CGE Models for Economic Policy Research

David Roland-Holst, UC Berkeley
CREA/FAO Conference on
Livestock and Poverty in West Africa
Saly, Senegal
May, 2006
Contents

1. General considerations for policy modeling
2. Examples of CGE applications
3. Strategy for IPALP model development
4. Generic model descriptions
5. Proposed timetables for implementation
Policy analyst’s balancing act

Modeling
technique
computing
parameters
data
etc

Policy making
trade-offs
timing
balancing interests
The GE Modeling Offers

- Linkages and Indirect (and otherwise invisible) effects
- Effects of resource and other constraints
- Substitution patterns
The process of policy analysis

Preliminary steps

- Understand the problem and how it has been addressed in the past
- Understand the things that most concern the policy maker
The process of policy analysis

The modeling

- Think about the GE aspects of the problem
 - Why are we using a GE model for this issue?
- Get the modeling right
 - Make sure the problem is represented in the model
 - eg must have base tariffs if they are to be removed
- Understand and explore the results
 - What key parameters or data drive the results
 - How do changes in these change the results
The process of policy analysis

The communication

- Explain without any technical detail
- Cover policy makers concerns
- Repeat all the steps as necessary
Examples of CGE Applications
Some examples

- Agricultural Policy
- Trade policy
- Tax policy
- Environmental regulation and reform
- Poverty and Inequality
Agricultural Policy

- The issue
 - What does agriculture contribute to the economy and what does the (domestic and international) economy contribute to agriculture?
 - What are the detailed effects of agriculture policy?

- Why a CGE model?
 - Agriculture remains a dominant sector in China, the most important source of income for the poor, and will experience many transitions in the next generation.

- Key insights
 - Agriculture can be a main driver for growth and poverty alleviation, but the composition of this growth will be very complex.
 - Big contrast with partial equilibrium analysis.
Trade policy

- The issue
 - Effect of changes in tariffs and other forms of industry assistance

- Why a CGE model?
 - Trade policy is the classic GE problem

- Key insights
 - For complex sectors like agriculture, it is a rich story about how the benefits and costs of trade policy are distributed.
Tax policy

- The issue
 - Effect of replacing wholesale sales tax with goods and services value added tax

- Why a CGE model?
 - Very complicated initial structure of taxes

- Key insights
 - Overall gains very small and
 - very sensitive to some key assumptions
Environmental regulation

- The issue
 - Effects of regulations such as:
 - pollution
 - Resource (water, fisheries, forestry) policy

- Why a CGE model?
 - Still emerging in a live policy debate
 - Energy and water, for example, key inputs to all production processes

- Key insights
 - Environmental policies have many indirect effects
Poverty and Inequality

- The issue
 - What is the real composition of income and growth effects?

- Why a CGE model?
 - Institutional detail is essential
 - Relative incomes are determined by relative prices
 - Constraints play a major role in incidence and distribution

- Key insights
 - Who are the winners and how can they be enlisted to support policy?
 - Who are the losers and how can they be compensated?
IPALP Modeling Strategy
Basic Tenets of Modeling Strategy

Policy makers need visibility about trends and linkages. Economic models make a lasting contribution to this under three conditions:

1. They must incorporate advanced data and methods.
2. Their results must be transparent.
3. They should be locally implemented.

In order to achieve these three goals, we propose a three tier modeling facility.
Two Model Archetypes

1. National research prototype model – A state-of-the-art single country CGE model.
A Generic Modeling Facility

- Analytical Economic Model
- Social Accounting Matrix
- Satellite Accounts
- Aggregation
- CGE Forecasting Model
Analytical Economic Model

- Supply – Firm-level production technology with Leontief intermediate use.
- Demand – Domestic consumption functions by household and commodity type.
- Dynamic specification of factor growth and demographic transitions.
- Extensive accounting for transfer relationships between institutions (fiscal, capital flows, remittances, etc.).
Forward-looking Policy Analysis

Policy Scenarios

CGE Forecasting Model

Baseline Economic Conditions

Projections for Senegal/Region to 2020
Single Region Model: A Schematic View

Development

- Social Accounting Matrix
- Econometric Parameter Estimates
- Policy Scenarios
- CGE Model
- Baseline Calibration Data

Simulation

Analysis

Numerical Results
GIS Mapping

Box Color Key to Software Implementation:
Green – Microsoft Excel
Yellow – GAMS
Model Structure
Model structure I—Overview

- Multi-sectoral and possibly multi-regional
- Constant-returns-to-scale and perfect competition
- (Recursive) dynamic
- Single representative household per region
- Government and investment activities
- Linked bilateral trade flows.
Model structure II—Production

- Three production archetypes:
 - Crops (extensive vs. intensive)
 - Livestock (range-fed vs. ranch-fed)
 - Other (standard capital-labor substitution)

- Crop sectors include land, energy and agricultural chemicals as substitutable inputs
- Livestock includes land and feed as substitutable inputs
- Energy is a substitutable input in other sectors
- Fossil fuels also rely on sector-specific resource.
Model structure III—Factor markets

- Labor is perfectly mobile across sectors and there is a single market-clearing wage rate.
- ‘New’ capital is mobile across sectors, installed capital is partially mobile.
- All factor income accrues to single representative household
- Extended linear expenditure system for consumer demand
Model structure IV—Imports

- Aggregate demand is the sum of demand across industries, households, government and investment.
- Aggregate demand is composed of domestic and imported goods.
- Dual nested CES structure. Top nest allocates aggregate demand between domestic goods and an aggregate import bundle.
- Second nest allocates aggregate import demand across regions of origin.
Model structure V—Bilateral trade

- Output is modeled symmetrically with a dual nested CET structure. (Standard model assumes infinite transformation.)
- A single domestic price equilibrates demand and supply of the domestic good.
- Each trade node clears with a market-clearing price. The model therefore has $(N \times R) \times (R+1)$ equilibrium goods prices.
Model structure VI—Trade wedges

- Each traded commodity has four prices—pre-FOB (export subsidy excluded), FOB, CIF, and post-CIF (tariff inclusive).
- FOB/CIF wedge modeled using international trade and transport services.
- Model also includes trade friction parameter (so-called iceberg parameter).
Model structure VII—Closure

- Taxes on intermediate inputs and final demand, factors of production, output, trade, and households.
- All taxes are exogenous save household direct taxes. The latter are endogenous to hit a given fiscal balance.
- Investment is savings (private, public and foreign) driven.
- Net foreign savings are exogenous.
- Model numeraire is manufacturing value added
Model structure VIII—Dynamics

- Labor force and population growth are exogenous.
- Capital stock is driven by past investments (and depreciation).
- Productivity is calibrated in baseline to achieve a GDP growth target.
- Productivity is typically exogenous (i.e. fixed) in policy scenarios, though some scenarios link sectoral productivity to export/output ratio.
Model structure IX—Variations

- Segmented labor markets (e.g. rural vs. urban) with or without migration.
- Minimum wage (with endogenous regime switch).
- Tariff rate quotas (TRQs).
- International capital mobility (driven by changes in relative rates of return).
- Increasing returns to scale with contestable markets
Discussion