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Abstract

Estimating consumer demands is a bread-and-butter undertaking in applied economics. In

general, demand for each good depends on the prices of all goods and services, but for most

applications it is impractical to estimate models of such high dimension. In this paper, we consider

consumer demand with a low rank of the matrix of cross-price effects. We show that imposing a

low rank is equivalent to introducing functions that we call “aggregators”, where each aggregator

maps information from an arbitrarily large vector of prices (and perhaps income) into a scalar. We

then provide a complete characterization of the preferences that rationalize demand systems with

such aggregators. These results have applications in a broad range of fields in economics. Most

commonly-used demand systems (including directly-additive, indirectly-additive, non-homothetic

CES and Kimball preferences) can be described with one or two of such aggregators where the

price index may coincide with one of the aggregators. Nested and mixed logit require as many

aggregators as nests or consumer types. Aggregators can also be naturally expressed as a function

of observed product attributes. Using barcode data on yogurt purchases, we illustrate how to

estimate a simple yet flexible specification of such a demand system with K aggregators, with or

without using information on product attributes.

Keywords: Preferences; Cross-price effects; Generalized Separability; Latent variables; Low-rank

approximation.
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1 Introduction

Estimating consumer demands is a bread-and-butter undertaking in applied economics. Any such

undertaking must somehow contend with the fact that, in general, demand for any good will depend

on the prices of all goods and services. However, it is highly impractical to estimate models of such

high dimension of price interactions, and so researchers invariably reduce dimension, often implicitly

via a choice of functional forms. Examples include nested and mixed logit which extend the basic

logit specification in order to generate more flexible cross-price effects by grouping goods or combining

heterogeneous types of consumers.1 These functional form assumptions lead to strong restrictions in

terms of income effects (typically assuming quasi-linearity or homotheticity) and cross-price effects

(e.g. by relying on predetermined groups of goods or assumptions on the patterns of consumer

heterogeneity). Of course sometimes these limitations are features: we may need to restrict price

and income effects to be able to construct a representative consumer, or we lack the data to estimate

important patterns of substitution, but we may have lost an appreciation for the critical limitations

of these functional forms and we lack a unifying perspective.

Our goal is to provide a disciplined approach to introduce more or less flexibility in functional

forms of demand, depending on the data available and the needs of the researcher. In this paper we

provide such an approach through the introduction of functions we call “aggregators”. An aggregator

maps information from an arbitrarily large set of prices (and perhaps income) into a scalar, thus

summarizing information on many prices. A price index is a familiar example of an aggregator, but

aggregators need not satisfy the usual requirements of a price index (for example, aggregators need

not be homogeneous in prices). In a first step, we show that the number of aggregators coincides with

the rank of the matrix of cross-price effects, adjusting for own-price effects, and provides a key metric

that captures the complexity of a demand system. For instance, when the rank of cross-price effects

is one, all cross-price effects can be captured by a single aggregator and demand for each good can

then be expressed as a function of its own price and this aggregator.

This notion of rank of cross-price effects is also tightly linked to the complexity of the estimation

problem and the number of parameters to identify, akin to low-rank approximations in machine learn-

ing. With a general demand system without rank restrictions, the complexity of cross-price effects

grows as a quadratic function of the number of goods, and the estimation of cross-price effects be-

comes impossible with datasets covering a large number of goods or product varieties. By imposing a

parameterization with low-rank cross-price effects, estimation with large datasets remains manageable

as the number of parameters to be estimated grows at most linearly with the number of goods.

In a second step, we further assume that demand is rational, i.e., derived from the maximization of

a utility function. We establish that rational demands with K aggregators must then take particular

functional forms, and we show what these forms must be. In parallel, we show how integrating these

demands gives rise to a rationalizing utility function, and thus provide a complete characterization of

1See, among others, Boyd and Mellman (1980), Berry (1994), Berry, Levinsohn, and Pakes (1995), McFadden and
Train (2000).
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the preferences which rationalize a demand system having K aggregators. What we call K-aggregator

preferences and demands nest many of the preferences and demand structures existent in the literature,

but also include novel forms. As a practical example, we provide a specification that allows for flexible

non-parametric own-price effects combined with parametric cross-price effects captured by a symmetric

matrix of any given rank K.

We begin with the homothetic case, focusing on cross-price effects, but then we also consider

two ways to model non-homothetic preferences. In one approach, we consider Hicksian demand as a

function of both prices and utility, which remains homogeneous of degree one in prices. In a second

approach, we consider demand as a function of normalized prices, i.e., prices divided by total expenses

(income), and under some additional assumptions we provide an explicit expression for indirect utility

as a function of prices and income. In all cases, it is not hard to account for non-homotheticities while

keeping similar functional forms.

Finally, we demonstrate how useful our approach can be in practical applications. We pursue

three separate ideas. First, we show how demands in many recent applications can be viewed as

demand systems of a particular rank. Second, if one has solid a priori beliefs about the rank of the

demand system and the form of the aggregators, then we show by example how this information can

be exploited in estimation. Third, if one does not have strong prior beliefs regarding K, we provide

an algorithm which permits one to infer K while at the same time estimating the demand system.

Literature This paper primarily aims to contribute to the literature on modeling cross-price effects,

which has a long tradition, not only in industrial organization (e.g. to understand the effects of com-

petition) but also in other fields such as macroeconomics (e.g. cost-of-living estimation), international

trade (e.g. in gravity equations), and development (understanding household consumption choices).

Earlier models of demand allowing for flexible cross-price effects include the Rotterdam model,

PIGL, PIGLOG (and AIDS, developed by Deaton and Muellbauer 1980) and Translog. In most of

these specifications, prices enter linearly or log-linearly, but are only valid demand systems at best in

a local sense, not over the full range of prices and income. In this vein, EASI (Lewbel and Pendakur

2009) may be the latest and most flexible. For any specific good, it allows for flexible Engel curves,

and prices enter log-linearly as in AIDS. Estimation of these models either does not impose restrictions

on the rank of cross-price effects but is limited to a few goods (see e.g. Lewbel and Pendakur 2009),

or impose trivial cross-price effects (e.g. Fajgelbaum and Khandelwal 2016).

A simple but powerful way to generate non-trivial cross-price effects is to construct nests, allowing

for different elasticities of substitution between vs. within different nests. Nested logit has been widely

used in industrial economics (see e.g. Berry 1994) while nested CES is a standard specification in

macroeconomics and international trade (see e.g. Berry 1994). These types of preferences generate low-

rank cross-price effects where the rank corresponds to the number of nests. However, for estimation,

these nests have to be specified ex ante, and impose a lot of structure on substitution patterns. A

recent class of demand proposed by Fosgerau, Monardo, and De Palma (2024), ”inverse product-

differentiation logit”, proposes a more flexible way to construct nests without relying on hierarchies.
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Our approach here provides a generalization of nests while keeping the low rank of price substitution

patterns.

The now standard specification in industrial organization is that of “BLP” (Berry, Levinsohn,

and Pakes 1995), itself a form of mixed logit (e.g. McFadden and Train 2000). While each consumer

is typically assumed to have logit demand, thus with simple rank-one cross price effects, the BLP

approach obtains more complex substitution patterns for aggregate demand, where the rank of cross-

price effects can be as large as the number of types of consumers that are lumped together. In practice,

the BLP approach involves adopting statistical assumptions regarding the distribution of consumer

values. It allows for complicated cross-price elasticities, but these are typically generated by ad hoc

assumptions on heterogeneity of price coefficients and attributes in logistic model. It is also difficult to

link the patterns of cross-price effects to the distributional parameters to be identified in these models.

In particular, BLP estimators involve a non-linear inversion of expenditure shares to express those

as a linear function of prices and average valuation of product attributes. This non-linear inversion

must account for parameters governing the heterogeneity in tastes, and thus cross-price effect terms.

In comparison, our specification also involves an inversion but only with respect to own-price effects.

In our baseline specification, cross-price effects enter linearly.

Non-trivial income effects can also be incorporated in our demand systems with low-rank cross-price

effects. A first approach is to consider Hicksian demand and the expenditure function, which remains

homogeneous in prices, conditional on utility. Thus, using utility as an additional aggregator, we are

able to incorporate very flexible income effects, and their interaction with prices. This approach can

be used for instance to generalize demand as in EASI (Lewbel and Pendakur 2009), or AIDS (Deaton

and Muellbauer 1980), and obtain specifications that are globally regular. Another approach involves

expressing aggregators as a function of normalized prices (prices relative to income) instead of prices.

We obtain results that are similar (up to multiplicative terms) to the homothetic case.

Note that our concept of rank sharply differs from the notion of income rank introduced by Lewbel

(1991), with higher rank demand systems admitting more complicated Engel curves. Our notion of

rank focuses on cross-price effects, and demand system with K aggregators (hence rank K) can have

any rank in terms of income effects.2

In applied theory, it is also useful to reduce the dimensionality of cross-price effects in order to

improve tractability, while maintaining the assumption of consumer rationality. With price aggrega-

tors, the characterization of equilibrium is reduced to examining a few variables instead of potentially

many prices. Focusing on a few aggregators also speeds up numerical solutions for general equilibrium

models. Demand with aggregators also simplifies the analysis of industry equilibrium and interactions

between firms under imperfect competition: firms under monopolistic competition take such aggre-

gators as given, and firms under Bertrand competition account for how their choice influence such

aggregators.3

2Our definition of rank and aggregators also differs from the notion of “latent separability” introduced by Blundell
and Robin (2000). We focus on the rank of demand while Blundell and Robin (2000) relates more closely to the rank of
income effects and homothetic aggregators used as part of utility and expenditure functions.

3Under Cournot, it may then be easier to work with inverse demand and express aggregators as functions of quantitites,
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Beyond their applications to economics, these results can be useful for machine learning. Assuming

a low rank is useful for various applications, such as principal component analysis, signal processing

and matrix completion (e.g. “Netflix problem”), image compression, word embeddings and Latent

Semantic Analysis (LSA), data imputation, etc. Proposition 1 characterizes any function with low-rank

interactions between variables, while Proposition 3 can be used to construct homogeneous functions

with a specific rank of the Hessian after removing diagonal terms.

1.1 Preamble: aggregators and the rank of cross-price effects

Suppose that we have J goods indexed by i or j ≤ J , and that demand or any other function Fi(x)

corresponding good i depends specifically on its own price or a specific input xi, and potentially also

depends on all other prices or inputs x1, ..., xJ . Cross-price effects can be of any rank up to J , in

theory, even if we also impose assumptions such as rationality of a representative consumer. Hence,

unless we impose ad hoc restrictions on empirical models, this implies that the number of cross-price

elasticities to identify grows quadratically with the number of goods. As typical consumer data often

includes more goods than markets or time periods (e.g. with barcode-level data), identification of

fully-flexible cross-price effects becomes impossible.

A common approach in applied statistics and machine learning is to approximate these interactions

by imposing a lower rank (any matrix can be approximated by a lower-rank matrix) and thereby

reducing the dimensions of the estimation problem. Here, the low-rank approximation would only

apply to part of the problem, as the overall rank of price effects (entire Jacobian of F ) needs to

remain full since demand for each good typically depends on its own price (non-zero diagonal terms).

Thus, we propose to decompose price effects into a diagonal matrix of own-price effects (which has

full rank yet only one coefficient by good) plus a low-rank matrix of cross-price effects.

This is achieved when demand for a good i depends on its own price xi and a few scalar functions

Λk(x), k = 1, ...,K with K ≤ J , that summarize the effects of other prices. We call these functions

”aggregators”. If demand Fi(x) for good i coincides with a function Wi

(
xi , Λ1(x) , ..., ΛK(x)

)
, we can

see that the matrix of cross-price effects can be expressed as a product of two smaller matrices:

∂Fi

∂xj
=

∑
k

∂Wi

∂Λk

∂Λk

∂xj
for i ̸= j

Since the matrices with coefficients ∂Wi
∂Λk

and ∂Λk
∂xj

have at most a rank K (they have K columns or

rows), the resulting matrix of cross-price effects has at most a rank K, where K is the number of such

aggregators.

In this section we show that the converse holds: if cross-price effects have a low rank K, the

corresponding demand functions must depend on some K aggregator functions in addition to their

own price.4

as discussed later in the paper.
4When own price effects are null, this result is known and easy to obtain. If we consider a J-dimensional function

with rank-K Jacobian, its image corresponds to a K-dimensional embedded manifold. Here the difficulty arises from the
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This result applies to smooth functions with rank and other regularity conditions, but we do

not impose rationality of demand at this stage (we do not impose symmetry assumptions on the

Jacobian). Specifically, the conditions that we impose relate to regularity and the rank of a non-

diagonal component of the Jacobian:

C1. Rank. We assume that matrix ∂Fi
∂xj

is the sum of a diagonal matrix σ with diagonal elements σi

and a matrix S of rank K.

C1’. Identifying goods. Furthermore, we assume that there are K goods k = 1, ...,K such that the

truncated matrix with coefficients Skj =
{
∂Fk
∂xj

− σk1(j = k)
}
, k ≤ K, still has rank K.

C2. Stability of the rank:

i) The rank of the “substitution matrix” S remainsK when we dropK+1 rows, corresponding

to the price of all goods k ≤ K and any good i > K.

ii) The Jacobian of (F1(x), ..., FK(x), x1, ..., xK , xi, xj) has full rank 2K+2, when we pick any

two goods i > K and j > K, i ̸= j.

C3. No escaping. For any sequence x(t) is such that maxk≤K |Fk(x(t))| → ∞ while x1(t)...xK(t)

remains bounded, some other values of F are unbounded, i.e., maxj>K |Fj(x(t))| → ∞

C4. Connectedness. We assume that level sets of (F1(x), ..., FK(x), x1, ..., xK) are connected, and

remain also connected when we condition for the price of another good xj .

The diagonal matrix σ captures own-price effects. Matrix S, which we refer to as the substitution

matrix, then captures substitution patterns across goods, conditional on their own prices. Note that

these assumptions on the stability of the rank imply that the matrix of cross-price effects has a ”low”

rank in a statistical sense; i.e., its rank K is smaller than J/2.

We obtain what is not yet our main theoretical result but a key motivation for our analysis of

demand with price aggregators:

Proposition 1 Under assumptions [C1], [C1’], [C2], [C3] and [C4], there exist K real functions

Λ1(x), ... , ΛK(x) and J functions Wi(Λ, xi) such that:

Fi(x) = Wi

(
xi , Λ1(x) , ..., ΛK(x)

)
i.e., demand for each good can be reduced to a function of its own price and K “aggregators” Λk(x).

We relegate the proof to the Appendix, and here we provide a rough sketch.

In a first step, we show that for each good i the gradient of demand is a linear combination of the

gradient of the demand for goods k = 1 to K, the gradient of x1, .... , xK (i.e., dummy indicators

presence of own-price effects, so that the Jacobian has full rank, and the image does not provide a simple way to define
the K aggregators.
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for each of these goods), as well as the price of its own good xi. Applying Lemma 1 of Goldman and

Uzawa (1956) Goldman and Uzawa (1964) and the connectedness assumption, this implies that we

can write demand for goods j > K as a function of its own price, the price of the first K goods, and

the demand for the first K goods. In the next steps, the goal is to re-adjust demand for each good k

by its own price in order to define each “aggregator” (so that we can drop each price xk from the set

of arguments).

To adjust each demand, we need to work in the 2K dimensional Euclidian space defined by demand

and prices for the first K goods. In step 2, exploiting the assumptions on the stability of the rank,

we obtain that the own-price elasticity σk of the first K goods can be expressed as a function of the

prices and demands for the first K goods.

Using this property, in step 3, we provide autonomous differential equations that adjust demands

by shifting their own prices by some arbritrary price changes. Thanks to assumption [C3], a global

solution exists (instead of [C3], a sufficient condition is that own price elasticities σi are bounded). We

show in step 4 that the functions obtained in step 1 are invariant to such adjustments. We show in step

5 that these adjustments can be made independently across all K goods, regardless of the ordering

of these adjustments. Finally, we use this property in step 6 to define our aggregators (demands for

goods 1 to K adjusted for their own prices), and show that demand for all goods depend only on these

aggregators.

This proof puts a lot of importance on the first K goods, assumed to enter independently in matrix

S of cross-price effects, as described in condition [C1’]. This assumption is actually redundant and

implied by [C1] locally, as we can always find K independent rows of a rank-K matrix. However here

for practicality we impose that the same set of goods 1, ...,K can be used to find such independent

rows. This is not innocuous as it allows us to define aggregators in a Euclidean space.

When we do not have a constant set of K goods with cross-price effects of rank K, the K ag-

gregators are Euclidean only locally. Assuming that the rank assumptions hold only locally, i.e.,

dropping [C1’] and the constant set of goods, we can build on Proposition 1 to define aggregators

on smaller subsets that are locally Euclidean. Then, by patching these subsets together, we obtain a

manifold, which actually provides a more natural (but more abstract) mathematical environment for

price aggregators:

Corollary 2 Under local conditions [C1], [C2], [C3] and [C4], there exists a smooth map Λ(x) to a

K-dimensional manifold and some smooth function Wi(x,Λ) such that: Fi(x) = Wi

(
xi ,Λ(x)

)
.

In this section, note that we do not impose (yet) that demand is derived from rational behavior,

and as such we do not rely on any symmetry assumption. The next results combine assumptions on

aggregators and rationality, which implies some form of symmetry in cross-price effects.
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2 Rational demand with price aggregators: homothetic case

We now examine the implications of rationality; i.e., that consumer demand is derived from utility

maximization (under a standard budget constraint). We maintain the assumption that demand de-

pends on its own price, as well as given number K of aggregators (themselves functions of all other

prices). For the ease of exposition, in this section we start with the case of homothetic demand, and

move to more general cases in the next section.

In the first subsection below, we precisely lay out hypotheses in addition to other topology as-

sumptions, and in Proposition 3 we provide the functional forms of all demand functions that satisfy

these properties. In addition, we provide a form of utility that yields such demand systems, assuming

rational behavior under a standard budget constraint. This first set of results can be understood as

a set of necessary conditions that demand must satisfy in order to depend on K aggregators and be

derived from a utility function.

These necessary conditions however are not sufficient to ensure that such a utility function is quasi-

concave (or, equivalently, obtained from a concave price index). We address this issue by providing

(mild) additional sufficient conditions. We examine properties of the price substitution matrix in these

cases.

These results provide practical ways to construct utility and demand with low-rank cross-price

effects. As an illustration, we then provide a example of a very tractable form of demand that allows

for flexible own price effects as well as cross-price effects parameterized by arbitrary semi-definite

positive symmetric matrices, with a chosen rank K corresponding to the number of aggregators.

2.1 Set up and functional form in the homothetic case

Under homothetic preferences, demand qi for each good i ∈ {1, ..., J} is proportional to income w,

hence expenditure shares Wi ≡ piqi
w only depend on prices p. More specifically, our goal here is to

describe expenditure shares that depend on their own prices, respectively, and a vector of K price

aggregators. This implies a rank K of cross-price effects, as discussed previously. We denote these

aggregators by Λ = (Λ1, ...,ΛK) ∈ R
K (using subscript k to refer to an aggregator), Hence the

expenditure share on good i is expressed as:

piqi
w

= Wi(pi,Λ1(p), ...,ΛK(p)) (1)

where p refers to the full vector of prices, and pi is the price of good i. We assume that the number

of goods is larger than the number of aggregators (specifically, J > K + 3), as our analysis will be

particularly useful in settings where the number of goods is very large and where we want to reduce the

dimensionality of interactions between goods. We consider only one period, with a balanced budget:∑
i

Wi(pi,Λ(p)) = 1 (2)
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Rationality We focus on demand from a rational consumer who is maximizing a quasi-concave

utility U . This is equivalent to assuming the existence of a price index P (p) that is homogeneous of

degree one and concave in prices p. It is also the same as imposing that the expenditure function is

proportional to P (p) (i.e. multiplicatively separable in utility U and prices p). Shephard’s Lemma

implies that the expenditure share on good i must equal the derivative of logP w.r.t log pi, hence:

∂ logP (p)

∂ log pi
= Wi(pi,Λ(p)) (3)

For most of the analysis, we assume that demand (and utility) is smooth.

For the first proposition, we also make the following assumptions on price effects and topology:

Additional assumptions:

A1. Own price elasticity: for each good, the own price effect is negative, i.e: ∂Wi
∂pi

(pi,Λ) < 0, holding

Λ constant, evaluated at any p and Λ.

A2. For any Λ and any real y > 0, there exist a real t > 0 such that:
∑

iWi(t,Λ) = y.

A3. Rank of ∂W : the matrix with coefficients
{

∂Wi
∂Λk

}
has full rank K, where K denotes the number

of aggregators.

A4. Rank of ∂Λ: the matrix with coefficients
{

∂Λk
∂ log pi

}
has maximal rank K, even if we drop one

good i from the set of goods.

A5. Connectedness. The level sets of Λ,
{
p ∈ R

J | Λ(p) = Λ0

}
, are connected, for any Λ0 ∈ R

K .

A6. No escaping: ∃p ∈ R
J such that maxi | logWi(pi,Λ

(t))| goes to infinity for any sequence of

Λ(t) ∈ R
K that escapes any compact set.

Assumption 1 might be reversed, i.e. it may be possible to have all own price effects be positive,

but we cannot have a combination of signs. The case of positive own price effects is considered for

instance in Matsuyama and Ushchev (2017) for the special case of homothetic preferences with a single

aggregator.

With the two rank assumptions (A3 and A4) we assume that aggregators capture different types of

information relevant to consumers. With those, we basically assume that K is the minimum number of

aggregators needed to explain demand. If the gradient of an aggregator was colinear with the gradient

of other aggregators, we could then express this aggregator as a function of the other one, thereby

reducing the number of aggregators.

Then, two topology assumptions put restrictions on the space of aggregators. The connectedness

assumption A5 can be interpreted as a monotonicity assumption. It implies that if there are two sets

of conditions in p that are associated with the same values of aggregators Λ, there is a continuous path

indexed by t ∈ [0, 1] of intermediate conditions p(t) from one to the other with the same aggregator
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values Λ(p(t)) = Λ. On the contrary, topology assumption A6 implies that, when some aggregators

diverge, there are some relative expenditures that also diverge (for some reference price level). Also,

given the rank and topology assumptions, up to a change in variables, we can assume that Λ(p) spans

all RK .5

We will use Lemma 1 of Goldman and Uzawa (1964) which states that if the gradient of a real

function f (defined on a Euclidean space) is colinear with the gradients of other real functions g1, ...,

gn, and if the level sets of g are connected, we can express f as a function of (g1, ..., gn). Assumption

A5 on connectedness is useful for this.

We can now move onto the first main result on the functional form of homothetic demand:

Proposition 3 Homothetic demand that depends on aggregators Λ and satisfies all assumptions A1-

A6 above must take the form:

Wj(pj ,Λ) = Dj(pj/Λ
∗,Λ′) (4)

where Λ = Φ(Λ∗,Λ′) and Φ is a one-to-one re-mapping from aggregators Λ ∈ R
K to aggregators H ∈ R

and Λ′ ∈
{
Λ

∣∣∑
iWi(1,Λ) = 1

}
, a submanifold of dimension K − 1. Moreover, it is derived from

price index P (p) that satisfies:

logP (p) = log Λ∗ − G(Λ′) +
∑
j

∫ pj/Λ
∗

t=1
Dj(t,Λ

′) d log t (5)

for some real function G(Λ′), and where the aggregators (Λ∗,Λ′) are such that the partial derivatives

of the RHS in (Λ∗,Λ′) are null. Aggregator Λ∗ is then homogeneous of degree one in p while Λ′ is

homogeneous of degree zero.

Not any function Wi of prices and aggregators Λ coincides with a rational demand system: a

rational demand system with K aggregators Λ must take the form described above, with a utility

characterized by (5). In particular, there must be one aggregator (denoted Λ∗) that plays a special

role. We can think of this aggregator as adjusting in order to obtain a balanced budget: the first

order condition in Λ∗ in the RHS of (5) is equivalent to imposing
∑

iDi = 1. In the special case of

directly-additive preferences (see Section 5 and Fally 2022 for examples), aggregator Λ∗ coincides with

the budget multiplier. Regarding other aggregators Λ′, note that: i) the good-specific demand function

Di can be a flexible function of Λ′; ii) aggregators Λ′ are determined by the first-order condition (zero

derivative of RHS) – we discuss in the next subsection the implications for price and income effects.

We relegate the proof of Proposition 3 to the Appendix but we provide here some intuition behind

it. By examining the gradients and using Goldman and Uzawa’s lemma, the first step is to show

that V takes the following form: logP = −M(Λ) +
∑

i

∫ pi
1 Wi(t,Λ)d log t. In addition, the rank of

the gradients of Λ and logP imply that the derivatives of the right-hand side must be null for each

5A more natural yet abstract approach would be to define aggregators Λ as part of a smooth K-dimensional manifold.
The proofs can be reformulated in this setting.

10



aggregator Λk (which we will refer to as the first-order condition in Λk). The envelope theorem then

implies that the derivative of logP in log pi equals Wi(pi,Λ), as desired. At this stage, however,

nothing guarantees that such expenditure shares Wi sum up to one across goods.

The budget constraint (or, equivalently, homogeneity of P ) further imposes functional form re-

strictions on the demand function. For such expenditure shares to add up to unity, it must be that

the first-order condition in one of the aggregators (or a combination of those) implies the budget

constraint. This is intuitively why one specific aggregator such as Λ∗ in equations (4) and (5) plays a

specific role. It must enter symmetrically (across goods) as a price shifter.

Differentiating the budget constraint and using the rank assumptions, we obtain that the own price

effect ∂Wi
∂ log pi

must be colinear with the derivatives of Wi in Λ. Moreover, we obtain that coefficients

of colinearity can be expressed as functions of Λ. We can then construct a “flow” Φ (transformation

within the Λ space) that must keep each Wi(tpi,Φ(t,Λ)) invariant w.r.t t (assumptions 1, 2 and 6 are

useful to define Φ globally). We use this flow to project the aggregators onto Λ∗ and Λ′.6

The homogeneity of Λ∗(p) (degree one) and Λ′ (degree zero) is then simply obtained by checking

that λΛ∗ and Λ′ are solutions of the first-order conditions when prices are multiplied by λ. Note

that these come as a result as we have not initially imposed any homogeneity assumptions on the

aggregators, aside from the assumption of homotheticity of preferences.

For the remainder of the paper, we denote the aggregators Λ∗ and Λ, rather than Λ′.

2.2 Rationalization and concavity

Conversely, we can obtain sufficient conditions under which the P function defined above is concave

in prices, which would then imply that there is a well-defined quasi-concave utility from which we can

derive such demand systems. As for Proposition 3, we consider smooth functions Di(pi,Λ) and G(Λ)

where ∂Di
∂pi

< 0 and define:

log P̃ (p,Λ∗,Λ) = log Λ∗ − G(Λ) +
∑
j

∫ pj/Λ
∗

t=1
Dj(t,Λ) d log t (6)

This coincides with the price index when Λ∗(p) and Λ(p) are such that the derivative of the right-hand

side is null in (Λ∗,Λ). The elasticity of P in each price pi would then provide the expenditure shares

described previously. What is left to provide are sufficient conditions for the concavity of P . This is

obtained naturally by imposing concavity or convexity in Λ, conditions that are simpler to check.

Lemma 4 Suppose that the function P̃ (p,Λ∗,Λ) is defined as above.

i) If log P̃ (p,Λ∗,Λ) is convex in Λ, define P (p) = maxΛ∗{minΛ P̃ (p,Λ∗,Λ)}.

ii) If log P̃ (p,Λ∗,Λ) is concave in (Λ, log p), define P (p) = maxΛ∗,Λ P̃ (p,Λ∗,Λ).

In both cases, P (p) is concave and homogeneous of degree one in p.

6For these steps is it helpful to consider the “Lyaponov” function,
∑

i Wi(1,Φ(t,Λ)), that is strictly decreasing in t.
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Conditional on aggregators Λ∗ and Λ, it is easy to check that P̃ (p,Λ∗,Λ) is concave in log prices.

The max and/or min operations in Proposition 4 preserve concavity. First, in terms of Λ, this includes

taking the maximum in Λ, noticing that the domain of Λ is assumed to be RK and is convex, so the

max of log P̃ (p,Λ∗,Λ) remains concave. Conversely, taking the minimum always preserves concavity,

regardless of the domain of Λ.

By introducing Λ∗, we take the ”perspective” of such function,7 which allows us to go from log

concavity to concavity in p, and also provides homogeneity in prices when we take the maximium

over Λ∗. Perspective functions have been used recently in game theory, mean-field games, machine

learning, transportation theory, among others (Combettes 2018, Combettes and Müller 2018).

A more general alternative is to assume that Λ = (Λ+,Λ−) can be separated into two sets of

aggregators, one set for which we have convexity and the other one where we have concavity. Our

results carry by jointly taking the maxium over Λ+ and the minimum over Λ− if Slater conditions in

(Λ+,Λ−) are satisfied.

When P (p) is concave, demand can be alternatively derived from maximizing a concave utility

function that is homogenous of degree one in quantities. Here, this utility function can be expressed

with a similar functional form as P .

Proposition 5 Under the assumptions of Lemma 4, the demand system can be obtained from the

maximization (under the budget constraint) of the following utility function:

logU = − log Λ∗ − G(Λ) +
∑
i

ui(qiΛ
∗,Λ)

where each ui(qi,Λ) is the Fenchel concave conjugate of
∫ log pi
t=0 Di(t,Λ) dt in pi (conditional on Λ), and

where we take the minimum/maximum over Λ depending on convexity/concavity.

To prove this result, it is useful to note that the log of utility is the Fenchel concave conjugate of

the log of the price index (see Appendix). Fenchel concave or convex conjugates are used implicitly in

various contexts in economics, for instance to retrieve cost and profit functions.8 Here, in particular,

each ui is defined as:

ui(qi,Λ) = min
pi

{
piqi −

∫ pi

t=1
Di(t,Λ) d log t

}
and is concave in qi.

Note that, for the optimal consumption basket as a function of prices, Λ∗ and Λ in this formulation

coincide with Λ∗ and Λ in the dual.

7Take a real function f(x) with x ∈ R
J . For t > 0, the function tf(x/t) is the perspective of f and is concave (resp.

convex) in (x, t) if and only if f is concave (resp. convex) in x. See Combettes (2018) for properties of perspectives.
8The Fenchel conjugate of a convex function f(x) is f∗(y) = max{p.x− f(x)}, and instead we use the minimum for

a concave function. The conjugate of the conjugate is equal to the original function (Fenchel-Moreau theorem).
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2.3 Implications for price effects

When preferences are rational and allow for K aggregators, Theorem 1 states that one of such aggre-

gators must play a special role and must enter symmetrically as a price shifter while demand can be

a flexible function of other aggregators.

Furthermore, one should note that the first-order conditions in aggregators Λ imply some symmetry

relating how Λ depends on prices p to how demandD depends on Λ itself. Differentiating the first-order

conditions in Λ∗ and Λ, we obtain that ∂Λk
∂ log pi

is tightly linked to ∂Di
∂Λk

:

∂Dj

∂Λk
= ΓkΛ∗

∂ log Λ∗

∂ log pj
+
∑
k′

Γkk′
∂Λk′

∂ log pj
(7)

where matrix {−Γkk′} corresponds to the Hessian of the right-hand-side of equation (5) in Λ and:

ΓΛ∗k =
∑

j
∂Dj

∂Λk
(but note here that Γ is not constant and varies with prices). If the right-hand-side

of equation (5) is convex in Λ, as in case i) of Lemma 4, matrix Γ is definite negative. In case ii) of

Lemma 4, it is definite positive.

Using this relationship, we can illustrate more directly the rank of cross-price effects and the

influence of aggregators. Holding aggregator Λ∗ constant, we can exploit the J by K matrix ∂W
∂Λ and

obtain the following expression for cross-price effects:

∂Wi

∂ log pj

∣∣∣∣
Λ∗

=
∑
k,k′

γSkk′
∂Dj

∂Λk′

∂Di

∂Λk
(8)

where γSkk′ is the inverse of the Γkk′ matrix above restricted to the first K − 1 entries excluding Λ∗

(Hessian of P̃ in Λ), and has a rank K − 1. This matrix of cross-price effects inherits properties of

Γ (e.g., it is positive semi-definite if Γ is positive definite) but its cells do not necessarily have same

sign. In either case, it allows for complementary between some of the goods, unlike additive random

utility models (ARUM) such as mixed logit.

2.4 Example of a semi-parametric specification

In this section, we illustrate the usefulness of these results by exploring a specification based on a

linear relationship between own prices and aggregators. Special cases of it includes nested logit/CES

and the more recent Inverse Product Differentiation Logit model (IPDL, Fosgerau et al 2024).

Suppose that the price index is:

logP = max
Λ∗,Λ

{
− log Λ∗ −

∑
k

gk(Λk) −
∑
i

Si

(
log pi + log Λ∗ +

∑
k

bikΛk

)}

with Si(xi) =
∫ +∞
xi

Di(t)dt and D′
i < 0, where bik ∈ R are parameters and where gk are convex

functions with g′k > 0 and g′′k > 0. Also, suppose that aggregators are such that the derivative of V
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in Λ∗ and Λ is null. The right-hand side is concave in log p, log Λ∗ and Λ, so aggregators are uniquely

identified and the resulting demand system is well defined, as described in Lemma 4.

Each good can have a flexible own-price demand schedule Di, as long as it is downward slopping.

The first-order condition in Λ∗ yields the adding-up condition:
∑

iDi = 1, so we obtain that the

expenditure share on good i is given by each of these terms, withWi = Di

(
log pi+log Λ∗+

∑
k bikΛk

)
.

In turn, the first-order condition for each aggregator Λk yields a simple expression as a sum of the

bik’s (for each k) weighted by expenditure shares:

g′(Λk) =
∑
i

bikDi

(
log pi + log Λ∗ +

∑
k′

bik′Λk′

)
=

∑
i

bikWi (9)

Special case. Several specifications of functions gk lead to very tractable solutions. For instance,

as we describe later, nested logit/CES and IPDL (Fosgerau et al 2024) can be obtained by chosing

exponential for each gk and iso-elastic functions Di. Here we explore an even simpler case by imposing

a quadrative separable specification for the g’s. The expression for Λk is the simplest with gk = 1
2Λ

2
k,

so that:

Λk =
∑
i

bikWi

In that case, we can also express expenditure shares more directly as:

Wi = Di

(
log pi + log Λ∗ +

∑
j

Γ̃ijWj

)
(10)

where Γ̃ is a semi-definite positive symmetric matrix with coefficients Γ̃ij =
∑

k bikbjk.
9 This matrix

is constant (does not vary with prices) and depend only on the primitive parameters bik to estimate.

Aside from the canonical aggregator Λ∗, all cross-price effects are captured by the term
∑

j Γ̃ijWj and

yield:
∂Wi

∂ log pj

∣∣∣∣
Λ∗

=
∑
k

D′
i bik

∂Λk

∂ log pj
=

∑
j′

D′
i Γ̃ij′

∂Wj′

∂ log pj

∣∣∣∣
Λ∗

(11)

for i ̸= j (holding Λ∗ constant). In this expression, we can see that the effect of pj on expenditures Wi

on i can be expressed as a simple linear combination of how this affect expenditures on other goods,

especially its own good Wj .

Using the results in the previous section (expression 8 above), we can further reduce it to:

∂Wi

∂ log pj

∣∣∣∣
Λ∗

= D′
iD

′
j

∑
k,k′

γSkk′ bik bjk′ (12)

where γS is the inverse of the matrix with coefficients 1(k=k′) −
∑

i bikbik′D
′
i. This demand system is

very flexible already as it can fit a wide range of substitution patterns. To be more precise, conditional

9We can also simply check homotheticity by shifting all prices (in log) by a common constant term. This will increase
log Λ∗ and logP by that same constant term, without affecting expenditure shares and other aggregators, hence P (p) is
homogenous of degree 1 in prices.
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on own-price effects {D′
i}, we can choose parameters b to fit any rank-K semi-definite positive matrix

γS with a spectral radius less than one, i.e. that does not have eigenvalues above one (see Appendix

for a proof).

In this specification, recovering welfare is not difficult. Once own demand and cross-price effects

are estimated, we can recover Si(xi) =
∫ +∞
xi

Di(t)dt by integrating. In turn, we can recover 1
2

∑
k Λ

2
k =

1
2

∑
i,j Γ̃ijWiWj as the quadratic form associated with Γ and evaluated using expenditure shares.

Note also that such demand can be derived from the following direct utility:

logU = logΛ∗ +
1

2

∑
k

Λ2
k +

∑
i

ui

(
log qi − log Λ∗ −

∑
k

bikΛk

)
where aggregators are now defined as a funciton of q, and such that the right-hand-side has a zero

derivative in Λ∗(q) and Λ(q).

3 Non-homothetic demand with price aggregators

3.1 Utility as an additional aggregator

In the previous results, expenditure shares are assumed to be derived from a price index that is

homogeneous in prices. Under non-homotheticity, we can apply the same results to the expenditure

function, conditional on utility. We would then be considering demand where expenditure shares are

function
piqi
w

= Wi(pi,Λ1(p, U), ...,ΛK(p, U), U) (13)

The rationality condition is then expressed using the expenditure function e(p, U) which must have

the same properties as the price index in p (homogeneity and concavity) but may also depend on

utility. Specifically, Shephard’s Lemma requires:

∂ log e(p, U)

∂ log pi
= Wi(pi,Λ(p, U), U) (14)

Rank and topological conditions [A1]-[A6] remain identical in terms of prices and aggregators. Under

these conditions, using Proposition 3, we obtain the following functional forms for demand and the

expenditure function:

Corollary 6 Demand that depends on aggregators (Λ, U) and satisfies all assumptions A1-A6 above

must take the form:

Wj = Dj(pj/Λ
∗,Λ, U) (15)

Moreover, it is derived from an expenditure function e(p, U) that satisfies:

log e(p, U) = log Λ∗ − G(Λ, U) +
∑
j

∫ pj/Λ
∗

t=1
Dj(t,Λ, U) d log t (16)
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for some real function G(Λ, U), and where the aggregators (Λ∗,Λ) are such that the partial derivatives

of the RHS in (Λ∗,Λ) are null.

Conversely, if the right-hand side satisfies the concavity or convexity conditions highlighted in Lemma

4, the corresponding expenditure function is concave and homogeneous of degree one in prices, hence

can be associated with rational preferences.

In this setting, one can think of utility as an additional aggregator, and replace U by indirect utility

if we want to express demand as a function of prices and income. Aggregators would then depend

on income (through indirect utility) and would be homogeneous of degree zero jointly in income and

prices.

Example. These results can be readily applied to the specification discussed in the section above.

Perhaps the most simple way to obtain flexible good-specific Engel curves is to incorporate an additive

shifter αi(U) that is itself a function of utility. Expenditure shares, expressed as Hicksian demand,

would then be:

Wi = Di

(
αi(U) + log pi − log Λ∗ +

∑
k

bikΛk

)
while keeping the same expressions for aggregators Λk as in equation (9).

3.2 Non-homothetic case with an explicit expression for V

For tractability and to more easily recover indirect utility from prices and observed demand patterns,

an alternative approach is to extend Proposition 3 by working directly as a function of prices and

income instead of prices and utility. In the results below, we obtain an expression for indirect utility,

which in some cases may be more readily applied to consumer welfare analysis.

In this setting, it is useful to consider all objects as functions of the log of normalized income,

xi = log(pi/w), for each good i, and express everything in terms of x instead of p. We delegate this

analysis to the Appendix E. In brief, we find very similar functional forms as in Proposition 3, yet in

terms of normalized prices and with flexible functions of the special aggregator Λ∗.

4 Relationship to specifications from the literature

Here we describe the link to previous forms of separability and demand systems studied in the liter-

ature, and discuss how our approach can be used to adopt a more general yet tractable approach to

modeling demand. We start by summarizing demand with a single aggregators (Fally, 2022) which

lead to demand with cross-price substitution matrix of rank one, then move onto standard approaches

to modeling more complex cross-price effects, including i) EASI/AIDS, ii) combining multiple indus-

tries, iii) aggregating heterogeneous consumers as in Berry et al (1995). We then provide a general

specification that aims to capture the best features of all these approaches while remaining tractable

and amenable to estimation.
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4.1 Single and double aggregator demand

Fally (2022) examines demand with two aggregators when one of the aggregators is utility U , but

without imposing homogeneity in aggregator Λ∗. The special case where Λ∗ is homogeneous, and thus

just a function of prices, is then a special case of Corollary (6) and leads to a convenient expression

for the expenditure function that facilitates welfare analysis. Demand then takes the form:

Wi = Di (pi/Λ
∗ , U)

and must be obtained from the following expenditure function:

log e(p, U) = max
Λ∗

{
log Λ∗ +

∑
j

∫ log(pj/Λ
∗)

t=0
Dj(t, U) dt

}
As long as good-specific demand functions Dj are decreasing in its first argument, this expenditure

function e(p, U) is concave and homogeneous of degree one in prices. In addition, one must also ensure

that it is increasing with utility U .

While cross-price effects are then very simple under this specification (rank 1 or 2), the two-

aggregator case is already flexible enough to construct demand systems with flexible own-price effects

as well as flexible Engel curves. This shows by the negative that it is not necessary to consider more

than two aggregators if we are not concerned with modeling interesting cross-price effects.

4.2 EASI and AIDS with aggregators

A well-known and simple demand system that allows for flexible cross-price effects is the EASI demand

system developed by Lewbel and Pendakur (2009), which can be seen as a generalization of the AIDS

by Deaton and Muellbauer (1980).

Here we can obtain EASI preferences as a special case of our demand systems by considering the

following expenditure function:

log e(p, U) = log Λ∗ − 1

2γk

∑
k

Λ2
k +

∑
i

∫ log(pi/Λ
∗)

0
Di

(
t,Λ, U

)
dt (17)

with linear demand function Di:

Di

(
t,Λ, U

)
= αi(U) − θi t −

∑
k

bikΛk (18)

where we impose
∑

i αi(U) = 1 for all levels of utility U , as well as
∑

i bik = 0, and where Λ and Λ∗

are such that the RHS of (17) has zero derivatives in Λ and Λ∗ (taking the maximum or minimum

depending on the sign of γk).

Solving for Λ and Λ∗ in this maximiation (see details in appendix), we obtain the following expen-

diture shares on good i with log-linear price effects and flexible Engel curves for each good (dictated
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by αi):
10

Wi = αi(U) +
∑
j

βij log pj

where the coefficients βij =
[
−θi1(i = j) +

θiθj∑
j′ θj′

]
−

∑
k γkbikbjk, which satisfy the standard

conditions imposed with EASI, i.e.
∑

j βij = 0 and βij = βji.

Conversely, note that any symmetric matrix β with column sums equal to zero can be decompose

in this manner. Adjusting for own-price effects, the rank of β determines the number of aggregators

K that are needed. Eckart-Young-Mirsky theorem then states that the largest eigenvalues of β (net

of own price effects) would determine the quality of a lower-rank approximation.

4.3 Mixed logit/CES

Another common way to model non-trivial cross-price effects is to assume that a market is the aggrega-

tion of heterogeneous consumers (e.g. Berry 1994, Berry et al. 1995). Each consumer has Logit or CES

preferences, but heterogeneous price elasticities and heterogeneous demand shifters (often modeled as

heterogeneous evaluations of various product attributes). Two products have a greater cross-price

effects (i.e. are more substitutes) if they tend to be purchased by the same types of consumers. At

the aggregate level, we show here that we can interpret such mixed logit demand as demand with

price aggregators, where we have at most one aggregator by consumer type. Hence, a more complex

demand system with a larger number of consumer types leads to a greater number of aggregators and

a higher rank of cross-price effects.

Formally, suppose that demand is the aggregation of several types of consumers, indexed by k, each

of which has an expenditure share given by a multinomial logit structure as standard in discrete-choice

models.11 Expenditure shares for type k of consumers are then given by:

W̃ik =
e−αk log pi+bik∑
j e

−αk log pj+bik
(19)

Denote by ωk the aggregate income share of consumers of type k. The aggregate expenditure share is

then:

Wi =
∑
k

ωkW̃ik =
∑
k

ωkΛke
−αk log pi+bik (20)

with Λk =
(∑

j e
−αk log pj+bik

)−1
. This specification coincides with a special case of the demand

10Here for the sake of exposition we omit the interaction terms between price effects and utility. Such interactions can
be obtained by adding a term

∑
l γilΨl with coefficients satisfying

∑
i γik = 0, combined with additional aggregators Ψl.

11As standard in the literature, we can assume that goods i differ in terms of their characteristics Λ∗, with ζih describing
the content of good i in characteristics Λ∗. Suppose that each type k of consumers has a valuation βkh of characteristics
Λ∗, we could have then: log bik =

∑
h βkhζih.
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described above, where the price index is defined as:

logP = max
Λ∗,Λ

{
− log Λ∗ −

∑
i

∑
k

Λkbike
−αk(log pi+log Λ∗) + γ0Πk (Λk)

γωk/αk

}
(21)

4.4 Nests and IPDL (Fosgerau et al 2024)

Consider different partitions of the set of goods. For instance, among yogurt, one partition could be

composed of the set of vanilla-flavored yogurt, the set of plain yogurt, and the set with other favors,

so that each yogurt product is in either one of these sets. On top of this, we can consider another

partition depending on the fat content, or quality labels, etc.

A standard way to model partition is nested logit, but this only allows for one partition, with

more or less fine sets within that partition. A recent paper by Fosgerau, Monardo, and De Palma

(2024) provides a useful way to consider several of such partition at once, with a different substitution

parameter for each partition, which they call it IPDL (inverse product differentiation logit model).

This can be viewed as a special case of our preferences, because demand can be expressed in terms

of its own price, as well as an aggregator for each set of each partitition. Here below we provide

an intermediate generalization where preferences remain homothetic (using log prices instead of price

levels in IPDL) and where we can pick any functional form of demand for own-price effects instead of

the logit/CES formulation.

Denote each partition by P. and by S ∈ P the sets in that partition. For each of such set, we

define an aggregator ΛS,P . We show here that this is a special case of the specification highlighted in

Section 2.4 where the G function is the exponential and where we specify bi,P,S = µP1(i∈S), i.e. the

inclusion function for set S and a parameter µP that will capture substitution within vs. across goods

of sets S ∈ P.

Suppose that the price index is:

logP = max
Λ∗,Λ

{
log Λ∗ −

∑
P

∑
S∈P

exp(ΛS,P) −
∑
i

Si

(
log(pi/Λ

∗) +
∑
P

∑
S∈P

1(i∈S)µPΛS,P

)}
The RHS is concave in the ΛS,P ’s, so we can readily apply Lemma 4 and Proposition 5. The first-

order conditions yield simple expressions: ΛS,P = logWS,P , where WS,P =
∑

i∈S Wi is the aggregate

expenditure share on goods i in the set S (for that partition P). Incorporating into the expression for

the optimal consumption basket, the resulting expenditure share on good j is then:

Wj = Dj

(
log(pj/Λ

∗) −
∑
P

∑
S∈P

1(i∈S)µP logWS

)
As with IPDL, the terms µP logWS account for different substitution patterns with goods that are

in the same set, allowing for i) different layers or partitions P; ii) different intensity of substitution

parameters µP across partitions. Note again that these partitions overlap perfectly, in the sense that

each good is in exactly one set for each partition.
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In particular, this provides one way to classify goods into product categories. Below we provide a

different approach, allowing for potentially more heterogeneous types of preferences across groups of

goods (or industries).

4.5 Combining sectors

For this application, consider k as indexing industries, i.e. sets of goods, with K industries forming a

partition of the full set of goods. Some simple assumptions on separability (e.g. convex combinations

of indirectly-separable preferences) can lead to demand satisfying the functional form in equation (1).

Here we describe how to relate these cases to the general formulation of Theorem 2 using duality and

the Legendre-Fenchel transformation.

Combining indirectly-additive preferences First, consider a multi-tiered combination of indirectly-

additive preferences across sectors k:

V = g(v1(x1), ..., vK(xK)) (22)

where g is a strictly convex function from a convex subset X ⊂ R
K into R, and where each vk is a

convex function of a vector xk of log normalized prices {xi}i∈k for the subset of goods categorized in

sector k.

Denote by G the convex conjugate of g, i.e.:

G(Λ) = max
v

{
− g(v) +

∑
k

Λkvk
}

(23)

Using the fact that the conjugate of the conjugate is the initial function (Fenchel-Moreau Theorem),

we obtain:

V = g(v1(x1), ..., vK(xK)) = max
Λ

{
−G(Λ) +

∑
k

Λkvk(xk)
}

(24)

with Λ varying across all values taken by the gradient of g. In that case, the aggregators Λ(x) evaluated

at x coincides with the gradient of the upper-layer function g:

Λ(x) =
∂g

∂vk
(v1(x1), ..., vK(xK)) (25)

This equality comes from the first-order condition of equation (23).

Generalizations We can further generalize the insight above by transforming a combination of

industries with demand with aggregators in each industry into a form that is a special case of Propo-

sition 3. If demand in each industry k has mk aggregators, then overall demand has K =
∑

k mk + 1

aggregators at most. Details are provided in the Appendix, where we also describe the case of directly-

additive preferences combined across multiple sectors.
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5 Estimation approach

Here we are interested in situations with many goods (large J) where it is not practically possible to

estimate fully flexible cross-price effects of the order of J2.

Demand with aggregators provides a flexible framework to modeling and estimating demand with

non-trivial cross-price effects12 when the number of goods is large and we need to reduce the rank

of cross-price substitution matrix. Our theoretical results impose discipline on the structure of these

effects, exploiting the mathematical structure of demands for rational utility-maximizing consumers.

Our main specifications follows Section 2.4. To keep the focus on cross-price effects, we shut down

income effects by developing a demand system which assumes homothetic preferences. In a set of

extensions we then explore different ways to account for more flexible income effects.

5.1 Data

The Nielsen home scanner data13 are collected through hand-held scanner devices that households

use at home after their shopping in order to scan each individual transaction they have made. The

data cover a quarter billion dollars of grocery expenditures, from about 60,000 individual households

spread evenly across 53 “Scantrack” markets in the US (which approximately coincide with large

metropolitan areas). Here as an illustration we focus on yogurt products, and further narrow the

scope of our analysis on the 2010–2019 time period.

For this application, we aggregate expenditure by market at the monthly level. Hence, our dataset

is similar to those typically used in the Industrial Organization literature, following Berry et al (1995),

estimating demand across granular products and markets (or stores). We augment our dataset using

information on product attributes from Label Insight, which we can match for about 80% of observed

expenditures (excluding generic store brands, non-barcode and over the counter products).

5.2 Specification: additional functional form assumptions

As indicated above, we adopt a homothetic specification so as to focus on cross-price effects. Our

starting point is the specification highlighted above (equation 10 in section 2.4) where aggregators

enter linearly in combination with the own price of the good. We also assume that variation across

markets and products is influenced by unobserved taste shocks εit.

Inverting the own demand curve Di for each good i, we obtain the following specification for each

market/time t:

D−1
i (Wit) = log pit − log Λ∗t +

∑
j

Γ̃ijWjt + εit (26)

Intuitively, own price effects are influenced by the shape of Di while cross-price effects are determined

12Breaking away from the independence of irrelevant alternatives, “IIA”, as would be implied by CES or Logit models
13Disclaimer: The conclusions drawn from the Nielsen data are those of the researcher(s) and do not reflect the views

of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing and preparing the results
reported herein.
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by the rank-K matrix Γ̃ with coefficients Γ̃ij =
∑

k bikbjk. Both have to be estimated. Aggregator Λ∗t

can be regarded as a price index or market fixed effect that is uniform across all goods.

In all that follows, we interpret the error term as idiosyncratic demand shock at the market t

by good j level, which we treat as an additive price shifter in logs. Notice that, after inverting the

left-hand side, there is no restriction on the domain of εit.

Parameterization of D. Various parameterizations would be convenient for Di; all that is required

is that it be strictly decreasing. A first specification that we favor is iso-elastic, parameterized by a

product-specific shifter αi and potentially product-specific elasticity θi:

Di(t) = exp [−αi − θit] (27)

so that its inverse D−1
i (Wit) = − 1

θi
(logWi + αi) leads to the simple log-linear specification

logWit = −αi − θi log pit + θi log Λ
∗
t − θi

∑
j

Γ̃ijWjt − θiεit.

We can also consider a parameterization of Di that allows for a choke price, i.e. such that demand is

null above a certain reservation price. We then consider:

Di(t) = ν
[
e−αi−θit − 1

]
(28)

so that demand for good i is positive if and only if the right hand side of expression (26) is smaller

than −αi.

Projecting on attributes: our baseline estimation equation Following BLP and related ap-

proaches, a natural assumption is that goods with similar characteristics are better substitutes than

others. Here, a simple way to capture this idea is to project the good/aggregator-specific demand

shifter bik onto the space of product characteristics. Specifically, we use data ζil on attributes l across

goods i, informing on whether good i has attribute l (in which case ζil is a dummy variable) or the

intensity of that attribute (ζil is then a scalar). Using such data, we now impose:

bik =
∑
l

βklζil

With such specification, cross-price effects between goods i and j are then fully determined by how i

and j differ in terms of their characteristics. Aggregators are now determined by expenditure shares

across attributes:

Λkt =
∑
l

βklZlt,
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where Zlt is defined as the sum of expenditure shares Wit across goods i weighted by their observed

attribute ζil:

Zlt(ζ,W ) =
∑
i

ζilWit.

When ζil is a dummy (e.g., whether yogurt i has a vanilla flavor), Zlt is simply the observed share of

expenditures across products that have such a label. In turn, cross-price effects are determined by an

interaction between observed characteristics ζil, weighted expenditures Zl′t on characteristics l′, and

matrix Γll′ =
∑

k βklβkl′ capturing substitution patterns between attributes l and l′. Matrix Γ now

becomes the key positive semi-definite matrix to be estimated.

With this projection on attributes, the estimating equation can be written as:

D−1
i (Wit) = log pit − log Λ∗t +

∑
l,l′

Γll′ ζilZl′t + εit. (29)

Relation to Berry et al (1995)) demand inversion. A major advantage of specification (29)

is that cross-price effects enter linearly and do not enter the inversion of own expenditure shares on

the left-hand side. In contrast, the inversion in BLP (Berry, Levinsohn and Pakes, 1996) relies on

the mixing parameters that both characterize the heterogeneity of tastes across consumers and the

cross-price effects, and is highly non-linear in these parameters. With BLP, one must therefore invert

again to re-evaluate the orthogonality condition for each new set of heterogeneity parameters. Here,

the inversion can rely on analytical solutions, and the linear specification in Γ̃ and Γ leads to more

transparent identification and helps to avoid the problem of weak instruments highlighted in Gandhi

and Houde (2019).

5.3 IV and GMM formulation

We propose two alternative estimation strategies: i) a linear IV estimator imposing Γ to be symmetric

but not necessarily positive semi-definite; ii) a GMM specification of a non-linear estimator imposing

both symmetry and positive semi-definiteness on Γ. In both cases, we use a set of instruments based

on Gandi and Houde (2019), which can readily apply to our framework.

5.3.1 Linear Problem

Requiring the estimated matrix Γ̂ to be positive semi-definite involves a set of non-linear constraints

(or alternatively, makes the objective function nonlinear in parameters). But if we set aside the

requirement that Γ must be positive semi-definite, then we can express the estimation problem as a

linear problem.

Starting from (29), combined with the log-linear specification of Di and a common θ, we obtain

the linear expression:

− logWit = αi +Ht + θ log pit +
∑
l,l′

θΓll′ζilZl′t + ϵit, (30)
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where Ht = θ log Λ∗t.

Observed variables are logWit, log pit and ζilZl′t, with Zl′t =
∑

i ζil′Wit. Linear coefficients to be

estimated are θΓll′ and θ, as well as αi and Ht which can be interpreted respectively as product and

time/market fixed effects or nuisance parameters.

Further, as requiring Γij = Γji for i ̸= j is a linear set of constraints, we can impose symmetry

on Γ without compromising the linearity of the estimator. This leaves us with the need to estimate

1 +M(M + 1)/2 parameters, and so a need for at least this many restrictions.

Suppose that we have appropriate instruments, both valid and sufficiently numerous to achieve

identification (see discussion of the differentiation instruments below). Still, note that estimating this

equation using conventional linear estimators will involve estimating 1+M2 parameters (not counting

the nuisance parameters α and H). This is more than the available linear independent differentiation

instruments (1+M(M +1)/2). As a formal matter symmetry implies M(M −1)/2 linear restrictions,

so that the estimator is identified. However, textbook implementations of, say, two-stage least squares

typically assume identification even /absent/ additional linear restrictions (Greene and Seaks 1991

note a similar issue for the case of restricted OLS).

Do note, however, the resulting linear estimates ΓLIV may be defective, as there is no guarantee

that the linear estimates of Γ will yield a positive semi-definite matrix. We discuss an approach to

correcting this using a non-linear GMM estimator below.

Differentiation Instrumental Variables Gandhi and Houde (2019) consider the problem of esti-

mating a Berry, Levinsohn, and Pakes (1995) style model of differentiated products. This is not our

model, but is a non-linear GMM problem using aggregate data that poses issues similar to ours as

the number of characteristics grows large. They are interested in particular with the problem of weak

instruments, and argue (formally in the context of the BLP model, but heuristic arguments may also

apply to our setting) that the appropriate instrument set should include what they call “differentiation

IVs,” which capture differences in characteristics across goods.

In our case, characteristics for J different products are encoded in a J × M matrix ζ. Thus,

differences across products for characteristic m can be written as

dm = [ζjm − ζj′,m]

yielding a J × J matrix of differences. Similarly, dsp = [log pjs − log pj′,s] gives differences in log prices

across goods for a market-periods s. (Note the important difference that dm is invariant across s.)

Importantly, not all goods are available in all market-periods. Let A be an S × J “availability”

matrix of ones and zeros. We can then construct a symmetric measure of difference for characteristic

m using Ad2m, yielding an S × J instrument matrix. Extending this idea, what Gandhi and Houde
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(2019) call the “instrument function” can be written as

G(p, ζ) =


Ad2p Differentiation in price;

Ad2m Differentiation in ζm for m = 1, . . . ,M

A(dm ⊙ dℓ) Interaction between differences in characteristics ℓ and m,

(31)

where ⊙ is the Hadamard product. This gives us 1+(M+1)M/2 instruments to exploit, and identifies

the linear specification described above as well as the GMM approach that we will now describe.

5.3.2 Generalized Method of Moments

To guarantee that the estimated matrix Γ is positive semi-definite we must turn to a non-linear

estimator. Here we are concerned with the problem of estimating a M × M matrix Γ, restricting

Γ to be symmetric, positive semi-definite, and of rank K ≤ M . A simple way to guarantee that Γ

satisfies these restrictions is to instead choose a M ×K matrix B, such that BB⊤ = θΓ. This gives

the required structure for θΓ, but does not uniquely determine B, as any matrix B∗ = BR with

R any orthonormal matrix would also have B∗B∗⊤ = θΓ. However, if we require B itself to be an

orthogonal matrix, so that B⊤B is diagonal, then for any positive semi-definite Γ with rank less than

or equal to K we have a corresponding unique orthogonal M ×K matrix B.

With the differentiation instruments in hand, we can construct a collection of unconditional mo-

ment restrictions. Let ϵsj(θ,B) = logWsj + θ log psj + αj +Hs + ζ⊤j BB⊤Zs. Then our approach is

to define gsj(B) = ϵsj(θ,B)⊙G(p, ζ), and require

Egsj(θ,B) = 0.

If G(p, ζ) includes a (non-zero) constant as an instrument, then this implies that we also have

Eϵsj(θ,B) = 0.

But treating α and H as fixed effects, we can require more; in particular that expected errors are zero

for every good j and every market-period s, so that we have

Esϵsj(θ,B) = 0 for all s ∈ S; and (32)

Ejϵsj(θ,B) = 0 for all j = 1, 2, . . . , J . (33)

Either of these (zero for every good; zero for every market-state) implies the weaker condition that
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the expected value of ϵ be zero, of course. From each of these conditions, we estimate α and H as:

Ĥs =
1

J

∑
j

logWsj − θ
1

J

∑
j

log psj −

 1

J

∑
j

ζ⊤j

BB⊤
∑
j′

ζj′Wsj′ (34)

α̂j =
1

S

∑
s

logWsj − θ
1

S

∑
s

log psj − ζ⊤j BB⊤ 1

S

∑
s

∑
j′

ζj′Wsj′ −
1

S

∑
s

Ĥs, (35)

finally requiring
∑

j α̂j = 0. Conditional on (θ,B) the parameters (α,B) are just identified by these

restrictions. Then let

ϵ̇sj = ϵsj −Hs − αj ,

and define

ġsj(θ,B) = ϵ̇sj(θ,B)⊙G(p, ζ)

which effectively applies a “within” transformation to eliminate the latent variables Hs and αj . We

then exploit the moment conditions Eġsj(θ,B) = 0, or the sample counterparts

mN (θ,B) =
1

S

∑
s

1

J

∑
j

ġjs(θ,B).

The vector of sample moments mN has dimension ℓ. We estimate the covariance matrix of these

moments using

Ω̂N (θ,B) =
1

S

∑
s

1

J

∑
j

ġjs(θ,B)ġjs(θ,B)⊤,

and then construct the continuously-updated GMM criterion function

JN (θ,B) = NmN (θ,B)⊤Ω̂N (θ,B)−1mN (θ,B).

Our continuously-upated estimator (CUE) is then the solution to

min
θ,B∈Orth(M,K)

JN (θ,B), (36)

where Orth(M,K) is the set of orthogonal matrices in R
M×K .

Computation Computing the solution to (36) involves choosing 1 +MK parameters which enter

the objective function non-linearly, and which are subject to a set of non-linear constraints. If K is

small relative to M , this greatly reduces the computational cost, but the non-linear problem is still

difficult.

To make the problem manageable, for any fixed value of K we use methods to optimize over

the manifold of positive semi-definite matrices described by Boumal (2023), implemented in the the

package pymanopt (Townsend, Koep, and Weichwald 2016). By searching only over points on this
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smooth manifold we are able to considerably simplify the optimization problem. Our approach to

search exploits trust-region methods applied to manifolds developed by Baker, Absil, and Gallivan

(2008), which provides nice guarantees regarding computational complexity and global convergence

(Sheng and Yuan 2024).

Given an algorithm for solving (36) for fixed K, we address the global problem of choosing K by

solving first for the case of K = 1. This yields a value of the criterion J1, which is asymptotically

distributed χ2 with ℓ −MK − 1 degrees of freedom under the null hypothesis that EmN (θ, B̂) = 0;

i.e., that the moment restrictions are satisfied by this model with K = 1. If we are able to reject this

null at standard levels of confidence (1%), we take K = 2, and re-estimate, yielding the statistic J2.

The difference J1 − J2 is itself distributed χ2 with M degrees of freedom under the null that

EJ1 − J2 = 0. This leaves us with the following algorithm:

1. Initialize k = 1.

2. Fail to reject K = k model. We are finished.

3. Reject K = k + 1. Fail to reject EJk − Jk+1 = 0. This suggests that we can reject the model,

and that an increase in the number of aggregators is not significantly improving model fit. We

are finished.

4. Reject K = k + 1 model. Reject EJk − Jk+1 = 0. This suggests that we can reject the model

for K = k + 1, but that increases in k are producing significant improvements in model fit.

5. Let k = k + 1, and go to step 1.

5.4 Preliminary results

Figure 1 provides very preliminary results of estimates of Γ as defined in equation 29 above, where we

also impose a uniform own price effect parameter θ across goods.14

In this specification, we project on 17 product attributes shown in colum and row headings. We

impose symmetry of Γ (linear constraints) but not positive semi-definiteness, and we do not impose

symmetry of t-stat estimates (shown in Figure 1 using color codes).

Conclusions

XXX TBD

14Our preliminary estimate of θ is: 1.60 with a standard error: 0.008.
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Figure 1: Estimates of Γ coefficients, projecting on product attributes
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Appendix

Lemma from Goldman and Uzawa (1964)

Take a smooth function f and several smooth functions {gk}k≤K , each from R
J to R. Suppose that there are scalar

functions λk, k ≤ K, from R
J to R such that:

∇f(x) =
∑
k

λk(x) .∇gk(x)

for any x, and suppose that each level set of {gk}k≤K is connected, then there exists a function G from R to R such that:

f(x) = G
(
g1(x), ..., gK(x)

)
Proof of the lemma It suffices to show that gk(x0) = gk(x1) (for all k) implies f(x0) = f(x1) for any x0 ∈ R

J

and x1 ∈ R
J , i.e. that f only takes a single value on a level set of the set of g. Take x0 and x1 on such a level set. Since

they are on the same level set, following our assumption on connectedness, there is a smooth path x(t) between these
two points that remains on the level set, with x(0) = x0 and x(1) = x1. Along that path, define ϕ(t) = f(x(t). We have
then:

ϕ′(t) = ∇f(ϕ(t)) · x′(t) = λ(ϕ(t)) .
∑
k

∇gk(ϕ(t)) · x′(t) = 0

which is null since each ∇gk(ϕ(t)) · x′(t) = 0 as x(t) remains on the level set of each gk. Hence ϕ(1) = ϕ(0), which
means that f(x1) = f(x0).

A Proof of Proposition 1

Step 1: functions of K shares and prices. The first step is to show that for each good j, we can write it
as a function of its own price xj and of the first K prices xk and demand Fk.

Denote by S|K the S matrix where we include only the first K rows, so that we include only the first K goods
k = 1, ...,K. Define ∂F |K and σ|K similarly. We have then: ∂F |K =
sigma|K + S|K .

The remaining rows of ∂F − σ are then linear combinations of the first ones, denoting BJK the matrix that yields
the remaining rows depending on SK . Thus, we can then define matrix

B =

(
1K

BJK

)
where 1K is the identity matrix on R

K , so that matrix B has rank K and we have then:

∂F = σ + B ·
(
∂F |K − σ|K

)
This means that the gradient of each Fi is a linear combination of the gradients of xi, the gradients of x1, ... , xK as
well as the gradients of F1, ..., FK :

∂Fi

∂xj
= σi1(j = i) +

∑
k

Bik

[
∂Fk

∂xj
− σk1(j = k)

]
Combined with the connectedness assumption [C4], Lemma 1 of Goldman-Uzawa (1956) [Lemma reproduced above]
implies that for each good i there exists a function gi of 2K + 1 arguments such that we can write:

Fi(x) = gi
(
xi, F1(x), ..., FK(x), x1, ..., xK

)
Step 2: σk and the derivatives of gi. The rank assumption [C2-ii] on the Jacobian of the arguments of gi
implies that the coefficients in the expression above coincide with the derivatives of function gi.

First, the derivative in the first argument is ∂gi
∂xi

= σi, which implies that σi can be written as a function of(
xi, F1(x), ..., FK(x), x1, ..., xK

)
for any i > K. . Regarding the terms in Fk, we must have:

∂gi
∂Fk

= Bik
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so that Bik can be itself written as a function of
(
xi, F1(x), ..., FK(x), x1, ..., xK

)
. For the derivatives in xk, we obtain:

∂gi
∂xk

= −σkBik

Hence ∂gi
∂xk

can also be written as functions of
(
xi, F1(x), ..., FK(x), x1, ..., xK

)
. Taking ratios, σk can in turn be written

as functions of
(
xi, F1(x), ..., FK(x), x1, ..., xK

)
. This can be done for all i such that Bik ̸= 0 is non-null.

Under assumption [C2-i], we must have at least two goods i > K and j > K such that Bik ̸= 0 and Bjk ̸= 0, i.e.
∂gi
∂Fk

̸= 0 and
∂gj
∂Fk

̸= 0. If that wasn’t the case, e.g. if all the Bik cells are zero for a specific k, then one of the columns
of the BJK matrix would be null, and its rank would be strictly smaller than K after we remove the k ≤ K rows. If the
Bik cells are all zero for a specific k, aside from a single i good, then the same reasoning would apply if we remove the
row corresponding to that good i. Hence there exist at least two non-zero entries Bik and Bjk for any specific column k.

We then obtain that σk can be written both as function of
(
xi, F1(x), ..., FK(x), x1, ..., xK

)
and as a function of(

xj , F1(x), ..., FK(x), x1, ..., xK

)
. Under assumption [C2-ii], linear independent of their Jacobians implies that σk only

depends on the common set of arguments, i.e.
(
F1(x), ..., FK(x), x1, ..., xK

)
. We use this result in the next step.

Step 3: defining flows Ψk. For any good k ≤ K, define the ”flow” Ψk

(
t
∣∣F1, ..., FK , x1, ..., xK

)
as a function

from R× R
2K to R2K such that:

Ψk

(
0
∣∣F1, ..., FK , x1, ..., xK

)
=
(
F1, ..., FK , x1, ..., xK

)
and:

∂Ψk,xk′

∂t
= 0 ;

∂Ψk,Fk′

∂t
= 0

whenever k′ ̸= k, i.e. t does not lead to changes in values w.r.t coordinates Fk′ and xk′ for k′ ̸= k), while:

∂Ψk,xk

∂t
= 1 ;

∂Ψk,Fk

∂t
= σk

(
Ψ(t)

)
< 0

which means that as time t increases we also increase the price xk of good k and its corresponding demand Fk by a
corresponding amount σk < 0. In this transformation, since the sign of σk does not change, there is a unique coordinate
in Fk for each coordinate xk.

This is an ordinary differential equation that admits a solution. Moreover, it is defined for all t ∈ R. If the flow Ψk

was defined only up to an upperbound T , if would leave any compact as t approaches T . Since x would remain bounded
(xi remains constant for any i ̸= k and xk would increase by at most T from t = 0), and Fi remains constant for any
i ̸= k, it must be that |Fk| goes to infinity for some k. Under assumption [C3], this leads to a contradition as other Fi

could then nor remain constant.
Alternatively, note that the flows would be also globally defined under the alternative assumption that σk be bounded.

Step 4: invariance property. We can then check that each demand function gj are invariant to transformations
along flows Ψk. Take any good j and define:

Fj(t) = gj
(
xj0,Ψk

(
t
∣∣F1, ..., FK , x1, ..., xK

))
where we hold the first argument fixed to some arbritrary value xj0. We obtain, using the derivatives of flow Ψk:

∂Fj

∂t
= σk(Ψk)

∂gi
∂Fk

(Ψk) +
∂gi
∂xk

(Ψk) = 0

which is equal to zero given the earlier finding on the derivatives ∂gi
∂xk

and ∂gi
∂Fk

.

Step 5: commutative frame. We can then show that the set of flows {Ψk}k≤K commute, i.e. it is equivalent
to shift first by tk using the flow Φk and then shift by tk′ using flow Φk′ or vice versa:

Ψk′
(
+ tk′

∣∣Ψk

(
+ tk

∣∣{F, x}K)) = Ψk

(
+ tk

∣∣Ψk′
(
+ tk′

∣∣{F, x}K))
where {F, x}K ≡ (F1, ..., FK , x1, ..., xK) ∈ R

2K .
The reason for this is that these flows remain on the same level sets functions gi’s, holding constant their first

argument (thus, they are “integrable”). Take some fixed values x̄i for i > K and define function G from R
2K to RJ−K

as:
G
(
{F, x}K

)
=
{
gi(x̄i, {F, x}K

}
i>K
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Three remarks about the Jacobian are then relevant: i) first, the Jacobian of G in F (holding x constant) coincides
with matrix BJK defined earlier, which has a rank K; ii) each column of the Jacobian of G in x (keeping F constant) is
colinear with the k’th column of B, hence again the Jacobian of G in x; iii) given the colinearity, the rank of G in (F, x)
combined is exactly K again.

Hence we can apply the “constant-rank level set theorem” (see e.g. Lee 2003, chapter 5, theorem 5.1) telling us that
each level set of G in {F, x} is a properly embedded submanifold of dimension K in R2K . Moreover, since the differential
in F has rank K, locally there is a unique F on the level set, given x. Similarly, there is a unique x on the level set,
conditional on F . Hence, locally, there is a one-to-one mapping between x and F such that {F, x} remains on the level
set.

Then, notice that the x coordinates of Ψk′
(
+ tk′

∣∣Ψk

(
+ tk

∣∣{F, x}K)) are the same as those of Ψk

(
+ tk

∣∣Ψk′
(
+

tk′
∣∣{F, x}K)) since we are both shifting xk by +tk and xk′ by +tk′ while keeping other x’s constant. Since both remain

on the same level set of G, the remaining coordinates in F must be the same in both cases, showing that the two flows
commute.15

We can then simply define Ψ
(
t1, ..., tK

∣∣{F, x}K) as the combination of shifts along each flow Ψk by tk without
referring to the ordering. Using this ”commutative frame”, it is then easy to define aggregators and demand as a
function of these aggregators.

Step 6: aggregators and demand function. We define aggregators Λ as the F component of Ψ, where
we shift the initial {F, x}K by t = −x:(

Λ1(x), ...,ΛK(x), 0, ...0
)

= Ψ
(
− x1, ...,−xK

∣∣(F1(x), ..., FK(x), x1, ..., xK

))
or equivalently defining each Λk as: Λk(x) = Ψk,Fk

(
− xk

∣∣(F1(x), ..., FK(x), x1, ..., xK

))
. By pushing back by +xk

(inverting the flow), notice that we have:(
F1(x), ..., FK(x), x1, ..., xK

)
= Ψ

(
x1, ..., xK

∣∣(Λ1(x), ...,ΛK(x), 0, ...0
))

so we can express each Fk as a function of xk and the Λ’s:

Fk(x) = ΨFk

(
xk

∣∣(Λ1(x), ...,ΛK(x), 0, ...0
))

This gives Theorem 1 for goods k ≤ K. where the Dk function is given by ΨFk.
For goods i > K, using the invariance property (step 4), we can see that we can replace each demand Fk as a

argument by Λk(x) and each price xk by 0:

Fi(x) = gi
(
xi, F1(x), ..., FK(x), x1, ..., xK

)
= gi

(
xi,Ψ

(
− x1, ...,−xK

∣∣(F1(x), ..., FK(x), x1, ..., xK

)))
= gi

(
xi,Λ1(x), ...,ΛK(x), 0, ..., 0

)
Denoting Di the function gi by dropping the 0, ...0 argument, we obtain the result from Theorem 1, i.e. that we can
express demand as a function of its own price xi and K aggregators:

Fi = Di

(
xi,Λ1(x), ...,ΛK(x)

)
≡ gi

(
xi,Λ1(x), ...,ΛK(x), 0, ..., 0

)

15Note that this argument is local, but flows that commute locally also commute globally.
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B Proof of Proposition 3

Here, to lighten the notation, we denote xi = log pi.

Step 1: Separability

We start from the integrability assumption:
∂P

∂xi
= Wi(xi,Λ(x)) (37)

Denote Si(xi,Λ) =
∫ xi

0
Wi(t,Λ)dt a primitive of Wi in xi, and denote:

S(x) =
∑
j

Sj(xi,Λ(x))

the sum of Si’s, evaluated at Λ = Λ(x). Define
We have then:

∂S

∂xi
=

∂P

∂xi
+
∑
k

(∑
j

∂Sj

∂Λk

)
∂Λk

∂xi
(38)

Hence the gradient of S − P is colinear with the gradients of the aggregators Λ. Using Lemma 1, we can thus express
S − P as a function of the aggregators, using also the assumption that iso-Λ surfaces are connected. Hence:

S(x)− P (x) = M(Λ(x)) (39)

for some function M , and thus: ∑
j

Sj(xi,Λ(x)) = M(Λ(x)) + P (x) (40)

Step 2: Implication of the rank of ∂Λk

∂xi

Differentiating the last equality above, and using ∂P
∂xi

= ∂Si
∂xi

, we have:

∑
k

(∑
j

∂Sj

∂Λk

)
∂Λk

∂xi
=
∑
k

(
∂M

∂Λk

)
∂Λk

∂xi

Given the assumption that the collection of vectors ∂Λk
∂xi

has rank K, it must be that:

∑
j

∂Sj

∂Λk
=

∂M

∂Λk
(41)

for each Λk.

Step 3: Symmetry and invertibility

Differentiating the last equality above (FOC in Λk) w.r.t xi, we obtain:∑
j

∂2Sj

∂xi∂Λk
+
∑
k′=0

∑
j

∂2Sj

∂Λk′∂Λk

∂Λk′

∂xi
=
∑
k′=0

∂2M

∂Λk′∂Λk

∂Λk′

∂xi

But notice that
∑

j

∂2Sj

∂xi∂Λk
= ∂Wi

∂Λk
so

∂Wi

∂Λk
+
∑
k′=1

∑
j

∂2Sj

∂Λk′∂Λk

∂Λk′

∂xi
=
∑
k′=1

∂2M

∂Λk′∂Λk

∂Λk′

∂xi

This equality can be rewritten as:
∂Wi

∂Λk
=

∑
k′=1

Γkk′
∂Λk′

∂xi
(42)
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where Γ is a symmetric K ×K matrix (given the symmetry of the cross derivatives) with coefficients:

Γkk′ =
∂2M

∂Λk′∂Λk
−
∑
j

∂2Sj

∂Λk′∂Λk
(43)

Invertibility Since we also assume that
{

∂Wi
∂Λk

}
has full rank K, we obtain that Γ matrix must be invertible, with

its inverse denoted by γ (also symmetric). It implies that the gradients of Λ must be a linear combination of the partial
derivatives of Wi:

∂Λk

∂xi
=

∑
k′=1

γkk′
∂Wi

∂Λk′
(44)

Step 4: Using the budget constraint

The budget constraint condition imposes
∑

i Wi(xi,Λ(x)) = 1 when the aggregators Λ are evaluated at x. Differentiating
, we find:

−∂Wj

∂xj
=
∑
k=1

(∑
i

∂Wi

∂Λk

)
∂Λk

∂xj
(45)

Hence
∂Wj

∂xj
is colinear with the set of vectors ∂Λk

∂xj
. Denote by γkk′ the coefficients of the inverse of Γ. We obtain:

−∂Wj

∂xj
=
∑
k′

∑
k

(∑
i

∂Wi

∂Λk

)
γkk′

∂Wj

∂Λk′

Dividing by Wj , and denoting

vk =
∑
k′

γkk′

(∑
i

∂Wi

∂Λk′

)
, (46)

we have then:

−∂ logWj

∂xj
=
∑
k

vk
∂ logWj

∂Λk
(47)

where the last derivatives are taken by holding V and xi constant, respectively. This colinearity between derivatives
of Wj is crucial to obtain the functional form for Wj . Before getting into integrating this differential equation, some
additional work on vk is needed.

Step 5: Coefficients vk as functions of Λ

Take the derivative of the above equation with respect to pi for a good i ̸= j. Since
∂ logWj

∂xj
and

∂ logWj

∂Λk
only depends

on the aggregators and xj , we obtain:

−
∑
k′

∂2 logWj

∂xj∂Λk′

∂Λk′

∂xi
=
∑
k

∂vk
∂xi

∂ logWj

∂Λk
+
∑
k,k′

vk
∂2 logWi

∂Λk∂Λk′

∂Λk′

∂xi
(48)

Rearranging, and multiplying by Wj , we get:

−
∑
k′

∂vk′

∂xi

∂Wj

∂Λk′
=
∑
k′

∂Λk′

∂xi
Bjk′ (49)

where for some Bjk′ =
∑

k vk
∂2Wj

∂Λk∂Λk′
+

∂2Wj

∂xj∂Λk′
(this notation B will not appear again).

As we assume that ∂Wi
∂Λk

have full rank K even if we drop a good j, we obtain that the gradients ∂vk
∂xi

are colinear

with the collection of gradients
{

∂Λk′
∂xi

}
. Lemma 1 implies that each vk can be written as a function of Λ.

vk = vk(Λ) (50)
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Step 6: Flow Φ

Functional form equations for Wi. Recall that:
∂ logWj

∂xj
= −

∑
k=1 vk(Λ)

∂ logWj

∂Λk
where vk(Λ) is a function

of aggregators Λ. We obtain:

−∂Wi

∂xi
=
∑
k

vk(Λ)
∂Wi

∂Λk
(51)

for each good i.

Defining the flow Φ. A solution to these equations is based on the existence of a mapping for each t from Λ into
a new vector of aggregators Φ(t,Λ) such that Φ(0,Λ) = Λ and such that:

∂Φk

∂t
= vk(Φ) (52)

Action of Φ on Wi. This flow can be used to highlight symmetries across goods and invariances in the demand
functions Wi and function M defined in step 1. First, consider Wi(xi + t,Φ(t,Λ)) as a function of t. Its derivative in t
is given by:

∂Wi

∂xi
(xi + t,Φ(t,Λ)) +

∑
k=1

∂Φk

∂t
(Φ(t,Λ))

∂Wi

∂Λk
(xi + t,Φ(t,Λ))

=
∂Wi

∂xi
(xi + t,Φ(t,Λ)) +

∑
k=1

vk(Φ(t,Λ))
∂Wi

∂Λk
(xi + t,Φ(t,Λ)) = 0

hence it does not depend on t, which implies:

Wi(xi + t,Φ(t,Λ)) = Wi(xi,Λ) (53)

for any t, xi and Λ. Another way to highlight the role of Φ is to see that it captures the price effects and reduces demand
to a function of aggregators after adjusting that price effect:

Wi(xi,Λ) = Wi(0,Φ(−xi,Λ)) (54)

Note also that Wi(xi,Φ(t,Λ)) = Wi(xi − t,Λ) strictly increases with t since Wi decreases in xi.

Maximal flow. We still need to check that Φ is a global flow, i.e. defined for all t ∈ R (i.e. the vector field v is
“complete”).

By contradiction, suppose that for some Λ0 the flow Φ(t,Λ0) is defined only up to T . We would have:

lim
t→T

Wi(0,Φ(t,Λ0)) = lim
t→T

Wi(−t,Λ0) = Wi(−T,Λ0) > 0

for all i.
However, if the flow is defined only up to T , Φ([0, T ),Λ0) of [0, T ) cannot be contained into a compact set (“Escape

Lemma”, see Lemma 9.19 in Lee 2013’s Intro to Smooth Manifolds). Given our assumption (“no escaping”), this implies
that maxi | logWi(0,Φ(t,Λ0))| is unbounded and cannot has a finite limit, and contradicts the results above.

Other properties. Notice that Φ(t,Φ(t′,Λ)) = Φ(t+ t′,Λ) for any t and t′, hence, for any given t, Φ it is invertible
in Λ, with inverse Φ(−t,Λ), given that Φ(t,Φ(−t,Λ)) = Λ. Also, for any t, Φ is differentiable (hence a diffeomorphism).

Step 7: Projecting aggregators

Here the goal is to show that each pair Λ can be written as:

Λ = F (Λ∗,Λ′)

for some isomorphism F : R ×M0 → R
K for some submanifold M0, such that we have a canonical projection on flow

Φ, i.e. such that:
Φ(t, F (Λ∗,Λ′)) = F (Λ∗ + t,Λ′) (55)

for any t, Λ∗ and Λ′.
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Total price effects. Define the function D0 of Λ by evaluating the sum of Di at a reference point xi = 0 for each
good:

W0(Λ) =
∑
i

Wi(0,Λ)

Since for each i we obtain that Wi(0,Φ(t,Λ)) = Wi(−t,Λ) strictly increases with t, we also obtain that W0(Φ(t,Λ))
strictly increases with t.

We define by M0 the set of Λ such that W0(Λ) = 1:

M0 = W−1
0 ({1}) (56)

As W0(Φ(t,Λ)) strictly increases with t, we can deduce that the vector field v is never tangent to M0. This will be
useful to apply the Flowout Theorem (see below).

Defining the mapping. We then simply construct F such that

F (Λ∗,Λ′) = Φ(−Λ∗,Λ′)

As the flow Φ is global (and differentiable), F is defined for all Λ∗ and Λ′. We have yet to show surjectivity and injectivity
globally.

Surjectivity. Take Λ ∈ R
K . We need to find Λ′ ∈ M0 and Λ∗ ∈ R such that F (Λ∗,Λ′) = Λ. But notice that we

have then:
Λ′ = Φ(Λ∗,Λ)

So, for such a Λ∗ and Λ′ to exist, we need to show that

W0(Φ(Λ
∗,Λ)) = 1

for some Λ∗. Note that:
W0(Φ(Λ

∗,Λ)) =
∑
i

Wi(0,Φ(Λ
∗,Λ)) =

∑
i

Wi(−Λ∗,Λ)

One of our assumption (on “Total price effects”) is that for any Λ and any y > 0, there exist a real t ∈ R such that:∑
i

Wi(t,Λ) = 1 (57)

We can thus find Λ∗ such that: ∑
i

Wi(−Λ∗,Λ) = 1

which is equivalent to having Φ(Λ∗,Λ)) ∈ M0. Setting Λ′ = Φ(Λ∗,Λ)), we have Λ = Φ(−Λ∗,Λ′) = F (Λ∗,Λ′).

Injectivity. We also need to show that F is globally injective, but this is relatively easy using function D0. Consider
two sets of aggregators, (Λ∗

1,Λ
′
1) vs. (Λ

∗
0,Λ

′
0), we have then:

F (Λ∗
1,Λ

′
1) = F (Λ∗

0,Λ
′
0) ⇐⇒ Φ(−Λ∗

1,Λ
′
1) = Φ(−Λ∗

0,Λ
′
0)

⇐⇒ Φ(Λ∗
0 − Λ∗

1,Λ
′
1) = Λ′

0

This implies that D0(Φ(Λ
∗
0 − Λ∗

1,Λ
′
1)) = 1. Since D0 is strictly monotonic in Λ∗, and since D0(Φ(0,Λ

′
1)) = 1, we obtain

that Λ∗
1 must be equal to Λ∗

0. In turn, we get: Λ′
0 = Φ(Λ∗

0 − Λ∗
1,Λ

′
1) = Φ(0,Λ′

1) = Λ′
1.

Implication for Di. These results imply that we can write:

Wi(xi, F (Λ∗,Λ′)) = Wi

(
xi,Φ(−Λ∗,Λ′)

)
= Wi

(
0,Φ(−xi − Λ∗,Λ′)

)
= Wi

(
xi + Λ∗,Λ′) (58)

Hence, up to a isomorphic mapping of the aggregators, we can rewrite Wi as a function of the price shifter Λ∗ and a
vector of aggregators that belongs to a submanifold of lower dimension.
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Step 8: Implications for M and V . As described earlier, evaluating aggregators at x, we must have:∑
j

Sj(xi,Λ(x)) = M(Λ(x)) + P (x) (59)

P (x) =
∑
j

Sj(xi,Λ(x)) − M(Λ(x)) (60)

and the first order condition (41) in each aggregator Λk implies that we must have:∑
j

∂Sj

∂Λk
=

∂M

∂Λk
(61)

The same sets of FOC can be applied to (Λ∗,Λ′) if we use the canonical representation of aggregators.
Note that Si(xi,Λ) =

∫ xi

0
Wi(t,Λ)dt. Hence, using the new functional form based on Di and Λ∗, we obtain:

Si(xi,Λ
∗,Λ′) =

∫ xi+Λ∗

0

Wi(t,Λ
′)dt

The first order condition in Λ∗ implies that we must have:

∂M

∂Λ∗ =
∑
j

∂Sj

∂Λ∗ =
∑
j

Wj(xi + Λ∗,Λ′) = 1

Hence:
M(Λ∗,Λ′) = G(Λ′) + Λ∗

for some function G that is independent of Λ∗.
We obtain:

P (x) = −M(Λ∗(x),Λ′(x)) + S(x) = −G(Λ′)− Λ∗ +
∑
i

∫ xi+Λ∗

0

Wi(t,Λ
′)dt

where the aggregators Λ∗ = Λ∗(x) and Λ′ = Λ′(x) are such that the derivatives of the RHS in Λ∗ and Λ′ are null.

Homogeneity for aggregators. Based on the FOC for aggregators, we have then:

Λ∗(x+ a) = Λ∗(x) + a and Λ′(x+ a) = Λ′(x)
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C Proof of Lemma 4

Suppose that the function P̃ (p,Λ∗,Λ) is defined as in equation (6):

log P̃ (p,Λ∗,Λ) = log Λ∗ − G(Λ) +
∑
j

∫ pj/Λ
∗

t=1

Dj(t,Λ) d log t

Notice that we have:
∂ log P̃

∂ log pi

∣∣∣∣∣
Λ∗,Λ

= Dj(pj/Λ
∗,Λ)

which is positive and decreasing in pi, hence log P̃ is strictly concave in log p, conditional on Λ and Λ∗.
As described, we consider two cases:

i) If log P̃ (p,Λ∗,Λ) is convex in Λ, define log
˜̃
P (p) = {minΛ log P̃ (p, 1,Λ)}.

ii) If log P̃ (p,Λ∗,Λ) is concave in (Λ, log p), define log
˜̃
P (p) = maxΛ log P̃ (p, 1,Λ).

In each of these two cases, the max or min operations preserve the concavity property, so we obtain that log
˜̃
P (p) is

strictly concave in log p. We then define:

logP (p) = max
Λ∗

{log Λ∗ + log
˜̃
P (p/Λ∗)}

which coincides with the function P (p) defined in the statement of Lemma 4.

Using the fact that log
˜̃
P is strictly concave in log p, we can show that logP is concave in p. We do this by

examining the Hessian, and showing that it is semi-definite negative. Since the right-hand side is strictly concave in
log Λ∗, aggregator Λ∗ is uniquely defined. The first-order condition is:

1 =
∑
i

∂ log
˜̃
P (p/Λ∗)

∂ log pi

Differentiating, we get:

0 = −

∑
i,l

∂2 log
˜̃
P

∂ log pi∂ log pl

 ∂Λ∗

∂ log pj
+
∑
i

∂2 log
˜̃
P

∂ log pi∂ log pj

In matrix form, denoting by H the Hessian of log
˜̃
P , this yields:

0 = −(1tH1)∇Λ∗t + 1
tH

and thus: ∇Λ∗t = η1tH where η < 0 denotes 1/(1tH1).
Turning to P and using again the envelope theorem, we obtain: ∂P

∂pi
= P (p/Λ∗)

pi

∂ log
˜̃
P (p/Λ∗)

∂ log pi
and thus the Hessian:

∂2 log
˜̃
P

∂pi∂pj
=

P

pipj

[
∂ log

˜̃
P

∂ log pi

∂ log
˜̃
P

∂ log pj
− 1(i = j)

∂ log
˜̃
P

∂ log pi

]
+

P

pipj

[
∂2 log

˜̃
P

∂ log pi∂ log pj
−
∑
l

∂2 log
˜̃
P

∂ log pi∂ log pl

∂H

∂ log pj

]

In this expression, the term in first brackets are the coefficients of a semi-definite negative matrix because the diagonal
coefficients are negative and weakly “dominate” the non-diagonal coefficients, since its row sum (or column sum) is equal
to zero.

Next we show that the terms in the second brackets are also the coefficients of semi-definite negative matrix. In
matrix form, the terms in the second matrix coincide with the matrix M defined as:

M = H−H1∇Λ∗t = H− ηH11tH

To prove negative semi-definiteness, we show that for any vector v, we have vtMv ≤ 0. Indeed, we have:

vtMv ≤ 0 ⇔ (vtHv) ≤ η(vtH1)(1tHv) ⇔ (1tH1)(vtHv) ≥ (vtH1)2

The latter is Cauchy-Schwartz inequality, which holds for any semi-definite matrix H
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D Proof of Proposition 5

While Lemma 4 proves that the demand system is rational and well-defined (under assumptions of Lemma 4). This
implies that there exists a well-defined concave utility function U(q) that generates such demand system. By definition,
under homothetic preferences, the price index can be obtained from utility as

logP (p) = −max
qi

{
logU(q) s.t.

∑
i

piqi = 1
}

But we can then show that:

max
qi

{
logU(q) s.t.

∑
i

piqi = 1
}

= max
q

{
1 −

∑
i

piqi + logU(q)
}

To see this equality, notice that in the right, the optimum in q satisfies: pi = ∂ logU(q)
∂qi

. On the left, we have

λpi = ∂ logU(q)
∂qi

where λ is the Lagrange multiplier. But since U(q) is homogeneous of degree one, we must have:

1 =
∑
i

piqi =
∑
i

qi
∂ logU

∂qi
/λ = 1/λ

So λ = 1 and the optimal q are the same in both maximization problems. This implies that, on the right,
∑

i piqi = 1
at the optimum.

Combining, ignoring a constant term (−1), this implies that the log price index is the conjugate of log utility:

logP (p) = min
q

{∑
i

piqi − logU(q)
}

Hence, applying the Legendre-Fenchel duality theorem, we can obtain log utility as the concave congugate of the log price
index. Denote Si(pi,Λ) =

∫ log pi
t=0

Di(t,Λ) dt and ui(qi,Λ) = minp{piqi − Si(pi,Λ)} its conjugate in pi (i.e. conditional

on Λ). In the case where log P̃ (p,Λ∗,Λ) is convex in Λ (condition i) of Lemma 4), we get:

logU(q) = min
p

{∑
i

piqi − logP (p)
}

= min
p

{∑
i

piqi − max
Λ∗

max
Λ

{∑
i

Si(pi/Λ
∗,Λ) + log Λ∗ − G(Λ)

}}
= min

p
min
Λ∗

min
Λ

{∑
i

piqi −
∑
i

Si(pi/Λ
∗,Λ) − log Λ∗ + G(Λ)

}
= min

Λ∗
min
Λ

min
p

{∑
i

piqi −
∑
i

Si(pi/Λ
∗,Λ) − log Λ∗ + G(Λ)

}
= min

Λ∗
min
Λ

{∑
i

min
p

{
piqi − Si(pi/Λ

∗,Λ)
}

− log Λ∗ + G(Λ)
}

= min
Λ∗

min
Λ

{∑
i

ui(qiΛ
∗,Λ) − log Λ∗ + G(Λ)

}
In the concave case (condition ii) of Lemma 4), we have:

logU(q) = min
p

{∑
i

piqi − max
Λ∗

min
Λ

{∑
i

Si(pi/Λ
∗,Λ) + log Λ∗ − G(Λ)

}}
= min

p
min
Λ∗

max
Λ

{∑
i

piqi −
∑
i

Si(pi/Λ
∗,Λ) − log Λ∗ + G(Λ)

}
= min

Λ∗
max

Λ

{∑
i

min
p

{
piqi − Si(pi/Λ

∗,Λ)
}

− log Λ∗ + G(Λ)
}

= min
Λ∗

max
Λ

{∑
i

ui(qiΛ
∗,Λ) − log Λ∗ + G(Λ)

}
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E Non-homothetic demand as a function of normalized prices

In this setting, it is useful to consider all objects as functions of the log of normalized income, xi = log(pi/w), for each
good i, and express everything in terms of x instead of p. As such, we focus on attention on expenditure shares satisfying:

piqi
w

= Wi(xi,Λ1(x), ...,ΛK(x)) (62)

where x refers to the full vector of log normalized prices {log(pi/w)}. Again, we focus on demand from a rational
consumer, i.e. maximizing a quasi-concave utility U , or equivalently a quasi-convex indirect utility V . Expressing V
as a function of log normalized prices, Roy’s identity implies that the derivative w.r.t xi must be proportional to the
expenditure share on good i, i.e. we must have:

∂V

∂xi
(x) = µ(x)Wi(xi,Λ(x)) (63)

where µ(x) ∈ R+ is a positive scalar (which may vary with prices x). For most of the analysis, we assume that demand
and utility are smooth, and assume away corner solutions.Note that the marginal utility of income (not taking logs)
corresponds to µ divided by income.

Assumptions: [A1], [A2], [A5], [A6] as before. We alter assumption [A3]-[A4], and add [A7]:

A3. Rank of Λ. The matrix with coefficients
{
Wi,

∂Wi
∂Λk

}
has full rank K + 1.

A4. Rank of W . The matrix with coefficients
(
Wj ,

∂Λk
∂xj

)
has maximal rank K + 1, where K denotes the number of

aggregators), even if we drop one good i from the set of goods.

A7. Separability in µ: µ(x) can be expressed as a product of two scalar functions: µ(x) = χ(V (x))λ(Λ(x)).

Without assumption [A7], we can still show that the scalar function µ defined in Equation (63) can be expressed
as a function of aggregators Λ and utility V . But assumption [A7] is helpdul in obtaining an explicit indirect utility
function instead of the implicit relationship described in the previous subseciton:

Proposition 7 Demand that depends on aggregators Λ and satisfies all assumptions 1-7 above must take the form:

Wj(xj ,Λ) =
Dj(xj+Λ∗,Λ′)

λ(Λ∗,Λ′)
(64)

where Λ = Φ(Λ∗,Λ′) and Φ is a one-to-one re-mapping from aggregators Λ ∈ R
K to aggregators Λ∗ ∈ R and Λ′ ∈ R

K−1.
Moreover, up to a monotonic transformation, it is derived from an indirect utility V (x) that satisfies:

V (x) = G(Λ′) +

∫ Λ∗

t=0

λ(Φ(t,Λ′)) dt −
∑
j

∫ xj+Λ∗

t=0

Dj(t,Λ
′) dt (65)

for some real function G(Λ′), and where the aggregators (Λ∗,Λ′) are such that the partial derivatives of the RHS in
(Λ∗,Λ′) are null.

Rationalization and utility function. Conversely, we can obtain sufficient conditions under which the V
function defined above is a well-behaved indirect utility function, in particular to ensure quasi-convexity. As in Lemma
4, it is convenient to disentangle convex and concave cases, and both cases are appropriate as they preserve convexity.

Proposition 8 Suppose that indirect utility V (x) is defined by:

V (x) = G(Λ) +

∫ Λ∗

t=0

λ(t,Λ) dt −
∑
j

∫ xj+Λ∗

t=0

Dj(t,Λ) dt (66)

for some real functions Di(xi,Λ), G(Λ), λ(Λ∗,Λ), where the right-hand side is either concave in (Λ, x) or convex in Λ,
and where it is either concave or convex in Λ∗ (given Λ). Assume also that aggregators Λ(x) and Λ∗(x) are such that
the RHS has a zero derivative in Λ and Λ∗ is null. Then indirect utility V is quasi-convex in normalized prices, strictly
decreasing in each price, and leads to the demand function Wi as in expression (64).
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The functional form taken by direct utility is then very similar. The same conditions as above allow us express prices
and marginal utilities as functions of quantities q and quantity aggregators in the same fashion as above. Note that
symmetry obtained here is not typical of less general forms of separability; in particular, indirect additive separability is
not equivalent to indirect additive separability. Here direct utility can be expressed as:

U =
∑
i

∫ log qi+Λ̃

0

D̃i(t,Λ)dt −
∫ Λ̃

0

λ̃(t,Λ) dt + G(Λ) (67)

with aggregators Λ̃ that plays a similar role as Λ∗ previously. The primitive of D̃i is again the Fenchel conjugate of the
primitive of Di, and λ̃ is defined such that λ̃(t′,Λ) = λ(t,Λ) for t′ = t− log λ(t,Λ).16

Generalization In Appendix, we consider an even more general form of demand with aggregators allows for indirect
utility V as one of its aggregators, yet without imposing homogeneity for other aggregators. This combines cases
developed in the previous two sections.

16When that inverse does not exist, a similar expression can still be obtained by having λ appear in the D̃i function.
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