

Lecture 4.1 Introduction to GAMS

David Roland-Holst, Sam Heft-Neal, and Anaspree Chaiwan UC Berkeley and Chiang Mai University

> Training Workshop Economywide Assessment of High Impact Animal Disease 14-18 January 2013 InterContinental Hotel, Phnom Penh, Cambodia

Moving to GAMS

- Excel CGE models are easily accessible, but must be highly simplified to be tractable.
- Using a higher level programming language enables us to include more economic structure and behavior.
- The Generalized Algebraic Modeling System (GAMS) is the language of choice for this kind of work.

Introduction to GAMS

- Description:
 - automates the process of going from a mathematical statement of the problem to the solution.
 - GAMS transforms the mathematical representation to representations required by specific *Solver* engines like OSL,CPLEX,...
 - models and solves complex *linear*, *nonlinear* and *integer* programming problems.
 - lets you build your model in a natural, logical structure using compact algebraic statements.

• Typical use:

Optimization

Scientific Software Comparison Chart

As you move away from the centre of the diagram, the software is more advanced, but often less friendly.

Try the software in the second tier first if you are looking for a middle way.

Box Color Key to Software Implementation: Green – Microsoft Excel Yellow – GAMS

Sample Transportation Problem

- Satisfy market demand, but with minimal costs of transporting the goods from producers to the markets
- we are given the supplies at several plants and the demands at several markets for a single commodity, and we are given the unit costs of shipping the commodity from plants to markets. The economic question is: how much shipment should there be between each plant and each market so as to minimize total transport cost?

Transportation Problem (cont.)

- Indices:
 - i = plants
 - *j* = markets
- Given Data:
 - *ai* = supply of commodity of plant *i* (in cases)
 - *b_j* = demand for commodity at market *j* (cases)
 - *cij* = cost per unit shipment between plant *i* and market *j* (\$/ case)
- Variables:
 - costs
 - xij = amount of commodity to ship from plant i to market j (cases),
 - where $x_{ij} \ge 0$, for all i, j

Transportation Problem (cont.)

Objective Function:

$$\text{Minimize} \sum_{i} \sum_{j} c_{ij} x_{ij}$$

a.

Constraints:

Observe supply limit at plant i:

Satisfy demand at market *j*:

$$\sum_{j} x_{ij} \le a_{j} \qquad \text{for all } i \qquad (\text{cases})$$
$$\sum_{i} x_{ij} \ge b_{j}, \qquad \text{for all } j \qquad (\text{cases})$$

GAMS Program

- Model definition and *Solve* statement
- Model definition
 - what is in the model (indices): <u>sets</u>
 - data: <u>scalars</u>, <u>parameters</u>, <u>tables</u>
 - What you are looking for: <u>variables</u>
 - relationships: <u>equations</u>
 - <u>Model</u> statement
 - <u>Solve</u> statement

Defining Model Components

- Declaration
 - declaring the existence of something and giving it a unique name – "identifier"
- Definition/Assignment
 - giving a specific value or form
 - e.g., labels set elements

Model Components: Sets

- Indices
- Group of elements with similar characteristics
- Define what you are considering in the model
 - Producers, markets, time periods...

Set:

declaration and definition

- Describe what you know
- Different presentation of data: dimensionality
- Scalars, parameters, and tables

A number

Parameters: declaration and definition

Characteristics of set elements

Direct assignment of data values

Example 1: declare parameter *c* and assign its value

```
Parameter c(i,j) transport cost in thousands of dollars per case (;)
```

c(i,j) = f * d(i,j) / 1000;

Valid only if the values of *f* and *d(i,j)* are previously assigned

Example 2: Assignment of a value to an element

```
c('seattle', 'new-york') = 0.40;
```

Exponent operator

• x**n

x should always have a positive value n can be any number

power(x,n)
 positive or negative value of x
 n is integer

Index Operations

• sum

summation over controlling index, $x_1 + x_2 + ... + x_{10} = \sum_{k=1}^{10} x_k$

• prod

product over controlling index

• smin, smax

minimum and maximum over controlling index

smin(k, x(k))

Model Components: Variables

- What you are looking for
- Declaration, assignment of type, assignment of bounds and/or initial values

```
Variables
    x(i,j) shipment quantities in cases
    z total transportation costs in thousands of dollars;
```

Positive Variable x ;

Variable Types

Variable Type	Allowed Range of Variable
free(default)	-∞ to +∞
positive	0 to $+\infty$
negative	-∞ to 0
binary	0 or 1
integer	0,1,, 100 (default)

Variable attributes

Variable attribute	Variable suffix	Description
lower bound	.lo	The lower bound for the variable. Set by the user
		either explicitly or through default values.
upper bound	.up	The upper bound for the variable. Set by the user
		either explicitly or through default values.
fixed value	.fx	The fixed value for the variable.
activity level	.1	The activity level for the variable. This is also
		equivalent to the current value of the variable.
		Receives new values when a model is solved.
marginal or dual value	. m	The marginal value for the variable. Receives
		new values when a model is solved.
scale value	.scale	This is the scaling factor on the variable. This is
		normally an issue with nonlinear programming
		problems and is discussed in detail later.
branching priority value	.prior	This is the branching priority value of a variable.
		This parameter is used in mixed integer pro-
		gramming models only, and is discussed in detail
		later.

Model Components: Equations

- Relationships among variables and parameters
- Declaration, definition

Equation Types

Equation type	Description
=e=	Equality: rhs must equal lhs
=g=	Greater than: lhs must be greater than or equal to rhs
=1=	Less than: lhs must be less than or equal to rhs
=n=	No relationships enforced between lhs and rhs. This equation type is
	rarely used.

Equation Values

Туре	.lo	.up	.1
=e=	rhs	rhs	rhs
=1=	-inf	rhs	rhs
=g=	rhs	inf	rhs
=n=	-inf	inf	any

Quick Note: "=" and "=e="

- "="
 - used only in direct assignments
 - gives a desired value to a parameter
 - executed before solver is called
 - must not involve variables
- "=e="
 - used only in equation definitions
 - executed after the solver is called
 - must contain variables

Model Components: <u>Model</u> statement

- Model collection of equations
- Declaration and definition Examples:

```
Model transport /all/;
```

```
Model nortonL linear version /cb, rc, dfl, bc, obj/
nortonN nonlinear version /cb, rc, dfn, bc, obj/ ;
```

Types of Problems

Model Type	Description
LP	Linear Programming. There are no nonlinear terms or discrete (binary or integer) variables in the model
NLP	Nonlinear programming. There are nonlinear terms involving only "smooth" functions in the model, but no discrete variables
MIP, MINLP	Mixed Integer Programming. The model can contain discrete (integer of binary) variables
Other	DNLP, RMIP, MPEC, MCP, CNS

Model Components: <u>Solve</u> statement

• Objective variable: scalar and type free

Display Statement

Display x.l, x.m ;

- Only non-default values are displayed
- Default value is generally zero
- for the .lo and .up subtypes of variables and equations the default values can be zero, -INF or +INF
- Display control examples: option decimals = 1; - number of digits after decimal point for all displayed

variables

```
option x : 5;
```

 number of digits after decimal point for variable x;

Solve execution

- 1. Model is translated into *Solver* language
- 2. Comprehension aid is written to output
- 3. Error check, if error program termination
- *4. Solver* solves the model
- 5. GAMS reports the status of the solution and load solution values from *Solver*

GAMS Output

Reports results, facilitates debugging

- Echo Print
- Reference Map
- Equation Listing
- Column Listing
- Model Statistics

- Status Report Solver report
- Solution Report
- Report Summary
- Results

- Copy of input file with line numbers
- Dollar-print-control statements
 - output control
 - start in column 1
 - examples:
 - \$Title TEXT print TEXT on top of each page
 - \$Ontext
 - \$Offtext comments
 - \$Offlisting no printing of the input file

Reference Map

- Summaries of the input file for debugging purposes
- Two parts of cross-reference map
 - alphabetical list of all entities and a coded reference of each appearance
 - List of all entries grouped by type

Equation Listing

- Does GAMS generate the model you intended?
- Describe equations for specific values of set elements and parameters
- Nonlinear system first order Taylor approximation (i.e. linear approximation)

Column Listing

- shows the coefficients of three specific variables for each generic variable
- control of equation and column listing:

option limrow = r, limcol = c ;

- r desired number of equations
- c desired number of columns

Model Statistics

- BLOCK counts number of generic equations and variables
- SINGLE counts refer to individual equations and variables
- NON ZERO ELEMENTS number of non-zero coefficients in the problem matrix
- NONLINEAR N-Z number of nonlinear entries in nonlinear models

Model Statistics (cont.)

- CODE LENGTH, DERIVATIVE POOL, CONSTANT POOL – type of nonlinearity in nonlinear models
- GENERATION TIME time used since the syntax check finished

Status Report

- solve summary
- Desired SOLVER STATUS: 1 NORMAL COMPLETION
- Desired MODEL STATUS:
 - Linear model:
 - Nonlinear model:
 - Integer model:

- 1 OPTIMAL
- 2 LOCALLY OPTIMAL
 - 8 INTEGER SOLUTION

Solver Status

solvestat	solver status
1	normal completion
2	iteration interrupt
3	resource interrupt
4	terminated by solver
5	evaluation error limit
6	unknow
7	(unused)
8	error preprocessor error
9	error setup failure
10	error solver failure
11	error internal solver error
12	error post-processor error
13	error system failure

Model Status

modelstat	model status
1	optimal
2	locally optimal
3	unbounded
4	infeasible
5	locally infeasible
6	intermediate infeasible
7	intermediate non-optimal
8	integer solution
9	intermediate non-integer
10	integer infeasible
11	(unused)
12	error unknown
13	error no solution
I January 2013	

Solver Report

- message identifying the solver and its authors
- diagnostic messages if anything unusual was detected
- specific performance details

Solution Report

- Results of optimization
- Four levels of equations low bound, level value, upper bound, and marginal
- Values

66 77

- zero
- EPS close to zero
- INFES infeasible
- NOPT marginal values of the wrong sign UNBND – unbounded
- Turned off by line: *option solprint = off*

Report Summary

- total number of non-optimal, infeasible, and unbounded rows and columns
- INFES row/column is infeasible. The level value is not between upper and lower bounds
- NOPT row/column is non-optimal. Marginal value is incorrect
- UNBND row/column is unbounded

- coded message following the line with error
- Look for ****
- contain a "\$" directly below the point at which the compiler thinks the error occurred
- Always check carefully for the cause of the first error
- Look at the previous line (especially for missing semicolons) if nothing seems obvious

- You are free to use either upper- or lower- case letters
- GAMS treats singular and plural synonymously
 - E.g., Set and Sets
- Multi-word names are not allowed. Use hyphens
 - E.g., 'New-York' instead of 'New York'

GAMS Integrated Development Environment (IDE)

- Most users of GAMS can run the system in the Integrated Development Environment (IDE).
- When GAMS-IDE is started, a window will appear with a menu bar along the top and a main Edit Window for GAMS applications. As with most such systems, input and output operations are controlled by the **File** pull down menu, with other menu items used in edit operations, and in running the GAMS system.
- The IDE version provides for standard, mouse-driven editing of input files in the main GAMS Edit Window. If the appropriate file is not already displayed, use the **New** or **Open** commands on the **File** menu to activate one. Then create or correct the file with the mouse and tools provided on the **Edit** and **Search** menus. The **Matching Parenthesis** button helps with the many parentheses in GAMS by skipping the cursor to the parenthesis that corresponds to the one it is now positioned in front of. The **Find in file** is also a useful tool, if you work with a complex model.

IDE - Continued

- Users should begin each session by selecting a "project". A project is a system file you save but never have to touch. Still, its location is important because the folder (directory) of the current project file is where (.gms) input and (.lst) output files are saved by default.
- This allows you to easily keep all the input and output files for any task together in the same directory, and use different directories for different projects.
- The starting project file (if any) is shown at the top of the main GAMS window.

Initiating a Project

In the picture below, the starting project file is "W:\WRK\GAMS\my project.gpr". To select another, or create a new one, use the **Project** item on the **File** menu.

GAMS syntax: the manual

A GAMS TUTORIAL 8

Inputs	Outputs	
• Sets	Echo Print	
Declaration	Reference Maps	
Assignment of members	• Equation Listings	
(Parameters, Tables, Scalars)	 Status Reports 	
Declaration	• Results	
Assignment of values		
• Variables		
Declaration		
 Assignment of bounds and/or initial values 		
(optional)		
• Equations		
Declaration		
Definition		
 Model and Solve statements 		
• Display statement (optional)		

Adobe /

ile Edit Docum Co Co 🕒 🗗 🏉

GAMS logic: the manual

_

3.3 DATA TYPES AND DEFINITIONS

GAMS-based 123 model

cge123.gms

STITLE APPLICATION OF THE CGE123 MODEL IN GAMS

\$Ontext

This file presents a GAMS-based implementation of the 123 CGE model developed at the World Bank and involving papers by Jaime de Melo, Sherman Robinson, Jeff Lewis, Delfin Go, Pekka Sinko, and Shanta Devarajan (in various combinations of authors). The basic theory is spelled out in the paper:

de Melo, J. and S. Robinson, (1989). "Product Differentiation and the Treatment of Foreign Trade in Computable General Equilibrium Models of Small Open Economies," Journal of International Economics 27: 47-67.

This application is based on the description of the 123 model in Applied Methods for Trade Policy Analysis: A Handbook.

Devarajan, S., D.S. Go, J.D. Lewis, S. Robinson, and P. Sinko (1997), "Simple General Equilibrium Modeling," Chapter 6 in J.F. Francois and K.A. Reinert eds., Applied Methods for Trade Policy Analysis: A Handbook, Cambridge University Press: Cambridge UK: 156-188.

The Equation numbers match those in the chapter, as do variable definitions. The core data also follow from the example provided by Devarajan et al and circulated in spreadsheet form -- the macro-economic accounts for Sri Lanka in 1991. All values have been scaled relative to GDP. These data are listed below.

Rs Billion Output=1 National Accounts 1.0000 Output (Value Added) 324.6940 Wages 163.3200 0.5030 10: 62

17 January 2013

Insert

Parameter declarations

I	Para	neters		
	* He.	re we def	fine a 1	mix of policy and functional parameters
I		PW	Jm	world price of import good
I		PW	Je	world price of export good
I		tn	â	import tariff
I		te	2	export subsidy rate
I		ts	3	sales or excise of VAT tax rate
I		ty	7	direct income tax rate
I		tr		government transfers
I		ft	;	foreign transfers to government
I		re	2	foreign remittances to private sector
I		sr		average savings rate
I		X		aggregate output
I		G		government demand
I		В		balance of trade
I		at	;	technical shift term for CET expression
I		OM	IEGA	export transformation elasticity
I		rt	;	the CET exponential term
I		aq	1	technical shift term for CES expression
I		si	.gma	import substitution elasticity
I		rq	1	the CES exponential term
I		pd	f the	CES weight term in the Armington function
I		bt	the	CET weight term in the national product function
I		va	alues(va	ars,exp) a table to hold experiment values
I		;		
I			_	
I	*1n1	tializati	ion of j	parameters
I		DR	Tana —	0.9960.
I		Pu		0.0000;
I		Fu tw	. –	1.0107;
I		ta	. –	0.1207;
I		te		0.0107;
I			, – , –	0.00009,
		د ک + ب	- =	0.0000,
	•	CL	. –	0.12.517
Ē		10.00		
1	1	42: 62		Insert

👺 Gamside: D:\Models\Small\small.gpr - [D:\TEACHI~1\TINBER~1\CGEMOD~1\DISK\GAMSMO~1\CGE123\CGE123.GMS]

File Edit Searc

Equation definitions

cge123.gms

\$Stitle equation	definitions	-
Equations		
*Real flow equati	ons with numbering following Devarajan et al	
EQ621	definition of the product transformation surface	
EQ622	definition of the Armingon aggregation function	
EQ623	expenditure definition of national income	
EQ624	supply ratios based on EQ621	
EQ625	supply ratios based on EQ622	
*Nominal flows		
EQ62.6	government tax income definition	
EQ627	value added definition of national income	
EQ628	savings definition	
EQ629	consumption definition	
*Price equations		
EQ630	internal import prices	
EQ631	internal export prices	
EQ632	consumer prices	
EQ633	national product price index	
EQ634	producer prices for the composite good	
EQ635	real exchange rate	
*Market clearing .	Equations	
EQ636	domestic good excess demand	
EQ637	Armington composite excess demand	
EQ638	capital and current account relationship	
EQ639	savings investment linkage	
*Objective functi	on	
OBJ	This is the fake objective function for GAMS	
;		
241: 62	Insert	

🖻 🗄 🍇 🔪 🗞

Model specification

cge123.gms

	- endog("Qd")	=e= 0;		
	EQ638 B			
	- (PWm*endog("M") -PWe*endog("E") - ft - re)	=e= 0;		
	EQ639 endog("Z")			
	- ((1/endog("Pt")) * endog("S"))	=e= 0;		
	OBJ			
	GDP			
	- endog("Y")	=e= 0;		
	Model model1 / EQ621, EQ622, EQ623, EQ624, EQ625, EQ626, EQ627,			
	EQ628, EQ629, EQ630, EQ631, EQ632, EQ633, EQ634,			
	EQ635, EQ636, EQ637, EQ638, EQ639, OBJ / ;			
	option nlp=minos5;			
	modell.lterlim = 1000; modell.optile=4;			
	Solve modell maximizing GDP using hip;			
	values(vars.exn) = endog.l(vars):			
	\$Ontext			
	In this next section we implement a free trade experiment,			
	along the lines of the Devarajan et al chapter. We set the impo	rt		
	tariff and export tax to zero			
	\$Offtext			
	ontion nln=minos5:			
	model1.iterlim = 1000; model1.optfile=4;			
	Solve model1 maximizing GDP using nlp;			
				-
•			J	•
-	295: 62 Insert			
				_

🖺 G	amside: D:\Models\Sı	mall\small.gpr ·	- [D:\TEACHI~1\TINBER~1\CGEMOD~1\DISK\GAMSMO~1\CGE123\CGE123.GMS]	<u>_ 8 ×</u>	
	jie <u>E</u> dit <u>S</u> earch <u>W</u> ind <u>N</u> ew <u>O</u> pen	dows Help Ctrl+N Ctrl+O	Running in GAMS IDE	- 8 × • 👪	
	Reopen Open in New Window	Alt+R Shift+Ctrl+O			
	Model Library Project	+	=e=0;		
	Run Compile	F9 Shift+F9	g("S")) =e= 0;		
	Save Save as Save All	Ctrl+S Shift+Ctrl+S	=e= 0;		
-	<u>C</u> lose Options Print Previous		2, EQ623, EQ624, EQ625, EQ626, EQ627, 9, EQ630, EQ631, EQ632, EQ633, EQ634, 6, EQ637, EQ638, EQ639, OBJ / ;		
	Frevious E <u>x</u> it modell.rcering - Solve modell max	- 1000, mod (imizing GI	del1.optfile=4; DP using nlp;		
.	values(vars,exp)	= endog.l	l(vars);		
	\$Ontext				
	In this next section we implement a free trade experiment, along the lines of the Devarajan et al chapter. We set the import tariff and export tax to zero				
	\$Offtext				
	tm = 0; te = 0;				
	option nlp=minos model1.iterlim = Solve model1 max	s5; = 1000; mod (imizing GI	del1.optfile=4; DP using nlp;		
•					
	295: 62	Inser	art Run GAMS		
1 88 S	itart 🔢 🚮 🗂 🚺 🔕	। 🔍 🚑 🙋	🖸 🕅 🖾 gams 🛛 🕅 villars.doc 📴 Microsoft P 💯 Gamside 🛛 🕅 🥨 🗎 🛸 🌾 📶 💻 🛞 🚍 👷 👔 🜑	1:32 PM	

🚝 Gamside: D:\Models\Small\small.g _ 8 × _ 8 × File Edit Search Windows Help The solution screen MS \geq E cge123 GAMS Rev 120 Copyright (C) 1987-2001 GAMS Development. All rights reserved Licensee: Economics Department A010221:1033CP-WIN Erasmus Universiteit Rotterdam DC418 --- Starting compilation --- CGE123.GMS(333) 1 Mb --- Starting execution --- CGE123.GMS(276) 1 Mb --- Generating model model1 --- CGE123.GMS(277) 2 Mb ___ 20 rows, 21 columns, and 65 non-zeroes. --- CGE123.GMS(277) 2 Mb --- Executing MINOS5 MINOS5 Feb 14, 2001 WIN.M5.M5 19.8 108.043.039.WAT The options file could not be found -- using defaults Work space allocated ___ 0.04 Mb Reading data... Reading nonlinear code ... Major Minor Ninf Sinf,Objective Viol RG NSB Ncon Penalty Step 1 0 1 0.0000000E+00 8.4E-02 0.0E+00 14 3 1.0E+01 1.0E+00 2 14 0 1.13158934E+00 5.9E-03 0.0E+00 0 4 1.0E+01 1.0E+00 3 0 0 1.12985912E+00 8.9E-06 0.0E+00 5 1.0E+01 1.0E+00 0 4 0 1.12986053E+00 1.5E-11 0.0E+00 6 1.0E+01 1.0E+00 0 0 5 0 0 1.12986053E+00 2.2E-16 0.0E+00 7 0.0E+00 1.0E+00 0 EXIT -- OPTIMAL SOLUTION FOUND Major, Minor itns 5 14 Objective function 1.1298605309416E+00 • Close. Open Log Summary only Update 295: 62 **Double-Click to Open File** Insert

👺 Gamside: D:\Models\Small\small.gpr - [D:\Models\Small\CGE123.lst] _ 8 × _ 🗗 × File Edit Search Windows Help Some results MS ء 🖌 -6 cge123.gms cge123.lst Execution ٠ 333 PARAMETER values a table to hold experiment values benchmark freetrade revenue r~ 0.3276 0.3371 0.3363 E M 0.5030 0.5138 0.5129 Ds 0.6724 0.6626 0.6634 Dd 0.6724 0.6626 0.6634 Qs. 1.1754 1.1760 1.1760 1.1754 Qđ. 1.1760 1.1760 Pe 1.0000 1.0107 1.0000 Pm 1.0000 0.8860 0.8860 Pd 0.9999 0.9405 0.9360 Pt 1.0839 0.9939 1.0487 Px 1.0000 0.9639 0.9573 Pq 1.0000 0.9169 0.9144 Т 0.1920 0.1284 0.1920 R 1.0000 1.0000 1.0000 Sg -0.0100-0.06120.0044 Y 1.1299 1.0835 1.0766 C. 0.8288 0.8668 0.8163 s 0.2660 0.2069 0.2713 Z 0.2454 0.2082 0.2587 ts 0.0839 0.0839 0.1469 EXECUTION TIME 0.050 SECONDS 1.4 Mb = WIN198-120 USER: Economics Department A010221:1033CP-WIN Erasmus Universiteit Rotterdam DC418 1:1 Read Only Insert

Accessing GAMS

- The homepage of the GAMS corporation (<u>www.gams.com</u>) contains a lot of useful information.
- From the homepage, a full user guide can be downloaded at <u>www.gams.com/docs/document.htm</u>; the user guide contains the syntax for all GAMS commands and very helpful as a reference when writing GAMS models. Note that the user guide is also available via the Help function in GAMS-IDE (

http://www.gams.com/dd/docs/tools/gamside.pdf).

• All readers are advised to study the introductory chapter of this manual when starting to learn the GAMS software.

Download and Installation

- There is a free version of GAMS available for installation on your own computer. This is a limited version of GAMS, which cannot solve large problems, but it can be used for the sample models in this course.
- A free copy of the restricted, student version is available for download at http://www.gams.com/download

Questions?

17 January 2013

Roland-Holst 61