Plan

1. Tools
 - EV, CV
 - Consumer surplus
 - Price indexes

2. Illustrations
 - Atkin, Faber, Gonzales-Navarro (2016): impact of foreign store openings in Mexico
Motivation

- Welfare is what we care about (eventually)
- But lots of difficulties:
 - How to quantify welfare changes?
 - How to compare effects across individuals?

- There are several ways to answer these questions:
 Definitions and properties of EV, CV, CS and ideal price index
- Important to know how to apply these tools, and know how they differ

Quantifying welfare changes

Quantifying the effect of change in income:

- Easy: that’s the change in income

Harder: quantifying the effect of change in prices.

Two approaches:

1) Change in income to compensate the change in prices?
 = **Compensating Variation (CV)**

2) Change in income equivalent to the change in prices?
 = **Equivalent Variation (EV)**

Both approaches make use of the expenditure function \(e(p, u) \).
Quantifying welfare changes

- Consider a change in prices from p to p' (fixed income w). Utility goes from $u = v(p, w)$ to $u' = v(p', w)$.

- The change in income that would compensate the change in prices would correspond to:

$$\text{Compensating Variation} = e(p, u) - e(p', u) = w - e(p', u)$$

[using: previous utility u, new prices p']

Note that we also have: $v(p', w + CV) = v(p, w)$

- The change in income that would be equivalent to the change in prices would correspond to:

$$\text{Equivalent Variation} = e(p, u') - e(p', u') = e(p, u') - w$$

[using: new utility u', previous prices p]
Equivalent variation

\[EV = e(p, u) - e(p', u) = \int_{p_i'}^{p_i} \frac{\partial e(p, u)}{\partial p_i} dp_i = \int_{p_i'}^{p_i} h_i(p, u) dp_i \]

Similarly:

\[CV = e(p, u) - e(p', u) = \int_{p_i'}^{p_i} \frac{\partial e(p, u')}{\partial p_i} dp_i = \int_{p_i'}^{p_i} h_i(p, u') dp_i \]

Graphically: areas “below” the Hicksian Demand (i.e. to the left since prices are on the Y-axis)
Hicksian demand for utility u and u', assuming $u' < u$ and normal good

Compensating variation
Equivalent variation

\[EV < CS < CV \] (reversed for an inferior good)

Consumer Surplus

- What if we use Marshallian instead of Hicksian Demand?
- Following the same idea, we define consumer surplus:
 \[
 CS = \int_{p_i'}^{p_i} x_i(p, w) dp_i
 \]
- At the end points, notice that:
 \[
 x_i(p', w) = h_i(p', u')
 \]
 \[
 x_i(p, w) = h_i(p, u)
 \]
- With a normal good, we obtain:
 \[
 EV < CS < CV
 \]
 (reversed for an inferior good)
A simple case

- Assume quasi-linear preferences

\[U(x) = x_0 + \sum u_i(x_i) \]

- Recall some of the properties of quasi-linear prefs:
 - Lagrange multiplier \(\lambda = p_0 = 1 \) (normalization of \(p_0 \))
 - Demand such that: \(u'_i(x_i) = p_i \)
 Marshallian demand \(x_i \) only depends on price \(p_i \)
 - No wealth effect (except for numeraire good \(x_0 \)),
 Hence same price effect for Hicksian and Marshallian Demand:
 \[\frac{\partial x_i}{\partial p_i} = \frac{\partial h_i}{\partial p_i} \]

- In this case, we get:

\[CV = EV = CS \]
Willig (1976)

- Dilemma: CS easier to compute but has no theoretical foundation and differs from CV and EV as soon as income elasticity is non-zero.

- However in practice: difference between CS, EV and CV are usually smaller than error due to estimation, and small when the effect on welfare is small.

- Willig (1976): for $X \in \{EV, CV\}$

$$\eta_{\min} \cdot \frac{CS}{w} < \frac{|X - CS|}{CS} < \eta_{\max} \cdot \frac{CS}{w}$$

where η_{\min} and η_{\max} are the min and max income elasticity of demand.

⇒ Relative error $\frac{|X - CS|}{CS}$ is small with small shares in consumption $\frac{CS}{w}$

Comments on Willig (1976)

However, there are a number of reasons why the Willig result cannot always be used to justify the MCS as a good approximation to the CV and EV:

1. The Willig result doesn’t carry over to the multiple prices changes, assumptions not always satisfied.

2. Often we are trying to estimate the CS associated with a change in the prices and characteristics of some good or goods and/or a change in the level of non-market commodities, but the Willig result does not carry over to characteristics/non-market space (see Hanemann 1991, Shogrun et al 1994).

3. There is no need to approximate. We can get the exact CS measures. This is most easily seen by appealing to duality theory.
Hausman (1981)

- Computes exact EV and CV (and DWL) rather than approximation
- Use Shephard’s lemma and Roy’s identity to retrieve Hicksian demand and expenditure function.

Steps:
1. Using Roy’s identity, we can retrieve the indirect utility function (solve differential equation in \(v(w, p) \))
2. Invert the indirect utility to get the expenditure function: \(v(e(u, p), p) = u \)
3. Obtain the Hicksian demand using Shephard’s Lemma:
 \[h_i(u, p) = \frac{\partial e(u, p)}{\partial p_i} \]
4. Use either the expenditure function or Hicksian demand to get CV or EV

Note: Simple way = specify demand to estimate (e.g. CES) where the expenditure function can easily be computed from these estimates.

Consumer welfare with discrete-choice models

- The same tools can be used (McFadden 1978, 1981, Small Rosen 1981)
- Aggregating many consumers \(z \) with indirect utility across choices \(i \):
 \[U_z = \min_i \{ \alpha(y - p_i) + \phi(Z_i) + \epsilon_{zi} \} = \min_i \{ V_{zi} + \epsilon_{zi} \} \]
 with \(\epsilon_{zi} \sim e^{-e^{-\epsilon}} \), we get:
 \[EV = \int \frac{U_{zt'}}{\alpha} - \frac{U_{zt}}{\alpha} dF(\epsilon) = \frac{1}{\alpha} \log \left(\frac{\sum_i \exp V_{zit'}}{\sum_i \exp V_{zit}} \right) \]
- But becomes quickly messing if we aggregate across consumers with heterogeneous \(\alpha \)'s interacting with many product characteristics \(Z_i \)}
Plan

1. Tools
 - EV, CV
 - Consumer surplus
 - Price indexes

2. Illustrations

Ideal price index

- We’ve already seen Laspeyres and Paasche price indexes (using initial and new consumption as respective weights)

\[P_{Laspeyres} = \frac{x \cdot p'}{x \cdot p} \quad P_{Paasche} = \frac{x' \cdot p'}{x' \cdot p} \]

- More generally, an ideal price index is defined as:

\[\text{Ideal Index} = \frac{e(p', u)}{e(p, u)} = \text{Ideal}(u) \]

- With homothetic preferences, \(\text{Ideal}(u) \) does not depend on \(u \)
Comparison to Paasche and Laspeyres

- Notice the “substitution bias”:

\[p_{Laspeyres} = \frac{x \cdot p'}{w} = \frac{x \cdot p'}{e(p, u)} \geq \frac{e(p', u)}{e(p, u)} = Ideal(u) \]

\[p_{Paasche} = \frac{w}{x' \cdot p} = \frac{e(p', u')}{x' \cdot p} \leq \frac{e(p', u')}{e(p, u')} = Ideal(u') \]

- Laspeyres and Paasche are ideal (or “exact”) only for Leontief preferences

- We can show that: \(P < EV < CS < CV < L \) for normal goods (graphical proof in the next slides)

Compensating variation vs. Laspeyres price index, when price of good 1 increases:
Compensating variation vs. Laspeyres price index

Equivalent variation vs. Paasche price index
Equivalent variation vs. Paasche price index

\[P < EV < CS < CV < L \] for normal goods:

\[P \]
Simple example

With CES preferences $U = \left[\sum_i (b_i x_i)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$

- Expenditure function: $e(U, p) = UP$, defining U as above and P as:
- CES ideal price index: $P = \left[\sum_i b_i^\sigma p_i^{1-\sigma} \right]$
- Equivalent variation: $EV = P.U' - w = (P - P').U'$
- Compensating variation: $CV = w - P'.U = (P - P').U$

Generally, with homothetic preferences, it is easier and more direct to describe changes in price indexes P'/P than EV, CV and CS

More price indexes

- Fisher price index: geometric average of Paasche and Laspeyres
 \[\log P^{Fisher} = \frac{1}{2} \left(\log P^{Laspeyres} + \log P^{Paasche} \right) \]

- Stone price index (using consumption shares s_{ti}, exact for CD prefs):
 \[\log P^{Stone} = \sum_i s_{i1} \log \left(\frac{p_{i1}}{p_{i0}} \right) \]

- Tornqvist price index (frequently used, exact for translog preferences):
 \[\log P^{Tornqvist} = \sum_i \left(\frac{s_{i1} + s_{i0}}{2} \right) \log \left(\frac{p_{i1}}{p_{i0}} \right) \]

- Various “tests” that price indexes should satisfy (Diewert 93)
Price indexes with CES

- CES ideal price index: \(P = \left[\sum_{i} b_{i}^{\sigma} p_{i}^{1-\sigma} \right] \)
 accounting for tastes parameters \(b_{i} \) (e.g. differences in quality)
 but \(\sigma \) is not directly observed (and hard to estimate)

- Sato-Vartia price index (exact for CES!)

\[
\log P^{SV} = \sum_{i} w_{i} \log \left(\frac{p_{i1}}{p_{i0}} \right) \quad \text{with: } w_{i} = \frac{\left(\frac{s_{i1} - s_{i0}}{\ln s_{i1} - \ln s_{i0}} \right)}{\sum_{j} \left(\frac{s_{j1} - s_{j0}}{\ln s_{j1} - \ln s_{j0}} \right)}
\]

Elements of proof: with CES: \(\log s_{i} = \sigma \log b_{i} + (1 - \sigma)(\log p_{i} - \log P) \).
Summing over \(i \) with weights \(w_{i} \) to be determined, and taking the difference between periods, we get:
\[
\log \left(\frac{p_{1}}{p_{0}} \right) = \sum_{i} w_{i} \log \left(\frac{p_{i1}}{p_{i0}} \right) + \frac{1}{\sigma - 1} \sum_{i} w_{i} \log \left(\frac{s_{i1}}{s_{i0}} \right)
\]
For \(\sum_{i} w_{i} \log \left(\frac{p_{i1}}{p_{i0}} \right) \) to be a price index, we need \(\sum_{i} w_{i} \log \left(\frac{s_{i1}}{s_{i0}} \right) = 0 \). In the limit case \(s_{i1} = s_{i0} \), we also need \(w_{i} = s_{i} \).

Two other issues:

- “Outlet bias”:
 - We also need to account for variations in prices for the same good, and taking an average is not a good solution. Prices vary across outlets, consumers tend to buy in large quantities from cheap stores (e.g. Costco).

- “New goods bias”:
 - Price indexes above are based on comparison of prices before/after.
 With new goods: weights? prices?
 - More generally, there is a large literature aiming at quantifying the welfare gains from new goods, with various structures on the supply and demand side (see e.g. Hausman 2003, Nevo 2003)
New goods with CES

Q: How to account for new product varieties not available before?

- Feenstra (1994) extends SV to account for extensive margin:

\[P^{SV+} = \left(\frac{\sum_{i \in \Omega_c} s_{i1}}{\sum_{i \in \Omega_c} s_{i0}} \right)^{\frac{1}{\sigma-1}} \times P^{SV} \]

Across continuing varieties \(\Omega_c \), hence with \(\sum_{i \in \Omega_c} s_{i1} < 1 \)

- See Problem Set 5 for simple case with homogeneous products

- Application: Broda and Weinstein (2006) estimate gains from increased import varieties (1972-2001) as 2.6% of GDP

Separability of expenditure function

- Suppose that we have two sets of goods: grocery vs. non-grocery

Q: Under which condition can we summarize the vector of prices \(p \) of grocery goods into a price index \(P_G(p) \) such that consumption in non-grocery goods only depend on non-grocery prices and \(P_G \)?

A: If the expenditure function is separable, i.e. if we can write:

\[e(u, p, p') = \hat{e}(u, P_G(p), p') \]

where \(P_G(p) \) is a grocery price index and \(p' \) vector of non-grocery prices

- Notes:
 - In this case: \(\frac{h_i}{h_j} = \frac{\partial e}{\partial p_i} = \frac{\partial P_G}{\partial p_i} \frac{\partial P_G}{\partial p_j} \) for any two grocery goods \(i \) and \(j \)
 - Separability in expenditure is neither sufficient or necessary for separability in utility
Welfare analysis in practice

- PS3 highlights issues computing total CS rather than changes in CS
- Integrability issues given Cohen et al (2016)’s price elasticity estimates
Welfare analysis in practice

Atkin, Faber and Gonzalez (2016) as a good practical example.

- Foreign entry in the retail sector in Mexico, 2001-2014

They mainly ask three questions:

1. What is the effect of foreign retail entry on household welfare?
2. What are the channels underlying this effect? (availability of new products, competition, entry/exit of local retailers, etc.)
3. Does the effect differ across the income distribution?

Motivation and context

- Intense policy debates in various countries: e.g. India hesitates to ban foreign entry in retail
- Retail in an important sector in developing economies: 10-15% of GDP, > 15% of employment, > 50% expenditures
- Foreign retail FDI: Developing country share grew from 10% to 25% in two decades
- Large expansion of foreign retail in Mexico: From 365 stores in 2001 to 1335 stores in 2014.
Localization of foreign stores – 204 stores in 1995

Localization of foreign stores – 365 stores in 2001
Localization of foreign stores – 1335 stores in 2014

Data

- Universe of supermarket locations, opening dates (2002-14)
- Barcode/store Mexican CPI microdata (2002-14) (INEGI)
- Household/barcode/store level Consumer Panel data (2011-14)
- ENIGH Household survey data on budget shares at product-group/store-type level (2006-12)
- Worker level data on income sources (2002-12)
- Store revenues, costs: Mexican Retail Census (2003 and 08)
How do foreign retailers differ *ex post*?

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Price</td>
<td>Log Price</td>
<td>Log Number of Barcodes</td>
<td>Log Floor Space</td>
</tr>
<tr>
<td>Foreign Store Dummy</td>
<td>-0.118***</td>
<td>0.249***</td>
<td>1.612***</td>
<td>1.911***</td>
</tr>
<tr>
<td></td>
<td>(0.00913)</td>
<td>(0.0160)</td>
<td>(0.0671)</td>
<td>(0.0416)</td>
</tr>
<tr>
<td>Municipality-By-Year FX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Municipality-By-Product-By-Month FX</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Municipality-By-Barcode-By-Month FX</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Observations</td>
<td>18,659,777</td>
<td>18,659,777</td>
<td>10,393</td>
<td>11,113</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.923</td>
<td>0.368</td>
<td>0.139</td>
<td>0.302</td>
</tr>
<tr>
<td>Number of Municipalities</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>499</td>
</tr>
</tbody>
</table>

Challenges

- **Availability of consumption data** (only available for later years at barcode level) calls for Paasche indexes?

- **Income effect**: incomes may have changed due to foreign entry
 - Approx: neglect how changes in income affects substitution

- **Price effects**:
 - Direct negative effect on prices?
 - Differences in quality?
 - Entry / exit of stores and product variety?
General expression for welfare effects

- \(CV = e(P^1, u^0_h) - y^1_h \)

 \[\begin{align*}
 &\text{Cost of living effect (CLE)} \\
 &= \left[e(P^1, u^0_h) - e(P^0, u^0_h) \right] \\
 &\quad - \left[y^1_h - y^0_h \right]
 \end{align*} \]

- Income effect (IE)

- While effects on incomes can in principle be estimated without imposing additional structure, this is not the case for cost of living.

- Can observe price changes of products in continuing domestic stores \((P^1_{dc} - P^0_{dc})\).
- Cannot observe price changes for consumption at entering foreign retailers \((P^1_f - P^0_f)\) or exiting domestic retailers \((P^0_{dx} - P^1_{dx})\).

A decomposition

- \(CLE = \left[e(P^1_{dc}, P^1_{dx}, P^1_f, u^0_h) - e(P^0_{dc}, P^0_{dx}, P^0_f, u^0_h) \right] + \left[e(P^0_{dc}, P^0_{dx}, P^1_f, u^0_h) - e(P^0_{dc}, P^0_{dx}, P^0_f, u^0_h) \right] \)

 1: Direct effect (DE)

 2: Pro-competitive intensive margin (PEI)

 \[\begin{align*}
 &+ \left[e(P^0_{dc}, P^0_{dx}, P^0_f, u^0_h) - e(P^0_{dc}, P^0_{dx}, P^0_f, u^0_h) \right]
 \end{align*} \]

 3: Pro-competitive exit margin (PEX)

- \(IE = \sum_{i \in \{i, \mu\}} \left[l^1_{ih} - l^0_{ih} \right] + \sum_{i \in \{i, \mu\}} \left[\pi^1_{ih} - \pi^0_{ih} \right] \)

 (4) Retail labor income effect

 (5) Retail profit effect

 \[\begin{align*}
 &+ \sum_{i \in \{i, \mu\}} \left[\left(l^1_{ih} - l^0_{ih} \right) + \left(\pi^1_{ih} - \pi^0_{ih} \right) \right]
 \end{align*} \]

 (6) Other income effect

- Where "'s denote unobserved prices for products in entering/exiting retailers.

Two alternative approaches

1. **Assuming multi-tier CES preferences:**
 - **Advantages:** Exact price index, quantification of gains from new varieties
 - **Disadvantages:** Imposing structure on consumer preferences

2. **First-order approximation:**
 - **Advantages:** Paasche index as approximation without imposing specific preferences
 - **Disadvantages:** Holds post-entry market shares fixed, solely based on observed store price differences
 - Assumes away gains from variety or shopping amenities

Using exact approach

Use a multi-tier asymmetric CES utility function:

\[
U = \prod_{g \in G} [Q_g]^{\alpha_{gh}} : \text{Cobb-Douglas over product groups } g \\
Q_g = \left(\sum_{s \in S_g} \beta_{gsh} q_{gs}^{\eta_{gh} \frac{\eta_{gh} - 1}{\eta_{gh}}} \right)^{\frac{1}{\eta_{gh} - 1}} : \text{CES over stores } s \\
q_{gs} : \text{preferences within store-good unspecified for now}
\]

Under our multi-tier CES, the CLE becomes:

\[
\frac{CLE}{e(p_{d}^{0}, p_{f}^{0}, u_{h}^{0})} = \prod_{g \in G} \left\{ \frac{\sum_{s \in S_{dc}} \phi_{gsh}}{\sum_{s \in S_{dc}} \phi_{gsh}^{0}} \right\}^{\frac{1}{\eta - 1}} \prod_{s \in S_{dc}} p_{gs}^{\omega_{gsh}} \right) \alpha_{gh}^{\omega_{gsh}} - 1
\]
Notation

g=product group, s=store, b=barcode, m=municipality, t=month

\[r_{gsh}^t : \text{Price index of product-specific prices } p_{gsb}^t \]

\[\phi_{gsh}^t = \frac{r_{gsh}^t q_{gsh}^t}{\sum_{s \in S_g} r_{gsh}^t q_{gsh}^t} \]

\[\tilde{\phi}_{gsh}^t = \frac{r_{gsh}^t q_{gsh}^t}{\sum_{s \in S_g^c} r_{gsh}^t q_{gsh}^t} \]

\[\prod_{s \in S_g \neq g^c} \left(\frac{r_{gsh}^1}{r_{gsh}^0} \right) \omega_{gsh} : \text{Sato-Vartia price index} \]

\[\omega_{gsh} = \left(\frac{\frac{\tilde{\phi}_{gsh}^1 - \tilde{\phi}_{gsh}^0}{\ln \tilde{\phi}_{gsh}^1 - \ln \tilde{\phi}_{gsh}^0}}{\sum_{s \in S_g^c} \left(\frac{\frac{\tilde{\phi}_{gsh}^1 - \phi_{gsh}^0}{\ln \tilde{\phi}_{gsh}^1 - \ln \phi_{gsh}^0} \right)} \right) \]

Using exact approach

Uses price changes and consumption basket changes to estimate (in particular: effect on (Stone) price index \(r_{gs} \) by store/product)

Uses preference parameters to estimate: \(\eta_{gh} \)

\[
\frac{CV}{e(P^0_d, P^0_f, u^0_h)} =
\left[\prod_{g \in G} \left\{ \frac{\sum_{s \in S_g^c} \phi_{gs}^0}{\sum_{s \in S_g} \phi_{gs}^0} \right\}^{\eta_{gh} - 1} \prod_{s \in S_g^c} \left(\frac{\phi_{gs}^1}{\phi_{gs}^0} \right)^{\omega_{gsh}} \right]^{\alpha_{gh}}
\]

(1) Direct effect (DE)

\[+ \prod_{g \in G} \left\{ \frac{1}{\sum_{s \in S_g^c} \phi_{gs}^0} \right\}^{\eta_{gh} - 1} \prod_{s \in S_g^c} \left(\frac{1}{\phi_{gs}^0} \right)^{\omega_{gsh}} \right]^{\alpha_{gh}}
\]

(3) Pro-competitive exit (PEX)

\[- \sum_{i \in \{l, u\}} \theta_{ih} \left(\frac{i_{h} - r_{ih}}{r_{ih}} \right) \]

(4) Retail labor income effect

\[- \sum_{i \in \{l, u\}} \theta_{ih} \left(\frac{\pi_{ih}^1 - \pi_{ih}^0}{\pi_{ih}^0} \right) \]

(5) Retail profit effect

\[+ \sum_{i \in \{l, u\}} \theta_{ih} \left(\frac{\pi_{ih}^1 - \pi_{ih}^0}{\pi_{ih}^0} \right) \]

(6) Other income effect
Using first-order general approach

Using Shephard’s Lemma to approximate pro-competitive price effects (PP' below) and direct price effects (DE' below):

\[PP' \approx \sum_b \sum_{s \in S_b^{dc}} \left(q_{bsh}^1 (p_{bs}^1 - p_{bs}^0) \right) \]

\[
\frac{PP'}{e(p_{df}^1, p_{df}^{1*}, p_{dxh}^0, u_{h}^0)} \approx \sum_b \sum_{s \in S_b^{dc}} \left(\phi_{bsh}^1 \left(\frac{p_{bs}^1 - p_{bs}^0}{p_{bs}^1} \right) \right)
\]

Similarly:

\[
\frac{DE'}{e(p_{df}^1, p_{df}^{1*}, p_{dxh}^0, u_{h}^0)} \approx \sum_b \sum_{s \in S_b^{f}} \left(\phi_{bsh}^1 \left(\frac{p_{bf}^1 - p_{bf}^0}{p_{bf}^1} \right) \right)
\]

Using first-order general approach

Uses price changes to estimate

Holds ex post consumption shares constant (≈ Paasche)

\[
\frac{CV}{e(p_{df}^0, p_{df}^{0*}, u_{h}^0)} \approx \sum_b \sum_{s \in S_b^{f}} \left[\phi_{bsh}^1 \left(\frac{p_{bf}^1 - p_{bf}^0}{p_{bf}^1} \right) \right] + \sum_b \sum_{s \in S_b^{dc}} \left[\phi_{bsh}^1 \left(\frac{p_{bs}^1 - p_{bs}^0}{p_{bs}^1} \right) \right]
\]

(1) Direct effect (DE)

(2) Pro-competitive effect (PE)

- \[\sum_{i \in \{\tau, \mu\}} \left[\theta_{ith}^0 \left(\frac{1}{\pi_{ih}} - \frac{1}{\pi_{ih}^0} \right) \right] - \sum_{i \in \{\mu\}} \left[\theta_{ith}^0 \left(\frac{\pi_{ih}^1 - \pi_{ih}^0}{\pi_{ih}^0} \right) \right] - \sum_{i \in \{\tau\}} \left[\theta_{ith}^0 \left(\frac{\pi_{ih}^1 - \pi_{ih}^0}{\pi_{ih}^0} \right) + \theta_{ith}^0 \left(\frac{\pi_{ih}^1 - \pi_{ih}^0}{\pi_{ih}^0} \right) \right]
\]

(4) Retail labor income effect

(5) Retail profit effect

(6) Other income effect
What we need to estimate

- Estimate direct effect on prices $\frac{r_{gs}^1}{r_{gs}^0}$
- Differences in prices across stores $p_{bf}^1 - p_{bds}^0$
- Effect on quantities
- Effect on the number of local stores
- Effect on income, by source (retail labor, retail profits, other)
- CES preferences: estimate elasticity of substitution η_{gh}

Notation:
g=product group, s=store, b=barcode, m=municipality, t=month

Direct effect on prices

$$\ln p_{gsbmt} = \sum_{j=-13}^{36} \beta_j I(MonthsSinceEntry_{mt} = j) + \delta_{gsbm} + \eta_t + \epsilon_{gsbmt}$$
Differences in prices across stores
(to be used for first-order approximation)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1) Log Price</th>
<th>(2) Log Price</th>
<th>(3) Log Price</th>
<th>(4) Log Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Store</td>
<td>0.118***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00913)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Food</td>
<td>0.124***</td>
<td>0.124***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00979)</td>
<td>(0.00979)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Non-Food</td>
<td>0.0744***</td>
<td></td>
<td>0.173***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00765)</td>
<td></td>
<td>(0.00874)</td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Traditional</td>
<td></td>
<td></td>
<td>0.173***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.00874)</td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Modern</td>
<td></td>
<td></td>
<td>0.0397***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0113)</td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Food X Traditional</td>
<td>0.174***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00942)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Non-Food X Traditional</td>
<td>0.170***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0108)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Food X Modern</td>
<td>0.0431***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0124)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Store X Non-Food X Modern</td>
<td>0.0189***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00713)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Municipality-By-Barcode-By-Month FX: ✓ ✓ ✓ ✓
Observations: 18,659,777 18,659,777 18,659,777 18,659,777
R-squared: 0.923 0.923 0.923 0.923
Number of Municipalities: 151 151 151 151

Ex post foreign retail share by income group
Effect on store exit

$$\ln \left(N_{\text{Establishments}}^{08-03} \right) = \beta_1 \text{Foreign Entry}^{08-03} + \beta_2 \text{Foreign Entry}_{\text{Pre} 04} + \gamma X_m + \epsilon_m$$

Panel A: Unweighted regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \text{Foreign Entry 2003-2008})</td>
<td>-0.019</td>
<td>-0.023</td>
<td>-0.025**</td>
<td>-0.024**</td>
<td>0.0088</td>
<td>-0.0065</td>
<td>-0.036</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>(\Delta \text{log(Public Expenditures)})</td>
<td>-0.05***</td>
<td>-0.05***</td>
<td>-0.05***</td>
<td>-0.03***</td>
<td>0.20***</td>
<td>0.16***</td>
<td>0.17***</td>
<td>0.17***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.053)</td>
<td>(0.058)</td>
<td>(0.060)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>(\Delta \text{log(GDP per Capita)})</td>
<td>0.12***</td>
<td>0.12***</td>
<td>0.12***</td>
<td>0.12***</td>
<td>0.37***</td>
<td>0.38***</td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.12)</td>
<td>(0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical Region FX</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Municipality Size FX</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>608</td>
<td>608</td>
<td>564</td>
<td>564</td>
<td>608</td>
<td>608</td>
<td>564</td>
<td>564</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.022</td>
<td>0.056</td>
<td>0.107</td>
<td>0.110</td>
<td>0.015</td>
<td>0.085</td>
<td>0.107</td>
<td>0.107</td>
</tr>
<tr>
<td>Median Stores/Municipality</td>
<td>2088</td>
<td>2088</td>
<td>2088</td>
<td>2088</td>
<td>33.5</td>
<td>33.5</td>
<td>33.5</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Effect on income

No effect on average income (see paper), but some heterogeneity:

$$\ln(\text{Income})_{jimt} = \sum_i \beta_i \text{Foreign Entry}_{mt} \times \text{Occupation}_i + \gamma X_{jimt} + \delta_{mt} + \eta_{lim} + \theta_{it} + \epsilon_{jimt}$$

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Entry X Modern Retail Workers</td>
<td>-0.000278</td>
<td>-0.0348*</td>
<td>-0.0278</td>
<td>-0.00396</td>
<td>0.0369</td>
<td>0.0392</td>
</tr>
<tr>
<td></td>
<td>(0.0192)</td>
<td>(0.0204)</td>
<td>(0.0212)</td>
<td>(0.0653)</td>
<td>(0.0714)</td>
<td>(0.0561)</td>
</tr>
<tr>
<td>Foreign Entry X Traditional Retail Workers</td>
<td>-0.0356*</td>
<td>-0.0571***</td>
<td>-0.0592**</td>
<td>-0.104*</td>
<td>-0.0942</td>
<td>-0.113**</td>
</tr>
<tr>
<td></td>
<td>(0.0199)</td>
<td>(0.0216)</td>
<td>(0.0240)</td>
<td>(0.0531)</td>
<td>(0.0571)</td>
<td>(0.0552)</td>
</tr>
<tr>
<td>Foreign Entry X Agriculture</td>
<td>0.0265</td>
<td>0.0218</td>
<td>0.0202</td>
<td>-0.0597</td>
<td>-0.0285</td>
<td>-0.0081</td>
</tr>
<tr>
<td></td>
<td>(0.0264)</td>
<td>(0.0311)</td>
<td>(0.0307)</td>
<td>(0.0809)</td>
<td>(0.101)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>Foreign Entry X Manufacturing</td>
<td>-0.00513</td>
<td>-0.00612</td>
<td>0.0117</td>
<td>-0.166***</td>
<td>0.00572</td>
<td>-0.0166</td>
</tr>
<tr>
<td></td>
<td>(0.0174)</td>
<td>(0.0186)</td>
<td>(0.0187)</td>
<td>(0.0379)</td>
<td>(0.0368)</td>
<td>(0.0380)</td>
</tr>
</tbody>
</table>

Person Controls | ✓ | ✓ | ✓ | x | ✓ | x |
Municipality-by-Quarter FX | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Municipality-by-Group Fixed Effects | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Group-by-Quarter FX | x | ✓ | ✓ | ✓ | ✓ | ✓ |
State-by-Group Time Trends | x | x | ✓ | ✓ | x | ✓ |
Observations | 3,878,561 | 3,878,561 | 3,878,561 | 47,666 | 47,666 | 47,666 |
R-squared | 0.340 | 0.340 | 0.341 | 0.963 | 0.965 | 0.967 |
Number of Individuals | 1,455,911 | 1,455,911 | 1,455,911 | 1,455,911 | 1,455,911 | 1,455,911 |
Number of Municipality-by-Quarter Cells | 8,574 | 8,574 | 8,574 | 8,574 | 8,574 | 8,574 |
Number of State-by-Group Time Trends | 160 | 160 | 160 | 160 | 160 | 160 |
Number of Municipality Clusters | 273 | 273 | 273 | 273 | 273 | 273 |
Using exact approach

Uses price changes and consumption basket changes to estimate
Uses preference parameters to estimate: η_{gh}

\[
CV = \frac{e(P_{d}^{0}, P_{f}^{0}, u_{h}^{0})}{\prod_{g \in G} \left(\frac{1}{\sum_{s \in S_{g}^{dc}} \phi_{gs}^{0} + \theta_{gs}^{0} \cdot \rho_{gs}^{0}} \right) - \prod_{g \in G} \left(\frac{1}{\sum_{s \in S_{g}^{dc}} \phi_{gs}^{0} + \theta_{gs}^{0} \cdot \rho_{gs}^{0}} \right) ^{-1} \prod_{g \in G} \left(\frac{1}{\sum_{s \in S_{g}^{dc}} \phi_{gs}^{0} + \theta_{gs}^{0} \cdot \rho_{gs}^{0}} \right) ^{\eta_{gh}}}
\]

(1) Direct effect (DE)

\[
+ \prod_{g \in G} \left(\frac{1}{\sum_{s \in S_{g}^{dc}} \phi_{gs}^{0} + \theta_{gs}^{0} \cdot \rho_{gs}^{0}} \right) ^{-1} \prod_{g \in G} \left(\frac{1}{\sum_{s \in S_{g}^{dc}} \phi_{gs}^{0} + \theta_{gs}^{0} \cdot \rho_{gs}^{0}} \right) ^{\eta_{gh}}
\]

(3) Pro-competitive exit (PEX)

\[
- \sum_{i \in \{\tau, \mu\}} \theta_{ih}^{0} \left(\frac{\phi_{ih}^{0} - \phi_{ih}^{0}}{\rho_{ih}^{0}} \right) - \sum_{i \in \{\tau, \mu\}} \theta_{ih}^{0} \left(\frac{\phi_{ih}^{0} - \phi_{ih}^{0}}{\rho_{ih}^{0}} \right) - \sum_{i \in \{\alpha\}} \theta_{ih}^{0} \left(\frac{\phi_{ih}^{0} - \phi_{ih}^{0}}{\rho_{ih}^{0}} \right) + \theta_{ih}^{0} \left(\frac{\phi_{ih}^{0} - \phi_{ih}^{0}}{\rho_{ih}^{0}} \right)
\]

(4) Retail labor income effect

(5) Retail profit effect

(6) Other income effect

Price elasticity of demand

It's a challenge to get large enough elasticities η_{gh}:

\[
\ln \phi_{gshmt} = (1 - \eta_{gh}) \ln r_{gshmt} - (1 - \eta_{gh}) \ln c_{ghmt} + \eta_{gh} \ln \beta_{gshmt}
\]

Panel A: Average Coefficient Estimates

<table>
<thead>
<tr>
<th>Dependent Variable: Log Budget Shares (Phi)</th>
<th>Average Prices</th>
<th>Average Prices National IV</th>
<th>Average Prices Regional IV</th>
<th>Average Prices National IV</th>
<th>Average Prices Regional IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Store Price Index)</td>
<td>0.214*** (0.006)</td>
<td>-1.341*** (0.145)</td>
<td>-1.856*** (0.608)</td>
<td>-2.648*** (0.338)</td>
<td>-3.362*** (1.038)</td>
</tr>
<tr>
<td>Product Group-by-Income Group-by-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Municipality-by-Quartet FX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retailer-by-Product Group-by-Quarter FX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Retailer-by-Municipality FX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Retailer-by-Municipality-by-Quarter FX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Retailer-by-Municipality-by-Product Group FX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>304,885</td>
<td>304,885</td>
<td>297,624</td>
<td>304,885</td>
<td>297,624</td>
</tr>
<tr>
<td>First-Stage F-Statistic</td>
<td>184.884</td>
<td>14.833</td>
<td>87.951</td>
<td>15.52</td>
<td></td>
</tr>
</tbody>
</table>
Welfare gains with CES

Distribution of the Gains from Retail FDI

- Large and significant average gains from foreign entry.
- Gains are regressive (richest gain approximately 1.5 times as much).

Decomposition of the 6.2% average welfare gains:
- most of the gains from cost of living effect (CLE)
- 3/4 direct effect (lower prices, higher quality at foreign stores)
- 1/4 driven by pro-competitive effects on domestic stores

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1) Total Effect</th>
<th>(2) Direct Price Index Effect</th>
<th>(3) Pro-Comp Price Effect</th>
<th>(4) Pro-Comp Exit</th>
<th>(5) Labor Income Effect</th>
<th>(6) Profit Effect</th>
<th>(7) Other Income Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Effect</td>
<td>0.0621***</td>
<td>0.0551***</td>
<td>0.0158***</td>
<td>-0.00705</td>
<td>-0.00397**</td>
<td>-0.00269**</td>
<td>0.0049</td>
</tr>
<tr>
<td></td>
<td>(0.0104)</td>
<td>(0.0006)</td>
<td>(0.0050)</td>
<td>(0.0053)</td>
<td>(0.0020)</td>
<td>(0.0013)</td>
<td>(0.0078)</td>
</tr>
<tr>
<td>Max</td>
<td>0.730</td>
<td>0.177</td>
<td>0.055</td>
<td>0.000</td>
<td>0.692</td>
<td>0.000</td>
<td>0.020</td>
</tr>
<tr>
<td>Min</td>
<td>-0.986</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.014</td>
<td>-1.000</td>
<td>-1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Proportion Negative</td>
<td>0.0203</td>
<td>0.000</td>
<td>0.000</td>
<td>0.999</td>
<td>0.0736</td>
<td>0.0581</td>
<td>0</td>
</tr>
<tr>
<td>Observations (Households)</td>
<td>12,293</td>
<td>12,293</td>
<td>12,293</td>
<td>12,293</td>
<td>12,293</td>
<td>12,293</td>
<td>12,293</td>
</tr>
<tr>
<td>Number of Municipality Clusters</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
</tbody>
</table>
Using first-order general approach

Uses price changes to estimate
Holds ex post consumption shares constant (\approx Paasche)

$$
\frac{CV}{e(p^0_{d'}, p^0_f, u^0_h)} \approx \sum_{b} \sum_{s \in S^f_b} \left[\phi_{bsh}^1 \left(\frac{p^1_{bf} - p^0_{bds}}{p^1_{bf}} \right) \right] + \sum_{b} \sum_{s \in S^dc_b} \left[\phi_{bsh}^1 \left(\frac{p^1_{bs} - p^0_{bs}}{p^1_{bs}} \right) \right]
$$

(1) Direct effect (DE)

(2) Pro-competitive effect (PE)

- $- \sum_{i \in \{\tau, \mu\}} \left[\theta^0_{ih} \left(\frac{i^1_{ih} - i^0_{ih}}{i^0_{ih}} \right) \right] - \sum_{i \in \{\tau, \mu\}} \left[\theta^0_{i\tau h} \left(\frac{x^1_{ih} - x^0_{ih}}{x^0_{ih}} \right) \right] - \sum_{i \in \{\omega\}} \left[\theta^0_{ih} \left(\frac{i^1_{ih} - i^0_{ih}}{i^0_{ih}} \right) + \theta^0_{i\tau h} \left(\frac{x^1_{ih} - x^0_{ih}}{x^0_{ih}} \right) \right]

(4) Retail labor income effect

(5) Retail profit effect

(6) Other income effect
Lower estimated gains with first-order approximation

- No effect of exit (using ex post consumption shares)
- Smaller direct effect (neglects quality ≠ bw domestic vs foreign stores)
- Smaller pro-competitive effects (neglects quality upgrading)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1) Total Effect</th>
<th>(2) Direct Price Index Effect</th>
<th>(3) Pro-Comp Price Effect</th>
<th>(4) Pro-Comp Exit</th>
<th>(5) Labor Income Effect</th>
<th>(6) Profit Effect</th>
<th>(7) Other Income Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Effect</td>
<td>0.0621***</td>
<td>0.0551***</td>
<td>0.0158***</td>
<td>-0.00705</td>
<td>-0.00397**</td>
<td>-0.00269**</td>
<td>0.0049</td>
</tr>
<tr>
<td></td>
<td>(0.0104)</td>
<td>(0.0006)</td>
<td>(0.0050)</td>
<td>(0.0053)</td>
<td>(0.0020)</td>
<td>(0.0013)</td>
<td>(0.0078)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Effect</td>
<td>0.0295***</td>
<td>0.0204***</td>
<td>0.0109***</td>
<td>0</td>
<td>-0.00397**</td>
<td>-0.00269**</td>
<td>0.0049</td>
</tr>
<tr>
<td></td>
<td>(0.0093)</td>
<td>(0.0014)</td>
<td>(0.0037)</td>
<td>(0.0000)</td>
<td>(0.0020)</td>
<td>(0.0013)</td>
<td>(0.0078)</td>
</tr>
</tbody>
</table>

Max	0.715	0.060	0.031	0.000	0.692	0.000	0.020
Min	-0.995	0.000	0.000	0.000	-1.000	-1.000	0.000
Proportion Negative	0.0527	0	0	0	0.0756	0.0581	0

| Observations (Households) | 12,293 | 12,293 | 12,293 | 12,293 | 12,293 | 12,293 | 12,293 |
| Number of Municipality Clusters | 240 | 240 | 240 | 240 | 240 | 240 | 240 |

Concluding remarks

- Large positive effects of foreign entry in retail sector (6.2% gains on average for Mexican households)
- Gains 50% larger for rich consumers (see paper for decompositions of these differences in gains)
- Mostly driven by effects on cost of living Small effects on income, affects only a minority
- Quality of stores and products matter quantitatively: important to account for it (e.g. with CES exact price indexes)