
The B.E. Journal of Theoretical
Economics

Topics
Volume 12, Issue 1 2012 Article 9

Strict Concavity of the Value Function for a
Family of Dynamic Accumulation Models

Eugenio S.A. Bobenrieth∗ Juan R.A. Bobenrieth†

Brian D. Wright‡

´∗Pontificia Universidad Catolica de Chile, ebobenrieth@uc.cl
†Universidad del Bı́o-Bı́o, jbobenri@ubiobio.cl
‡University of California, Berkeley, bwright@berkeley.edu

Recommended Citation
Eugenio S.A. Bobenrieth, Juan R.A. Bobenrieth, and Brian D. Wright (2012) “Strict Concavity
of the Value Function for a Family of Dynamic Accumulation Models,” The B.E. Journal of
Theoretical Economics: Vol. 12: Iss. 1 (Topics), Article 9.

DOI: 10.1515/1935-1704.1838

Copyright c©2012 De Gruyter. All rights reserved.

Brought to you by | University of California - Berkeley
Authenticated | 128.32.175.149

Download Date | 2/22/13 6:35 PM



Strict Concavity of the Value Function for a
Family of Dynamic Accumulation Models∗

Eugenio S.A. Bobenrieth, Juan R.A. Bobenrieth, and Brian D. Wright

Abstract

We prove strict concavity of the value function for liquidity constrained dynamic accumula-
tion models without adopting at least one of the following restrictive assumptions: zero response
of productive effort, bounded marginal value of accumulated balances, or strictly convex cost of
holding accumulated balances. Thus we extend well known theoretical results to more general
models of saving with liquidity constraints and of commodity storage with non-negativity con-
straints on stocks. Our results provide a foundation for estimation of a homogeneous markovian
process for consumption in models of saving, or for price in commodity storage models, under
more realistic assumptions.
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1 Introduction

In this paper we prove the strict concavity of the value function for a class of
stationary surplus maximization models in which the accumulated balance of
savings, or stocks of a consumable commodity, is non-negative and may grow
or depreciate, and its marginal value may be unbounded. Supply of effort may
be economically responsive, and the income or supply disturbance, if any, is
i.i.d. For this class of accumulation models it is well known that the value
function is weakly concave. However strict concavity of the value function is
required for the Markov consumption process to be time-homogeneous (given
an initial value for available resources). Time-homogeneity of the consumption
process is necessary for application of standard results of ergodic theory. This
is important in laying the foundation for asymptotic results that are currently
used in econometric implementations.

In a commodity storage model, for example, strict concavity of the
value function is necessary to ensure that the market demand function is well
defined. This is important to derive standard theoretical results, in particular
to establish that the price process has a unique invariant distribution which
is a global attractor (see Scheinkman and Schechtman, 1983, p. 435, and
Bobenrieth et al., 2002, p. 1217).

We have not been able to find a general proof of strict concavity for
this model in the literature.

Strict concavity is established only in special cases of the model adop-
ting restrictive assumptions. For example Deaton and Laroque (1992), which
establishes the foundation for the discussion of saving with liquidity con-
straints in Deaton (1991), and for the econometric applications in Deaton and
Laroque (1995) and Deaton and Laroque (1996), assumes that supply of effort
is unresponsive and that marginal direct utility is bounded. In Bobenrieth et
al. (2002), Scheinkman and Schechtman (1983), and Stokey et al. (1989, sec-
tion 10.5, pp. 297-300), the restriction is that the cost of holding accumulated
balances is strictly convex. This assumption is clearly inappropriate for mo-
dels of saving, and does not have empirical support with respect to commodity
storage.1 Indeed the pioneering storage model of Gustafson (1958), and many
subsequent dynamic accumulation models, assume constant marginal storage
cost.

The family of models we address include the commodity storage model
with constant consumption demand elasticity and possibly responsive sup-
ply in Wright and Williams (1982), and the model of saving with martingale

1Reports usually imply that marginal storage cost is approximately constant over a large
range of stocks, perhaps increasing as the usual storage facilities approach their capacity
(Paul, 1970, UNCTAD, 1975).
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discounted marginal value in Bobenrieth et al. (2011) where the transition
probability for marginal value is well defined if marginal value is strictly de-
creasing in total available resources.

A particular case of the model in this paper is the standard non-
stochastic one-sector model of optimal growth with linear technology when
capital is the maintainable capital stock, as described in Stokey et al. (1989,
section 5.1, p. 104). We note that the argument for strict concavity offered
by Stokey et al. (1989, exercise 5.1 c., p. 104) and the solution proposed by
Irigoyen et al. (2002, p. 53) are both wrong, since Assumption 4.7 of Stokey
et al. (1989, p. 80) is not satisfied in this case.

The remainder of the paper is organized as follows. In section 2 we
present the model and prove that supply of effort is non-increasing in avai-
lable resources. In section 3 we present and prove our main result, the strict
concavity of the value function. Section 4 presents a brief conclusion.

2 The Model

We address a standard model of maximization of expected surplus, with liqui-
dity constraints, and with (possibly) responsive labor supply. Time is discrete.
Income or supply is subject to one common exogenous i.i.d. multiplicative dis-
turbance ω ≥ 0, with (possibly unbounded) support S. Given the accumulated
balance carried forward, x ≥ 0, and effort λ ≥ 0, the amount available in the
next period is z′ ≡ Rx + ω′λ, where R > 0 is a depreciation or appreciation
factor that is assumed to be known with certainty, and ω′ is the disturbance
in the next period. The discount factor is δ, 0 < δ < 1. We assume that
δR < 1. If λ is economically responsive, cost of effort is given by a function
g : R+ → R+, with g(0) = 0, g′(0) = 0, and g′(λ) > 0, g′′(λ) > 0 for all
λ > 0. Storage cost is given by a function ϕ : R+ → R+, with ϕ(0) = 0, and
ϕ′(x) ≥ 0, ϕ′′(x) ≥ 0 for all x ≥ 0.

The utility of consumption is U : R+ → R. U is continuous, once con-
tinuously differentiable, strictly increasing and strictly concave. We assume
that U has a finite upper bound. U ′ need not be bounded. Let f ≡ U ′.

For available resources z ≥ 0, the Bellman equation for the surplus
problem is:

ν(z) = max
x,λ

{U(z − x)− ϕ(x)− g(λ) + δE[ν(z′)]}, subject to (1)

z′ = Rx+ ω′λ,

0 ≤ x ≤ z, λ ≥ 0,
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where E[.] denotes the expectation with respect to next period’s disturbance
ω′.

By standard results (see for example Stokey et al., 1989), ν exists, is
unique, bounded, continuous, strictly increasing and weakly concave. For a
given z ≥ 0, the objective function in (1) is strictly concave in (x, λ), implying
that the optimal policy functions x(z) and λ(z) are single-valued. Continuity
of x(z) and λ(z) follows from continuity of the objective function and conti-
nuity of the restrictions, in (1). Consumption and marginal value are given by
the functions c(z) ≡ z − x(z), p(z) ≡ f(z − x(z)).

We prove that the marginal value, ν ′, exists and ν ′(z) = p(z), ∀z ≥ 0
(Proposition A.2, Appendix). The policy functions x and λ satisfy the Euler
conditions:

p(z) + ϕ′(x(z)) ≥ δRE[p(Rx(z) + ω′λ(z))], with equality if x(z) > 0, (2)

g′(λ(z)) ≥ δE[ω′p(Rx(z) + ω′λ(z))], with equality if λ(z) > 0. (3)

The Euler conditions imply the following preliminary result, which is
based in the fact that an increase in available resources z does not increase
E[ω′ν ′(z′)]; thus, by convexity of g, does not increase the incentive for effort
λ. The proof is related to the proof of Theorem 2 (b) of Scheinkman and
Schechtman (1983, p. 432), and to the argument in Stokey et al. (1989,
Section 10.5, p. 300).

Lemma. λ is non-increasing in [0,∞).

Proof of the Lemma. If S = {0}, (3) implies λ(z) ≡ 0. If S ̸= {0}, by
contradiction assume that there exist 0 ≤ z(0) < z(1) such that λ(z(0)) <
λ(z(1)).

Let γ(ω′) ≡ p(Rx(z(0)) + ω′λ(z(0)))− p(Rx(z(1)) + ω′λ(z(1))).

Since g′(0) = 0, λ(z) > 0, ∀ z ≥ 0. By (3), and the fact that g is strictly
convex, E[ω′γ(ω′)] < 0. This implies, given p is non-increasing (equivalently,
ν, is weakly concave) that x(z(0)) > x(z(1)). We now show that E[γ(ω′)] > 0.
Since x(z(0)) > x(z(1)) ≥ 0, by (2) we have:

p(z(0)) + ϕ′(x(z(0))) = δRE[p(Rx(z(0)) + ω′λ(z(0)))], (4)

and p(z(1)) + ϕ′(x(z(1))) ≥ δRE[p(Rx(z(1)) + ω′λ(z(1)))]. (5)

Given z(0) < z(1) and x(z(0)) > x(z(1)), it follows that c(z(0)) < c(z(1)) and
therefore p(z(0)) > p(z(1)). Subtracting (5) from (4), we obtain δRE[γ(ω′)] >
ϕ′(x(z(0)))− ϕ′(x(z(1))) ≥ 0, thus E[γ(ω′)] > 0.
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If γ(ω̂) > 0, then γ(ω′) ≥ 0, ∀ ω′ ≥ ω̂, and if γ(ω̃) < 0, then γ(ω′) ≤
0, ∀ ω′ ≤ ω̃. Therefore there exists ω∗ ≡ sup{ω′ : γ(ω′) < 0}. In the ex-
pectation E[ω′γ(ω′)] < 0, all negative values of γ(ω′) are weighted by values
ω′, 0 ≤ ω′ ≤ ω∗, and all positive values of γ(ω′) have weights ω′ ≥ ω∗, leading
to a contradiction given the fact that E[γ(ω′)] > 0.

Q.E.D.

3 The Theorem

Theorem. The value function ν is strictly concave.

The result follows from the Euler conditions. The impatience assumption
δR < 1 is a central element of the proof. For convenience in the exposition,
the proof of the Theorem is done separately for the deterministic and the
stochastic cases. The proof for the deterministic case extends the solution
presented in the discussion of a consumption-savings model in section 5.17 of
Stokey et al. (1989, pp. 126-128) to the case of responsive labor supply and
possibly unbounded marginal value, the main idea is to construct a strictly
concave function that satisfies the Bellman equation. The result follows from
the uniqueness of the value function. In the proof for the stochastic case
we show that the existence of an interval in which ν ′ is constant leads to a
contradiction.

Proof of the Theorem for the deterministic case: We first consider the
case where U ′(0) < ∞ or ω ̸= 0. We assume ω ≡ ω ≥ 0, a constant. We
construct a function ν(ω) : R+ → R that is strictly concave, and we prove that
ν(ω) satisfies the Bellman equation.
Define {a(0), a(1), · · · }, {x(ω)(a(0)), x(ω)(a(1)), · · · } and {λ(ω)(a(1)), λ(ω)(a(2)), . .}
as the sequences of numbers that satisfy:

Rx(ω)(a(j+1)) + ω λ(ω)(a(j+1)) = a(j),
g′(λ(ω)(a(j+1))) = δ ω f(a(j) − x(ω)(a(j))), and
f(a(j+1) − x(ω)(a(j+1))) + ϕ′(x(ω)(a(j+1))) = δRf(a(j) − x(ω)(a(j))),
with x(ω)(a(0)) = x(ω)(a(1)) ≡ 0.

Note that 0 ≤ a(0) < a(1) < a(2) < · · · , and a(j) → ∞ (as j → ∞).
We now construct the functions x(ω) : R+ → R+, λ(ω) : R+ → R+. In the
interval [0, a(1)], we define x(ω) ≡ 0, λ(ω) ≡ λ(ω)(a(1)). Inductively for j =
0, 1, 2, · · · , and for a given z′ ∈ [a(j), a(j+1)], there exist unique numbers z, x, λ
such that:
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
Rx+ ω λ = z′

g′(λ) = δ ω f(z′ − x(ω)(z′))

f(z − x) + ϕ′(x) = δRf(z′ − x(ω)(z′)).

(6)

As z′ traverses [a(j), a(j+1)], z traverses [a(j+1), a(j+2)], and the correspon-
dence z′ 7→ z is one to one. The solution (z, x, λ) of (6) is denoted by
(z, x(ω)(z), λ(ω)(z)). The functions x(ω)(z) and λ(ω)(z) depend continuously
on z ∈ [a(j+1), a(j+2)], and c(ω)(z) ≡ z − x(ω)(z) is strictly increasing in
z ∈ [a(j+1), a(j+2)].
We construct ν(ω) : R+ → R as ν(ω)(z) ≡ U(z − x(ω)(z)) − ϕ(x(ω)(z)) −
g(λ(ω)(z))+ δν(ω)(Rx(ω)(z)+ωλ(ω)(z)). Using the definition of x(ω)(z), λ(ω)(z),
it is straightforward to check that (ν(ω))′(z) = U ′(z − x(ω)(z)), ∀ z ≥ 0 (the
Benveniste-Scheinkman derivative, Benveniste and Scheinkman, 1979). Since
U ′ is strictly decreasing and c(ω)(z) ≡ z − x(ω)(z) is strictly increasing, ν(ω) is
strictly concave.
Finally, ν(ω) satisfies the Bellman equation. The argmax of the optimization
problem:

ν(ω)(z) = max
0≤x≤z

0≤λ

{U(z − x)− ϕ(x)− g(λ) + δν(ω)(Rx+ ωλ)}

is x(ω)(z), λ(ω)(z).

For the case where U ′(0) = ∞ and ω ≡ 0, consider:

φ(q) ≡ D(q) +
∞∑
j=1

1

Rj
D(p(zj)),

where D = f−1, zj = Rx(zj−1) (for j ∈ N), and p(z0) = q. Note that
φ : (0,∞) → (0,∞) is a bijection and p(φ(q)) = q, for all q ∈ (0,∞).
Therefore, the price function p is strictly decreasing. Q.E.D.

Proof of the Theorem for the stochastic case: We assume that S is not
a singleton. Since p(z) = ν ′(z) ∀ z ≥ 0 and ν is concave, p is non-increasing in
[0,∞). Proof by contradiction proceeds by supposing that there exists a first
interval I1 = [z(0), z(1)], z(0) < z(1), where p is constant. By Proposition A.1
(Appendix), z(0) > 0. Furthermore, the fact that limz→∞ p(z) = 0 (since ν is
bounded and ν ′ = p) implies z(1) < ∞.
Since λ is non-increasing in [0,∞), we consider two possible cases:
Case 1: λ(z(0)) > λ(z(1)). Let

ζ(ω′) ≡ p(R(z(1) − c) + ω′λ(z(1)))− p(R(z(0) − c) + ω′λ(z(0))),
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where c is the constant value of consumption on I1. By the argument in the
proof of the Lemma (for the case S ̸= {0}), we conclude that E[ω′ζ(ω′)] < 0
and E[ζ(ω′)] ≥ 0, a contradiction.
Case 2: λ(z(0)) = λ(z(1)). Therefore λ is constant on I1. By (2) and the fact
that p is non-increasing,

E[p(R(z(0) − c) + ω′λ)] = E[p(R(z(1) − c) + ω′λ)],

where λ is the constant value of effort on I1, and c is the constant value of
consumption on I1. If S is unbounded, we conclude that p is a positive constant
in [R(z(0) − c) +ωλ,∞), where ω ≡ inf S, a contradiction to the boundedness
of utility. If S is bounded, p is constant in [R(z(0)− c)+ωλ,R(z(1)− c)+ωλ],
where ω ≡ supS. By (2) and the assumption δR < 1, we conclude that
R(z(1) − c) + ωλ < z(0). Therefore [R(z(0) − c) + ωλ,R(z(1) − c) + ωλ] is
strictly to the left of the interval I1. Hence, there is an interval of positive
length I2 = [z(2), z(3)], I2 ⊇ [R(z(0) − c) +ωλ,R(z(1) − c)+ωλ], strictly to the
left of the interval I1, where p is constant, a contradiction. Q.E.D.

4 Conclusion

We prove strict concavity of the value function for liquidity constrained dy-
namic accumulation models without adopting at least one of the following
restrictive assumptions: zero response of productive effort, bounded mar-
ginal value of accumulated balances, or strictly convex cost of holding ac-
cumulated balances. Strict concavity implies strict monotonicity of the con-
sumption function, and of the marginal value function. Thus we extend well
known theoretical results to more general models of saving with liquidity con-
straints and of commodity storage with non-negativity constraints on stocks.
Given the time-homogeneous Markov process for the accumulated balance,
z′ = Rx(z) + ω′λ(z), strict concavity of ν is required for time-homogeneity of
the transition probability for the consumption, and for the marginal value or
price, processes. Our results provide a foundation for estimation of a homo-
geneous markovian process for consumption in models of saving, and for price
in commodity storage models, under more realistic assumptions.

Appendix

Proposition A.1. c(z) > 0, ∀ z > 0.

The proof of Proposition A.1 is immediate in the case U ′(0) = ∞, based on
the concavity of ν. If U ′(0) is finite, the basic idea is to use a limit argument
on the corresponding finite horizon problems.
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Proof of Proposition A.1.

Case 1: U ′(0) = ∞. If c(z(0)) = 0 for some z(0) > 0, then ν ′
+(z

(0)) = ∞, a
contradiction to the fact that ν is concave.

Case 2: U ′(0) < ∞. Consider the following sequences of functions, for the
corresponding finite horizon problems:

ν0 ≡ 0, νt(z) = max
0≤x≤z

0≤λ

{U(z − x)− ϕ(x)− g(λ) + δE[νt−1(Rx+ ω′λ)]},

(xt(z), λt(z)) = arg max
0≤x≤z

0≤λ

{U(z − x)− ϕ(x)− g(λ) + δE[νt−1(Rx+ ω′λ)]},

t = 1, 2, · · · .
Note that νt is strictly concave ∀ t. By standard results, {νt}t≥0 converges uni-
formly to the solution ν of the Bellman equation (1), and {(xt(z), λt(z))}t∈N
converges pointwise to (x(z), λ(z)). Denote by {ct(z)}t∈N the sequence of func-
tions ct(z) ≡ z − xt(z), ∀ t ∈ N.
Choose ω = inf S, to be the constant value of ω in the deterministic case. For

this case, denote by {ν(ω)
t }t≥0 the sequence of functions:

ν
(ω)
0 ≡ 0, ν

(ω)
t (z) = max

0≤x≤z

0≤λ

{U(z − x)− ϕ(x)− g(λ) + δν
(ω)
t−1(Rx+ ωλ)},

and denote by {c(ω)t (z)}t∈N the sequence of functions c
(ω)
t (z) ≡ z − x

(ω)
t (z),

where

(x
(ω)
t (z), λ

(ω)
t (z)) = arg max

0≤x≤z

0≤λ

{U(z − x)− ϕ(x)− g(λ) + δν
(ω)
t−1(Rx+ ωλ)},

t = 1, 2, · · · .
Let c(ω)(z) be the pointwise limit of the sequence {c(ω)t (z)}t∈N. The following
result establishes that c(ω)(z) is a lower bound for the consumption function
c(z) ≡ z − x(z).

Statement: c(z) ≥ c(ω)(z), ∀ z ≥ 0.

Proof of the Statement: It suffices to prove that

ct(z) ≥ c
(ω)
t (z), ∀ z ≥ 0, ∀ t ∈ N.2

Proceeding by induction:

2This result is stated in Theorem 4.1 of Schechtman (1973, p. 27), for a model with
unresponsive labor supply.
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For t = 1 : c1(z) = z = c
(ω)
1 (z), ∀ z ≥ 0.

Assume ct−1(z) ≥ c
(ω)
t−1(z), ∀ z ≥ 0 (and therefore ν ′

t−1(z) = U ′(ct−1(z)) ≤
U ′(c

(ω)
t−1(z)) = (ν

(ω)
t−1)

′(z), ∀ z ≥ 0).

To prove that ct(z) ≥ c
(ω)
t (z), consider the non-trivial case of z > 0 and

ct(z) < z. By contradiction, assume that ct(z) < c
(ω)
t (z) (and therefore xt(z) >

x
(ω)
t (z)). By the optimality conditions for xt(z) and x

(ω)
t (z) :

E[ν ′
t−1(Rxt(z) + ω′λt(z))] > (ν

(ω)
t−1)

′(Rx
(ω)
t (z) + ω λ

(ω)
t (z)), (7)

thus
E[ω′ν ′

t−1(Rxt(z) + ω′λt(z))] > ω (ν
(ω)
t−1)

′(Rx
(ω)
t (z) + ω λ

(ω)
t (z)).

Since νt−1 is strictly concave and ν ′
t−1 ≤ (ν

(ω)
t−1)

′, (7) implies that λt(z) <

λ
(ω)
t (z). The optimality conditions for λt(z) and λ

(ω)
t (z) imply that:

δE[ω′ν ′
t−1(Rxt(z) + ω′λt(z))] = g′(λt(z)) < g′(λ

(ω)
t (z)) =

= δω (ν
(ω)
t−1)

′(Rx
(ω)
t (z) + ω λ

(ω)
t (z)),

a contradiction, finishing in this way the proof of the Statement.

Using the Statement, and the fact that c(ω)(z) > 0, ∀ z > 0 we conclude the
proof. Q.E.D.

Proposition A.2. ν ′(z) = p(z), ∀ z ≥ 0.

The proof of Proposition A.2 is based on the Benveniste-Scheinkman deriva-
tive (Benveniste and Scheinkman, 1979).

Proof of Proposition A.2. Using the fact that c(z) > 0, ∀ z > 0, and using
Lemma 1 of Benveniste and Scheinkman (1979, p. 728), we conclude that
ν ′(z) = p(z), ∀ z > 0. Using this result, the Mean Value Theorem, and the
fact that p(z) ≡ f(c(z)) is continuous at 0, we conclude that ν ′

+(0) = p(0).
Q.E.D.
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