimates we apply the average optimus index weights to

generate a weighted index in the 100% OHIE sample and then estimate Equation (13) in the 100%

sample using this weighted index as the outcome.41 We do the same for the KLK index index but

use identical weights for each indicator variable. The estimates in Columns (4) confirm that both

procedures estimate the correct effect sizes on average, and the modest differences in estimates

between Columns (2) and (4) are not statistically significant.

Table A10 also reports “effect sizes” and “index size” for an exhaustive PAP. The average

PAP “effect size”, reported in Column (2), corresponds to the average effect size for indicators

that reject with the exhaustive PAP; when no indicator rejects (which occurs 42% of the time),

the calculation includes the effect size for the most significant indicator. The average effect size

for a PAP-rejected indicator is 0.21 standard deviations — more than double the optimus effect

size and five times the overall average effect size. The average PAP “index size”, or number of

rejected indicators, is 1.3.42 Finally, Column (4) reports the “true” average effect size (estimated

on the 100% sample) for the indicators that reject in the exhaustive PAP. The average true effect

40We count an indicator as appearing in the index if it receives at least as much weight as it would in a KLK index;

in this case that corresponds to a weight of 0.023 = 1
44 .

41Let r index 10% sample draws (R = 100), h index indicator variables (H = 44), and whr be the optimus weight

for indicator h in sample draw r. The average optimus weight for indicator variable h, applied to construct the “true”

optimus index in the 100% sample, is:
∑R

r=1 whr/
∑H

h=1

∑R
r=1 whr.

42To make the PAP result more comparable to the optimus and KLK index size figures, which are averaged across

all 100 random samples, we left-censor the PAP “index size” at 1 in the 42% of random samples that reject nothing. If

we set the PAP “index size” to 0 when nothing rejects, the average PAP “index size” is 0.9.
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size for these indicators is 0.13 standard deviations, or 38% less than the estimated average effect

size. The discrepancy between the estimated effect size and the true effect size arises because the

exhaustive PAP is underpowered and selects the most significant indicators for rejection, inflating

the effect sizes (Czibor et al., 2019).43 More generally, the PAP results in Table A10 highlight the

difficulty in estimating and interpreting effect sizes with a PAP that tests many outcome variables:

few indicators may be significant; those that are significant may feature large (true) effect sizes; and

estimated effect sizes may be inflated without additional bias corrections (Andrews et al., 2021).

The analysis plan in Figure A2 specifies the optimus as a gate for the 44 indicator hypotheses

— this is equivalent to executing an exhaustive PAP if and only if the optimus index rejects. The

bottom row in Table A10 reports the average PAP power and “index size” when the optimus gates

the PAP. In addition to rejecting the optimus index 71% of the time, the gated PAP rejects one

or more indicators 51% of the time, which is only 7 percentage points lower than the ungated

exhaustive PAP. Furthermore, the average number of rejections (conditional on rejecting anything)

is virtually identical for the gated and ungated PAPs. In summary, adding an optimus gate to the

exhaustive PAP comes at little cost — in 88% of cases in which the ungated exhaustive PAP would

detect an effect on any individual outcome, the gated exhaustive PAP would also detect an effect

on the same outcomes.

Table A12 reports the main results in Table A10 for the 8%, 12%, and 15% samples. Across

all four sample sizes (8%, 10%, 12%, and 15%) the results are qualitatively similar: the optimus

test has the highest power, followed by the KLK index or F omnibus test, the exhaustive PAP, and

finally the LMS omnibus test. Power for all tests increases with sample size, and the optimus’s av-

erage effect size and index size increase modestly with sample size, suggesting that larger samples

allow the optimus to more precisely select variables for inclusion.

We also leverage the full dataset (i.e. 100% sample) to examine the frequency at which the op-

timus index includes indicators for which there is (approximately) a null effect. To determine this

frequency, we first enumerate the outcomes that reject in the full dataset when controlling the false

discovery rate at q < 0.1 (Benjamini et al., 2006); we find that there are 19 outcomes for which

there is compelling evidence of a treatment effect. We then compute the average optimus weight

assigned to each outcome across the 100 random 10% samples. We find that on average 81% of

the weight in the optimus index gets assigned to variables for which there is strong evidence of

a treatment effect in the full dataset. Only seven outcomes for which there is weak evidence of

a treatment effect receive more than 1% average weight, with the most frequent “null” outcome

43Ironically, since the multiplicity-adjusted significance threshold is more stringent than the conventional signifi-

cance threshold, the inflation bias can be even more extreme with an exhaustive PAP than the typical case of publication

bias.

59



(currently taking prescription medications) receiving 2.3% weight on average.44 Thus, in expecta-

tion a supermajority of the optimus weight goes to outcomes with treatment effects, implying that

in this case the optimus selects a broad index of variables that are generally affected by treatment.

By comparison, the KLK index places 57% (25/44) of its weight on outcomes for which there is

not strong evidence of a treatment effect.

Finally, we compare the performance of the optimus index and the KLK index when testing

the three OHIE subfamily hypotheses: utilization-related outcomes, health-related outcomes, and

financial outcomes. These estimates allow us to examine the performance of the different index

tests in smaller families of hypotheses. Instead of testing a single all-outcome gate, we now test

three subfamily indices in parallel. Table A13 reports average power, effect size, and index size

for these three subfamilies using the 10% sample.45 The tests are underpowered for all three

subfamilies, in part because we now multiplicity adjust the p-values to reflect that we test the three

subfamilies in parallel. Nevertheless, in each case the optimus outperforms the KLK index and F

omnibus test in terms of power. For example, for utilization-related outcomes the optimus achieves

36% power versus 21% power for the KLK index and 30% power for the F omnibus, while for

financial-related outcomes the optimus achieves 23% power versus 17% power for the KLK index

and 20% power for the F omnibus.46

44This outcome has an unadjusted p-value of 0.10 and a FDR control q-value of 0.14 in the full dataset, suggesting

that its null is more likely false than true.
45Table A11 reports the average weights received by each indicator when estimating a separate optimus index for

each subfamily.
46The KLK index achieves only 2% power for the health-related outcomes. This is effectively the size of the test,

since we multiplicity adjust the p-values for three parallel tests using the Romano-Wolf algorithm.
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Figure A1: Distribution of Relative Power of Optimus Parallel Plan (with double-rejection adjust-

ment) versus Exhaustive PAP

(a) Small families (index weight = 1)
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(c) Small families (index weight = 2)
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(d) Large families (index weight = 2)
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Notes: Panels (a) and (c) correspond to Column (3) of Table 2, and Panels (b) and (d) correspond to Column (4). The

double-rejection adjustment scales an index’s rejection utility by one minus the fraction of index components that

reject in the PAP.

61



Figure A2: Optimus Gate analysis plan for Finkelstein et al. (2012)
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Table A1: Indicators and Weights in GoBiFo Optimus

Hypothesis Indicator Name Variable Label Weight PAP Family

Hardware

bank acct Does this community have a bank account? 0.281 H1,H3

vdc Since January 2006, has this community had a Village or Community Development Co 0.118 H1

vdp Does this community have a village development plan (i.e. an agreed plan with sp 0.094 H1

training In the past 2 years (since October 2007), have you participated in any skills tr 0.09 H3

func tba Does the community have a traditional birth attendant (TBA) house and is it func 0.089 H2

f comcntr Does the community have a community center and is it functional? 0.06 H2

f barrie Does the community have a court barrie and is it functional? 0.06 H2

f dryflr Does the community have a drying floor and is it functional? 0.05 H2

att wdc Have you personally talked with a member of the WDC or participated in a meeting 0.043 H1

seedbank Does this community have a seed bank (i.e. where people can borrow rice or groun 0.028 H2

quintile Quintile of Household PCA Asset/Amenities score 0.026 H3

petty [From supervisor tour of community] Have you seen anybody selling packaged goods 0.021 H3

tarp public [After asking the community how they have used (or plan to use) the tarp] SUPERV 0.02 H2

vis wdc Has this community been visited by a Ward Development Committee member in the pa 0.015 H1

Software

commfarm Does this community have any communal farms? 0.091 H4

no fight In the past 12 months, respondent has not been involved in any physical fighting 0.076 H11

minutes Did anyone take minutes (written record of what was said) at the most recent com 0.069 H5

list lc chf Relative view of ’do you think the Local Council [as opposed to Paramount chief] 0.065 H6

mbr wom Are you a member of any women’s groups (general)? 0.062 H8

rtarp public [Given current chief chosen since 2005] Is the current (or acting) village chief 0.06 H6

name elec Correctly able to name the year of the next general elections 0.055 H9

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.054 H6,H12

tstore notchf Village focus group says tarp is not stored in chief’s private residence 0.039 H6

vote Enumerator record of whether a vote occurred during the gift choice deliberation 0.039 H5,H6

name sc Correctly able to name the Section Chief for this section 0.039 H9

council listen Do you think the Local Council listens to what people in this town / neighborhoo 0.037 H10

trust ngo In your opinion, do you believe NGOs / donor projects or do you have to be caref 0.035 H7

mbr seed Are you a member of any seed multiplication groups? 0.035 H8

maj gift Gift (salt versus batteries) chosen reflects the view of the majority of househo 0.03 H5

mbr trad Are you a member of any traditional societies? 0.029 H8

say tarp Respondent feels that ’everybody in the village had equal say’ in deciding what 0.028 H5

store tarp Tarp is stored in a public place (community center, school/clinic, church/mosque 0.028 H5

meet yth Enumerator record of total youths (18-35 years) present at gift choice meeting ( 0.026 H5

vis pc Has this community been visited by the Paramount Chief in the past year? 0.019 H9

bribebad Respondent agrees with ’It’s wrong to pay a bribe to any government official’ an 0.017 H12

vh fem Is the current (or acting) village chief/Headman a woman? 0.016 H12

rmarket Have you ever given money to a nonhousehold member to buy something for you at t 0.014 H7

dues How much money have your given to church or mosque in the last month? [Add up al 0.013 H8

disabled meet Did any disabled people (blind, polio, amputee, wheelchair, etc.) attend the las 0.012 H5

notrad cards Respondent does not choose a chiefdom official or elder in response to ’who had 0.01 H6
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Hypothesis Indicator Name Variable Label Weight PAP Family

Software (no

community

farm)

no fight In the past 12 months, respondent has not been involved in any physical fighting 0.086 H11

minutes Did anyone take minutes (written record of what was said) at the most recent com 0.073 H5

mbr wom Are you a member of any women’s groups (general)? 0.071 H8

list lc chf Relative view of ’do you think the Local Council [as opposed to Paramount chief] 0.066 H6

rtarp public [Given current chief chosen since 2005] Is the current (or acting) village chief 0.062 H6

name elec Correctly able to name the year of the next general elections 0.06 H9

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.06 H6,H12

council listen Do you think the Local Council listens to what people in this town / neighborhoo 0.049 H10

tstore notchf Village focus group says tarp is not stored in chief’s private residence 0.046 H6

trust ngo In your opinion, do you believe NGOs / donor projects or do you have to be caref 0.041 H7

mbr seed Are you a member of any seed multiplication groups? 0.039 H8

vote Enumerator record of whether a vote occurred during the gift choice deliberation 0.039 H5,H6

name sc Correctly able to name the Section Chief for this section 0.038 H9

meet yth Enumerator record of total youths (18-35 years) present at gift choice meeting ( 0.032 H5

say tarp Respondent feels that ’everybody in the village had equal say’ in deciding what 0.031 H5

maj gift Gift (salt versus batteries) chosen reflects the view of the majority of househo 0.03 H5

store tarp Tarp is stored in a public place (community center, school/clinic, church/mosque 0.029 H5

mbr trad Are you a member of any traditional societies? 0.026 H8

vis pc Has this community been visited by the Paramount Chief in the past year? 0.021 H9

bribebad Respondent agrees with ’It’s wrong to pay a bribe to any government official’ an 0.019 H12

vh fem Is the current (or acting) village chief/Headman a woman? 0.016 H12

rmarket Have you ever given money to a nonhousehold member to buy something for you at t 0.016 H7

dues How much money have your given to church or mosque in the last month? [Add up al 0.014 H8

disabled meet Did any disabled people (blind, polio, amputee, wheelchair, etc.) attend the las 0.012 H5

duration Enumerator record of duration of gift choice deliberation in minutes (field acti 0.011 H5

notrad cards Respondent does not choose a chiefdom official or elder in response to ’who had 0.01 H6

spend lc chf Relative view of ’if the Local Council [as opposed to Paramount chief] was given 0.01 H6

Hypothesis 1

bank acct Does this community have a bank account? 0.5 H1,H3

vdc Since January 2006, has this community had a Village or Community Development Co 0.227 H1

vdp Does this community have a village development plan (i.e. an agreed plan with sp 0.144 H1

att wdc Have you personally talked with a member of the WDC or participated in a meeting 0.082 H1

vis wdc Has this community been visited by a Ward Development Committee member in the pa 0.05 H1

Hypothesis 2

func tba Does the community have a traditional birth attendant (TBA) house and is it func 0.201 H2

seedbank Does this community have a seed bank (i.e. where people can borrow rice or groun 0.177 H2

f barrie Does the community have a court barrie and is it functional? 0.172 H2

f comcntr Does the community have a community center and is it functional? 0.153 H2

f latrine Does the community have a latrine and is it functional? 0.113 H2

f dryflr Does the community have a drying floor and is it functional? 0.077 H2

footunif Do any of the local sports teams have uniforms / vests? 0.046 H2

tarp public [After asking the community how they have used (or plan to use) the tarp] SUPERV 0.03 H2

func sports Does the community have a football / sports field and is it functional? 0.021 H2

f psch Does the community have a primary school and is it functional? 0.021 H2
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Hypothesis Indicator Name Variable Label Weight PAP Family

Hypothesis 3

bank acct Does this community have a bank account? 0.6 H1,H3

training In the past 2 years (since October 2007), have you participated in any skills tr 0.186 H3

quintile Quintile of Household PCA Asset/Amenities score 0.071 H3

assets Household PCA Asset/Amenities score (includes hhs ownership of bicycle, mobile p 0.039 H3

tot goods Number of goods out of 10 common items (bread, soap, garri, country cloth/garra 0.036 H3

petty [From supervisor tour of community] Have you seen anybody selling packaged goods 0.028 H3

betteroff Supervisor assessment that community is ’much better off’ or ’a little better of 0.021 H3

tot petty How many houses and small shops (including tables, boxes and kiosks) are selling 0.02 H3

Hypothesis 4

commfarm Does this community have any communal farms? 0.713 H4

vchr tot How much money do you think the community will be able to raise to use the build 0.13 H4

mkt grp Do any people from different households here come together to sell agricultural 0.054 H4,H7,H8

cards Number of vouchers for building materials out of 6 maximum that the community re 0.046 H4

wkcomfrm In the past one year, did you work on a communal farm (this means a farm owned b 0.041 H4

Hypothesis 5

minutes Did anyone take minutes (written record of what was said) at the most recent com 0.014 H5

say tarp Respondent feels that ’everybody in the village had equal say’ in deciding what 0.01 H5

show tarp Supervisor asks to see the tarp at second round follow-up visit: can the communi 0.01 H5

Hypothesis 6

rtarp public [Given current chief chosen since 2005] Is the current (or acting) village chief 0.218 H6

list lc chf Relative view of ’do you think the Local Council [as opposed to Paramount chief] 0.177 H6

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.16 H6,H12

tstore notchf Village focus group says tarp is not stored in chief’s private residence 0.157 H6

notrad tarp Respondent does not choose a chiefdom official or elder in response to ’who had 0.113 H6

vote Enumerator record of whether a vote occurred during the gift choice deliberation 0.091 H5,H6

notrad cards Respondent does not choose a chiefdom official or elder in response to ’who had 0.028 H6

leader wmn Respondent agrees with ’Women can be good politicians and should be encouraged t 0.028 H6,H12

spend lc chf Relative view of ’if the Local Council [as opposed to Paramount chief] was given 0.017 H6

question auth Respondent agrees with ’As citizens, we should be more active in questioning the 0.016 H6

Hypothesis 7

trust ngo In your opinion, do you believe NGOs / donor projects or do you have to be caref 0.471 H7

rmarket Have you ever given money to a nonhousehold member to buy something for you at t 0.189 H7

hmarket Tomorrow, if you needed to buy something from town or the market but were unable 0.062 H7

osusu Are you a member of any credit or savings (osusu) groups? 0.032 H7,H8

trust pol In your opinion, do you believe the police or do you have to be careful when dea 0.025 H7

trust own In your opinion, do you believe people from you own village / town / neighborhoo 0.014 H7

trust out In your opinion, do you believe people from outside you own village / town / nei 0.012 H7
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Hypothesis Indicator Name Variable Label Weight PAP Family

Hypothesis 8

mbr wom Are you a member of any women’s groups (general)? 0.524 H8

mbr seed Are you a member of any seed multiplication groups? 0.259 H8

mbr trad Are you a member of any traditional societies? 0.118 H8

dues How much money have your given to church or mosque in the last month? [Add up al 0.055 H8

osusu Are you a member of any credit or savings (osusu) groups? 0.021 H7,H8

Hypothesis 9

name elec Correctly able to name the year of the next general elections 0.377 H9

name sc Correctly able to name the Section Chief for this section 0.227 H9

name chr Correctly able to name the Chairperson of the Local Council 0.125 H9

vis pc Has this community been visited by the Paramount Chief in the past year? 0.1 H9

disp ind Supervisor assessment of whether there are any of the following items–awareness 0.034 H9

radio Do you get information from the radio about politics and what the government is 0.027 H9

Hypothesis 10

vote local Did you vote in the local government election (2008)? 0.206 H10

stand lc Did anyone in this community contest the party symbol in the 2008 local council 0.039 H10

change council Respondent thinks they have ’some’ or ’little’ as opposed to ’no’ chance to chan 0.029 H10

vote pres1 Enumerator verifies that respondent’s voter ID card has the correct hole punched 0.029 H10

cvote local Enumerator verifies that respondent’s voter ID card has the correct hole punched 0.022 H10

Hypothesis 11

no fight In the past 12 months, respondent has not been involved in any physical fighting 0.599 H11

no conflict No conflict that respondent needed help from someone outside the household to re 0.23 H11

nobeatchild Respondent agrees with ’Beating children will only teach them to use violence ag 0.035 H11

no witch During the last 12 months, respondent has not been a victim of witchcraft (juju) 0.03 H11

violence bad Respondent agrees with ’The use of violence is never justified in politics’ and 0.028 H11

no theft In the past 12 months, no livestock, household items or money stolen from the re 0.013 H11

Hypothesis 12

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.318 H6,H12

bribebad Respondent agrees with ’It’s wrong to pay a bribe to any government official’ an 0.164 H12

vh fem Is the current (or acting) village chief/Headman a woman? 0.135 H12

leader wmn Respondent agrees with ’Women can be good politicians and should be encouraged t 0.104 H6,H12

youthtreat Respondent agress with ’In this community, elders / authorities treat youths jus 0.016 H12
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Table A2: Relative Power of Plans w/ Indices v. Plans w/o Indices

(1) (2) (3) (4) (5)

Index weight: A: Optimus + PAP v. PAP

0.5 1.10 1.12 1.15 1.11 1.11

1.0 1.20 1.23 1.31 1.21 1.22

1.5 1.29 1.35 1.47 1.32 1.33

2.0 1.38 1.46 1.63 1.42 1.45

B: KLK index + PAP v. PAP

0.5 1.04 1.04 1.01 1.02 1.00

1.0 1.09 1.08 1.04 1.04 1.02

1.5 1.13 1.12 1.08 1.06 1.03

2.0 1.17 1.15 1.11 1.08 1.05

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports, for a given index weight, the geometric

mean power ratio of a plan that tests an index in parallel with other

hypotheses to an equivalent plan that omits the index test. Panels

A and B respectively test an optimus index with an exhaustive

PAP and a KLK index with an exhaustive PAP.
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Table A3: Relative Power of Plans w/ Indices v. Plans w/o Indices, Double-rejection Adjusted

(1) (2) (3) (4) (5)

Index weight: A: Optimus + PAP v. PAP

0.5 1.04 1.06 1.05 1.07 1.05

1.0 1.09 1.12 1.11 1.14 1.12

1.5 1.14 1.18 1.18 1.21 1.18

2.0 1.18 1.24 1.24 1.27 1.24

B: KLK index + PAP v. PAP

0.5 1.03 1.03 1.01 1.02 1.00

1.0 1.07 1.07 1.04 1.04 1.02

1.5 1.11 1.10 1.06 1.06 1.03

2.0 1.14 1.14 1.09 1.07 1.04

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports, for a given index weight, the geomet-

ric mean power ratio of a plan that tests an index in parallel with

other hypotheses to an equivalent plan that omits the index test.

Panels A and B respectively test an optimus index with an exhaus-

tive PAP and a KLK index with an exhaustive PAP. The double-

rejection adjustment scales an index’s rejection utility by one mi-

nus the fraction of index components that reject in the PAP.
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Table A4: Relative Power of Optimus-Gated PAP v. KLK Index Gated PAP

KLK index weight: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Optimus-index weight: A: H ≤ 20

1.0 2.41 1.66 1.27 1.03 0.87 0.75 0.66 0.59

2.0 3.54 2.44 1.87 1.52 1.28 1.10 0.97 0.87

3.0 4.67 3.22 2.47 2.00 1.68 1.45 1.28 1.14

4.0 5.79 4.00 3.06 2.48 2.09 1.80 1.59 1.42

B: H ≥ 50

1.0 2.54 2.06 1.74 1.52 1.35 1.21 1.10 1.01

2.0 3.27 2.65 2.24 1.95 1.73 1.56 1.42 1.30

3.0 3.97 3.22 2.72 2.37 2.11 1.89 1.72 1.58

4.0 4.66 3.77 3.20 2.78 2.47 2.22 2.02 1.86

Notes: Each cell reports, for a given combination of optimus-index and KLK

index weights, the geometric mean power ratio of an optimus-index gated

exhaustive PAP to a KLK index gated exhaustive PAP. Panel A uses the same

set of parameter combinations as Column (3) of Table 2, and Panel B uses the

same set of parameter combinations as Column (4) of Table 2 (416 and 624

parameter combinations respectively).
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Table A5: Relative Power of Optimus-Parallel PAP v. KLK Index Parallel PAP

KLK index weight: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Optimus-index weight: A: H ≤ 20

1.0 1.25 1.18 1.12 1.06 1.01 0.97 0.93 0.89

2.0 1.56 1.47 1.39 1.32 1.26 1.21 1.16 1.11

3.0 1.86 1.75 1.66 1.58 1.50 1.44 1.38 1.32

4.0 2.16 2.03 1.92 1.83 1.74 1.67 1.60 1.54

B: H ≥ 50

1.0 1.17 1.13 1.09 1.06 1.03 1.01 0.98 0.96

2.0 1.37 1.32 1.28 1.24 1.21 1.18 1.15 1.13

3.0 1.56 1.51 1.46 1.42 1.38 1.35 1.32 1.29

4.0 1.76 1.70 1.64 1.60 1.55 1.51 1.48 1.45

Notes: Each cell reports, for a given combination of optimus-index and KLK

index weights, the geometric mean power ratio of an exhaustive PAP that tests

the optimus index in parallel to an exhaustive PAP that tests the KLK index

in parallel. Panel A uses the same set of parameter combinations as Column

(3) of Table 2, and Panel B uses the same set of parameter combinations as

Column (4) of Table 2 (416 and 624 parameter combinations respectively).
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Table A6: OLS results and Optimus Weights, DRC Program Activities

(1) (2) (3) (4)

IYDA Cash Transfers

Indicator OLS Optimus Weight OLS Optimus Weight

member of savings group
0.109 0.219 0.08 0.006

(0.076) (0.085)

participated in trainings
0.119 0.237 0.059 0.009

(0.074) (0.089)

savings group attendance

(freq)

0.196 0.264 0.269 0.123

(0.117) (0.192)

entrepreneurship training

(freq)

0.095 0.009 0.076 0.011

(0.068) (0.086)

respondent received cash

grant

0.255 0.145 2.082 0.42

(0.137) (0.227)

total cash grants received
0.337 0.127 2.795 0.436

(0.181) (0.318)

Columns (1) and (3) present OLS estimates and standard errors clustered at the village

level from outcome-by-outcome regressions of Equation (10), while Columns (2) and (4)

report the estimated optimus weights from that specification. Columns (1) and (2) focus

on the estimates and weights associated with IYDA while Columns (3) and (4) focus on

the estimates and weights associated with cash transfers.
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Table A7: OLS results and Optimus Weights, DRC Resilience Capacities

(1) (2) (3) (4) (5) (6)

IYDA Cash Transfers

Indicator Hypothesis OLS Family Weights OLS Family Weights H4 Weights H5 Weights

bonding social capital (who

can help)

4 -0.073 0 0.164 0 0

(0.101) (0.116)

bonding social capital (who

would help)

4 -0.075 0 0.202 0 0

(0.092) (0.102)

resp participates in HH

savings dec

4 0.1 0 -0.232 0.274 0.633

(0.082) (0.088)

resp participates in HH

spending dec

4 0.026 0 -0.156 0.044 0.158

(0.081) (0.088)

resp participates in HH gift

dec

4 0.05 0 -0.174 0.026 0.217

(0.072) (0.079)

resp participates in spending

(own money)

4 -0.09 0 -0.026 0 0.001

(0.075) (0.103)

locus of control
5 0.011 0 -0.23 0.344 0.468

(0.082) (0.086)

aspirations (childrens future)
5 0.081 0 -0.163 0.201 0.358

(0.074) (0.069)

aspirations (childrens ed)
5 0.038 0 -0.066 0 0

(0.062) (0.062)

group you will help
5 -0.059 0 0.095 0 0

(0.090) (0.096)

groups that will help you
5 -0.053 0 0.048 0 0

(0.083) (0.091)

knows gov official
5 -0.037 0 -0.031 0.036 0.056

(0.073) (0.074)

can ask gov official for help
5 -0.071 0 -0.029 0 0

(0.060) (0.053)

knows NGO staff
5 -0.108 0 0.031 0 0

(0.057) (0.050)

can ask NGO staff for help
5 -0.077 0 0.058 0 0

(0.065) (0.059)

community group member
5 -0.007 0 0.027 0 0

(0.080) (0.085)

Continued on next page
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DRC Resilience Outcomes, continued

(1) (2) (3) (4) (5) (6)

IYDA Cash Transfers

Indicator Hypothesis OLS Family Weights OLS Family Weights H4 Weights H5 Weights

discusses saving
5 0.193 0 -0.131 0.148 0.206

(0.089) (0.098)

discusses emp opportunities
5 0.119 0 -0.082 0 0

(0.074) (0.090)

discusses business plans
5 -0.009 0 0.076 0 0

(0.083) (0.102)

financial planning
5 0.05 0 -0.018 0 0

(0.082) (0.085)

financial separation
5 -0.051 0 0.056 0 0

(0.098) (0.101)

Columns (1) and (3) present OLS estimates and standard errors clustered at the village level from outcome-by-outcome regressions

of Equation (10), while Columns (2), (4), (5), and (6) report the estimated optimus weights from that specification. Columns (1)

and (2) focus on the estimates and weights associated with IYDA while Columns (3) through (6) focus on the estimates and weights

associated with cash transfers. Optimus weights are zero for IYDA as different folds did not produce a consistent sign.

Table A8: OLS results and Optimus Weights, DRC Economic Outcomes

(1) (2) (3) (4) (5) (6)

IYDA Cash Transfers

Indicator Hypothesis OLS Family Weights OLS Family Weights H6 Weights H7 Weights

worked for others
6 0.07 0.075 -0.005 0 0.027

(0.072) (0.085)

worked for self
6 -0.082 0 0.16 0.091 0.345

(0.065) (0.080)

total earnings
6 -0.055 0 0.048 0 0.007

(0.050) (0.056)

total hours worked
6 -0.055 0 0.234 0.171 0.528

(0.084) (0.109)

total business assets
6 0.132 0.164 0.059 0.002 0.104

(0.076) (0.087)

migrated for work
6 0.069 0.068 -0.142 0 0

(0.071) (0.067)

Continued on next page
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DRC Economic Outcomes, Continued

(1) (2) (3) (4) (5) (6)

IYDA Cash Transfers

Indicator Hypothesis OLS Family Weights OLS Family Weights H6 Weights H7 Weights

log food consumption
7 0.112 0.16 0.027 0 0

(0.068) (0.067)

log non-food consumption
7 0.055 0 0.071 0.056 0.096

(0.068) (0.069)

any savings
7 0.182 0.372 0.133 0.071 0.106

(0.078) (0.080)

total savings
7 0.047 0 0.185 0.054 0.098

(0.067) (0.080)

number of meals missed

(resp)

7 0.078 0 0.122 0.035 0.038

(0.115) (0.107)

number of meals missed

(children)

7 0.07 0.06 0.168 0.106 0.13

(0.109) (0.099)

log total non-business assets
7 0.054 0 0.036 0 0

(0.066) (0.075)

total health spending (month)
7 0.056 0.126 -0.007 0 0

(0.067) (0.080)

total education spending

(year)

7 -0.039 0 0.099 0.06 0.074

(0.060) (0.069)

HH received remittances
7 0.002 0 0.225 0.094 0.117

(0.062) (0.135)

HH member migrated for

work

7 0.067 0.058 -0.135 0 0

(0.071) (0.067)

food security index (FIES)
7 -0.076 0 0.377 0.318 0.418

(0.071) (0.094)

Columns (1) and (3) present OLS estimates and standard errors clustered at the village level from outcome-by-outcome regressions

of Equation (10), while Columns (2), (4), (5), and (6) report the estimated optimus weights from that specification. Columns (1)

and (2) focus on the estimates and weights associated with IYDA while Columns (3) through (6) focus on the estimates and weights

associated with cash transfers.
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Table A9: Disaggregated OHIE Results (100% Sample)

(1) (2)

Indicator (standardized outcome) ITT estimate RW p-val

Subfamily: Utilization, prevention, access

Currently taking any prescription medications 0.039 0.845

(0.023)

Any primary care visits 0.103 0.000

(0.023)

Any ER visits 0.021 1.000

(0.023)

Any hospital visits -0.009 1.000

(0.023)

Number of prescription meds currently taking 0.069 0.090

(0.023)

Number of primary care visits 0.098 0.000

(0.023)

Number of ER visits 0.012 1.000

(0.023)

Number of hospital visits 0.012 1.000

(0.023)

Ever had cholesterol checked 0.031 0.965

(0.024)

Ever had diabetes checked 0.059 0.245

(0.023)

Ever had a mammogram 0.067 0.105

(0.023)

Ever had a pap smear 0.066 0.105

(0.022)

Ever had diabetes/sugar diabetes diagnosis -0.003 1.000

(0.023)

Ever had asthma diagnosis -0.013 1.000

(0.023)

Ever had high blood pressure diagnosis 0.014 1.000

(0.023)
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(1) (2)

Indicator (standardized outcome) ITT estimate RW p-val

Ever had COPD diagnosis 0.047 0.590

(0.023)

Ever had heart disease/angina diagnosis -0.036 0.890

(0.023)

Ever had congestive heart failure diagnosis 0.016 1.000

(0.024)

Ever had depression/anxiety diagnosis -0.007 1.000

(0.023)

Ever had high cholesterol diagnosis 0.011 1.000

(0.023)

Ever had kidney disease diagnosis -0.027 0.975

(0.023)

Usual place of care is clinic 0.154 0.000

(0.024)

Have personal doctor 0.129 0.000

(0.024)

Got all needed medical care in last 6 months 0.158 0.000

(0.023)

Got all needed prescriptions in last 6 months 0.105 0.000

(0.023)

Did not use ER for non-ER care -0.002 1.000

(0.023)

Subfamily: Health

Overall health excellent/good 0.051 0.490

(0.023)

Overall health not poor 0.047 0.620

(0.023)

Change in overall health (positive is better) 0.097 0.000

(0.023)

Number of days (in past 30) not impaired by poor health 0.013 1.000

(0.023)

Number of days (in past 30) when physical health good 0.009 1.000

(0.023)
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(1) (2)

Indicator (standardized outcome) ITT estimate RW p-val

Number of days (in past 30) when mental health good -0.002 1.000

(0.024)

Not depressed in past 2 weeks -0.005 1.000

(0.023)

Not current smoker -0.029 0.965

(0.023)

Physical activity (compared to others of same age) -0.027 0.975

(0.023)

Current overall happiness (higher is better) 0.063 0.150

(0.023)

Subfamily: Financial

Household income as percent of federal poverty line 0.009 1.000

(0.024)

Household income category 0.016 1.000

(0.024)

Currently employed -0.003 1.000

(0.023)

Average weekly hours worked 0 1.000

(0.023)

No out of pocket costs for medical care in past 6 months 0.183 0.000

(0.023)

Do not currently owe money for medical expenses 0.045 0.665

(0.023)

Haven’t borrowed to pay health care bills in past 6 months 0.109 0.000

(0.024)

Haven’t been refused care because owed money for past treatment 0.048 0.620

(0.023)

Notes: Results in Column (1) represent coefficients from a regression of the listed indicator (standardized

to unit variance) on an intention-to-treat indicator using the 100% sample (N = 8, 141), controlling

for household size and survey round fixed effects. Parentheses contain standard errors clustered at the

household level. Column (2) reports Romano-Wolf p-values that control FWER across the 44 outcomes

in the table.
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Table A10: OHIE Results: Gating and Individual Indicator Hypotheses

(1) (2) (3) (4)

Test: Power Effect Size Index Size True Effect Size

Optimus 71% 0.092 9.0 0.099

KLK Index 58% 0.038 44 0.039

F Omnibus 73%

LMS Omnibus 38%

Exhaustive PAP 58% 0.213+ 1.3++ 0.131

PAP (post optimus gate) 51% 0.214+ 1.3++ 0.131

Notes: Results in Columns (1) – (3) represent averages across 100 random

10% samples of the OHIE data. Power denotes power to reject the sharp null

hypothesis for at least one indicator. True effect size represents the estimated

effect in the full (100% sample) OHIE dataset, with indicators weighted using

average weights underlying Column (2).

+ Average effect size for indicators rejected by the PAP (when no indicator

rejects, calculation includes the most significant indicator).

++ Average number of indicators rejected, left-censored at 1.

Table A11: Indicators and Weights in OHIE
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Hypothesis Indicator Name Variable Label Weight

All Outcomes

neg cost any oop 12m No out of pocket costs for medical care in past 6 months 0.194

usual clinic 12m Usual place of care is clinic 0.088

doc any 12m Any primary care visits 0.067

needmet med 12m Got all needed medical care in last 6 months 0.060

needmet rx 12m Got all needed prescriptions in last 6 months 0.044

health chgflip bin 12m Change in overall health (positive is better) 0.040

usual doc 12m Have personal doctor 0.036

neg cost borrow 12m Haven’t borrowed to pay health care bills in past 6 months 0.033

doc num mod 12m Number of primary care visits 0.033

emp dx 12m Ever had COPD diagnosis 0.032

rx num mod 12m Number of prescription meds currently taking 0.027

dia chk bin 12m Ever had diabetes checked 0.026

mam chk bin all 12m Ever had a mammogram 0.026

rx any 12m Currently taking any prescription medications 0.023

pap chk bin all 12m Ever had a pap smear 0.023

neg cost refused 12m Haven’t been refused care because owed money for past treatment 0.017

neg cost any owe 12m Do not currently owe money for medical expenses 0.016

poshappiness bin 12m Current overall happiness (higher is better) 0.016

health notpoor 12m Overall health not poor 0.016

chl dx 12m Ever had high cholesterol diagnosis 0.013

hhinc pctfpl 12m Household income as percent of federal poverty line 0.012

chf dx 12m Ever had congestive heart failure diagnosis 0.012

er any 12m Any ER visits 0.012

er num mod 12m Number of ER visits 0.012

health genflip bin 12m Overall health excellent/good 0.012

hbp dx 12m Ever had high blood pressure diagnosis 0.010

chl chk bin 12m Ever had cholesterol checked 0.010

employ hrs 12m Average weekly hours worked 0.010

hhinc cat 12m Household income category 0.010
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Hypothesis Indicator Name Variable Label Weight

Utilization,

prevention,

access

needmet med 12m Got all needed medical care in last 6 months 0.177

usual clinic 12m Usual place of care is clinic 0.129

needmet rx 12m Got all needed prescriptions in last 6 months 0.123

doc any 12m Any primary care visits 0.052

emp dx 12m Ever had COPD diagnosis 0.050

usual doc 12m Have personal doctor 0.050

doc num mod 12m Number of primary care visits 0.045

dia chk bin 12m Ever had diabetes checked 0.039

pap chk bin all 12m Ever had a pap smear 0.038

mam chk bin all 12m Ever had a mammogram 0.037

rx num mod 12m Number of prescription meds currently taking 0.026

chf dx 12m Ever had congestive heart failure diagnosis 0.019

er any 12m Any ER visits 0.018

chl dx 12m Ever had high cholesterol diagnosis 0.017

not er noner 12m Did not use ER for non-ER care 0.016

hosp num mod 12m Number of hospital visits 0.015

hbp dx 12m Ever had high blood pressure diagnosis 0.014

chl chk bin 12m Ever had cholesterol checked 0.014

rx any 12m Currently taking any prescription medications 0.014

dep dx 12m Ever had depression/anxiety diagnosis 0.014

er num mod 12m Number of ER visits 0.013

dia dx 12m Ever had diabetes/sugar diabetes diagnosis 0.011

ast dx 12m Ever had asthma diagnosis 0.011
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Hypothesis Indicator Name Variable Label Weight

Health

health chgflip bin 12m Change in overall health (positive is better) 0.198

poshappiness bin 12m Current overall happiness (higher is better) 0.123

nonsmk curr 12m Not current smoker 0.097

health notpoor 12m Overall health not poor 0.094

more active 12m Physical activity (compared to others of same age) 0.072

health genflip bin 12m Overall health excellent/good 0.062

nodep screen 12m Not depressed in past 2 weeks 0.052

notbaddays tot 12m Number of days (in past 30) not impaired by poor health 0.038

notbaddays phys 12m Number of days (in past 30) when physical health good 0.032

notbaddays ment 12m Number of days (in past 30) when mental health good 0.026

Financial

neg cost any oop 12m No out of pocket costs for medical care in past 6 months 0.399

neg cost borrow 12m Haven’t borrowed to pay health care bills in past 6 months 0.142

neg cost refused 12m Haven’t been refused care because owed money for past treatment 0.110

hhinc pctfpl 12m Household income as percent of federal poverty line 0.072

neg cost any owe 12m Do not currently owe money for medical expenses 0.066

hhinc cat 12m Household income category 0.062

employ hrs 12m Average weekly hours worked 0.045

employ 12m Currently employed 0.038

Notes: Hypothesis refers to the family or subfamily of indicators used to construct the optimus index. Weight

represents average weight received by an indicator variable across 100 random 10% samples.
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Table A12: OHIE Results by Sample Size: Gating Hypotheses and Individual Indicators

(1) (2) (3) (4)

Test Power Effect Size Index Size True Effect Size

Panel A: 8% sample

Optimus 54% 0.086 8.8 0.092

KLK Index 50% 0.041 44 0.039

F Omnibus 47%

LMS Omnibus 38%

Exhaustive PAP 48% 0.211+ 1.3++ 0.115

PAP (post optimus gate) 34% 0.211+ 1.2++ 0.115

Panel B: 12% sample

Optimus 85% 0.097 9.6 0.102

KLK Index 71% 0.04 44 0.039

F Omnibus 80%

LMS Omnibus 57%

Exhaustive PAP 67% 0.207+ 1.6++ 0.136

PAP (post optimus gate) 61% 0.207+ 1.5++ 0.137

Panel C: 15% sample

Optimus 90% 0.097 9.9 0.105

KLK Index 77% 0.037 44 0.039

F Omnibus 89%

LMS Omnibus 57%

Exhaustive PAP 75% 0.209+ 1.8++ 0.141

PAP (post optimus gate) 70% 0.209+ 1.8++ 0.141

Notes: Results in Columns (1) – (3) represent averages across 100 random

8%, 12%, or 15% samples of the OHIE data. Power denotes power to reject

the sharp null hypothesis for at least one indicator. True effect size represents

the estimated effect in the full (100% sample) OHIE dataset, with indicators

weighted using average weights underlying Column (2).

+ Average effect size for indicators rejected by the PAP (when no indicator

rejects, calculation includes the most significant indicator).

++ Average number of indicators rejected, left-censored at 1.
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Table A13: OHIE Results: Subfamily Hypotheses

(1) (2) (3) (4)

Test Power Effect Size Index Size True Effect Size

Panel A: Utilization outcomes

Optimus 36% 0.087 5.6 0.094

F Omnibus 30%

KLK Index 21% 0.042 26 0.043

Panel B: Health outcomes

Optimus 7% 0.028 2.3 0.038

F Omnibus 4%

KLK Index 2% 0.021 10 0.022

Panel C: Financial outcomes

Optimus 23% 0.095 2.7 0.105

F Omnibus 20%

KLK Index 17% 0.049 8 0.051

Notes: Results in Columns (1) – (3) represent averages across 100

random 10% samples of the OHIE data. Power denotes power to

reject the sharp null hypothesis for at least one subfamily indi-

cator, multiplicity adjusted for the three parallel subfamily tests.

True effect size represents the estimated effect in the full (100%

sample) OHIE dataset, with indicators weighted using average

weights underlying Column (2).
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