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Abstract We identify two issues with the reverse regression approach as imple-
mented in several classic reconstructions of past climate fluctuations from den-
droclimatologcical data series. First, instead of estimating the causal relationship
between the proxy, which is measured with significant error, as function of cli-
mate and formally inverting the relationship, most papers estimate the inverted
relationship directly. This leads to biased coefficients and reconstructions with ar-
tificially low variance. Second, we show that inversion of the relationship is often
done incorrectly when the underlying causal relationship is dynamic in nature. We
show analytically as well as using Monte Carlo experiments and actual tree ring
data, that the reverse regression method results in biased coefficients, reconstruc-
tions with artificially low variance and overly smooth reconstructions. We further
demonstrate that correct application of the inverse regression method is preferred.
However, if the measurement error in the tree ring index is significant, neither
method provides reliable reconstructions.

Keywords climate change · reconstruction method · inversion · paleoclimatic
data · climate variability

1 Introduction

Long run temperature records are of key importance in many fields, but maybe
most significant in climate science. Unfortunately, the longest instrumentally-
measured temperature series span just over three centuries (Jones and Hulme 1997,
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Jones et al. 1986, Hansen and Lebedeff 1987, National Research Council 1998).
To supplement the brief observed temperature series, paleoclimatologists have re-
constructed long histories of climate variables by using proxy data series including
tree-ring indexes, ice cores, pollen series, coral, and faunal and floral abundance in
deep-sea cores. They select these proxy data series for their length of sample span,
sensitivity to climate variability, and relative lack of disturbance from non-climate
factors. Examples of the vast number of such reconstructions include Briffa et al.
(1990), Briffa et al. (1992), Briffa et al. (1998), Briffa et al. (2001), Scuderi (1993),
Hughes and Brown (1992), Bradley and Jones (1992), Mann (2002), Mann et al.
(1998), Mann et al. (1999), Salzer et al. (2009) and others surveyed in Jones et al.
(1998) and Jones et al. (2001).

Recently, the attention to statistical issues in dendroclimatology has resulted in
a rapidly growing literature examining the properties of reconstructions at single
sites and the combination of these individual series to time series at larger spatial
scales (Mann et al. 2008, National Research Council 2006, Jones et al. 2009). There
is a vibrant literature which approaches the issue of proxy based reconstruction
using a variety of approaches and methods. One commonly used approach is an
application of the regularized EM algorithm (Schneider 2001, Mann et al. 2005).
A more recent literature has focused on Bayesian approaches to reconstruction
(Haslett et al. (2006); Lee et al. (2008); Tingley and Huybers (2010); Li et al.
(2010); Brynjarsdóttir and Berliner (2011) McShane and Wyner (2011)).

In this paper, we examine the statistical properties of a parametric method for
proxy based temperature reconstructions at a single site, called reverse regression.
This method is a straightforward application of the linear regression method. It
is an appealing choice of technique, both because of its simplicity in execution
and seemingly intuitive solution to the reconstruction problem. While it is just
one of many possible techniques, it has been widely applied in a number of classic
papers (see for example Graumlich and Brubaker (1986); Briffa et al. (1990); Till
and Guiot (1990); Graumlich (1991); Scuderi (1993); Li et al. (2007)). We exam-
ine two separate issues stemming from the application of the “reverse regression
method”. The first issue is a classic statistical issue related to the methodology
of estimation, where measurement error in the proxy series leads to attenuation
bias in the estimated parameter and suboptimal reconstructions. The second issue
has to do with the specification of the estimated relationship between the climate
and the paleoclimatic index if the underlying relationship is dynamic. We show
using theory, Monte Carlo simulation and actual tree ring and climate data, that
this reverse regression method will result in reconstructions, relative to the true
series of the climate index, with a smaller variance and very different time series
properties. We examine an alternative reconstruction methodology called the in-
verse regression method, which is just as easily applied, and outperforms existing
methods when the underlying tree ring data are relatively free of measurement er-
ror and strongly correlated with observed temperature. We also show, that in the
absence of such quality data, neither method is capable of producing a satisfactory
reconstruction.

Via a series of realistic pseudoproxy experiments, Christiansen (2011) also
demonstrated that the inverse regression avoids the underestimation of low-frequency
variability and suggested to use the inverse regression for the climate reconstruc-
tion. We share the same conclusion as Christiansen, but our paper focuses more
on the statistical properties of the prediction in comparing two types of regression
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models. In addition to the mean and variance that are of Christiansen’s interest
as well, we also investigated the specification and estimation issues of a trans-
fer function, and the dependence structure of the time series derived based on
an estimated transfer function. Those two issues have often been neglected while
applying the reverse regression to the paleoclimate reconstruction.

In the following section we describe the reverse regression method as well as
the inverse regression method. Section 3 provides a theoretical examination of re-
constructions from both methods. Section 4 contains the Monte Carlo evidence.
Section 5 describes the results from a reconstruction exercise using an actual sam-
ple of tree rings. Section 6 concludes.

2 Reconstruction of Historical Climate

Biological growth of trees, expressed in tree-ring width or latewood density is
limited by operational environmental factors including temperature, precipitation
and CO2 content of the atmosphere (Fritts 1991). If climate has been limiting tree
growth in a systematic way, and the relation between climate and tree growth is
stationary through time, a very long history of tree growth can be employed to
extend backward the relatively brief recorded history of climate.

The biological causal relation between tree-ring growth and climatic factors
that are inputs to the growth process is known as the response function. This
response function relates an index of tree ring growth, Dt, to a climate index, Tt.
Both indexes are normalized to have mean zero and a unit variance. There are four
potential sources of uncertainty when writing down this causal relationship. First,
there is model uncertainty about how the two indexes are related. In practice there
is some guidance based on the biological relationship between the climate index
and the tree ring growth, yet there is significant uncertainty as to how many lags of
the climate index causally affect Dt and whether they enter in a linearly additive or
nonlinear fashion. Second, constructing a tree ring index is a complex and lengthy
process (Fritts 1991). It is commonly assumed that Dt is measured with error.
Third, the observed temperature index Tt may also be measured with error as the
monitoring station is likely not located exactly at the location of the proxy sample.
As is done in the literature, for the remainder of this paper we assume the most
simple and best case scenario. Finally, the stochastic process εt follows is unknown
(e.g. whether it is serially correlated or has constant variance). We assume that
the true causal relationship between Dt and Tt is linear and additive and the
number of lags of Tt affecting Dt is known. Further, we assume that Tt is measured
without error and that εt is i.i.d. normal with mean zero and constant variance.
The simplest possible response function under these assumptions is therefore given
by:

Dt = βo · Tt + εt, (1)

where εt is the measurement error of Dt, which is assumed to satisfy E[εt|Tt] = 0.
If this strict exogeneity assumption holds, given an appropriate sample of Tt and
Dt one can obtain a consistent and efficient estimate of βo by ordinary least
squares. Using this estimate for the population parameter, one can formally invert
equation (1) and calculate predictions for Tt in years where only Dt is available.
The inverse function of the response function, which has the climate indicator
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on the left hand side and is used to construct historical climate out of sample
predictions, is called the transfer function. We refer to the approach of estimating
the response function directly and formally inverting it to obtain the transfer
function as “inverse regression”.

As opposed to the inverse regression, the reverse regression method does not
estimate equation (1), but rather the transfer function directly:

Tt = γo ·Dt + ηt.

Since Dt is measured with error, this creates a variety of estimation issues, which
go back in the statistics literature to Eisenhart (1939). As we show in the next
section, direct estimation of the transfer function causes the least squares esti-
mator to be biased in large as well as small samples. Bias of the estimator even
in a large sample poses a critical limitation in prediction or in reconstruction of
temperature series in dendroclimatology. In addition to the biased coefficient esti-
mates, the reverse regression also results in a downward bias in the variance of the
reconstructed historical climate in large and small samples, even when assuming
a valid underlying response function (von Storch et al. 2004).

The second set of issues relates to the specification of the transfer function,
when the underlying response function is thought to be dynamic. Scuderi (1993),
for example, uses current temperature and two lagged years of temperature in the
response function, in which case the specification is given by

Dt = βo · Tt + β1 · Tt−1 + β2 · Tt−2 + εt. (2)

The inclusion of the lagged temperature variable is interpreted as reflecting year-to-
year persistence of the effect of climate variables upon the response of tree growth
(LaMarche Jr 1974). In the standard application of the reverse regression approach,
the number of lags for Tt in the response function determines the number of leads of
Dt in the transfer function. This transfer function is then estimated directly using
ordinary least squares. Scuderi (1993), based on the response function specified in
equation (2) above, choses the transfer function

Tt = γo ·Dt + γ2 ·Dt+1 + γ3 ·Dt+2 + ηt.

It is standard practice in papers using this reverse regression method to use the
directly estimated transfer function coefficients (γ̂1, γ̂2, γ̂3) to reconstruct Tt back
beyond the horizon of observation. This reconstructed climate record can then
be used to infer the time series properties of climate, including the dynamics
of baseline variation, counts, and duration of climatic extremes such as severe
droughts and heat waves.

This approach introduces two additional issues to the estimation stemming
from measurement error in Dt discussed above. First, the fact that current and
lagged observations of the climate variable causally affect tree growth does not
imply that current and future tree growth should appear in the formal inversion
of this relation. As we show below, whether the leads or the lags of the climatic
indicators should be included as predictors in the transfer function for a given
response function depends upon the relative magnitude of the parameters in the
response function. Even when leads should be included in the transfer function,
the number of leads is always greater than the number of lags in the response
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function. Furthermore we show that when the inclusion of leads is justified, current
tree growth should be excluded from the transfer function.

Second, the misspecification of the transfer function results in an overestimate
of the order of the autoregressive process of the reconstructed temperature se-
ries. This is consistent with the observation of very smooth reconstructions (e.g.
Seater (1993) ). While empirically the estimated order of the AR process also de-
pends on the selection criterion used, we argue based on theory and Monte Carlo
evidence that direct estimation of the misspecified transfer function tends to pro-
duce reconstruction with artificially high autoregressive processes. This aspect of
reconstruction is of crucial importance in the analysis of climate change, since
overestimation of the order of the AR process of temperature underestimates the
variability of the true temperature movement so that inferences about the sig-
nificance of observed temperature deviations in a particular period prior to the
availability of direct climate measurement are unreliable.

3 Comparing Inverse and Reverse Regression: Theory

3.1 Bias and variance of temperature estimates

We have discussed two basic types of underlying models that have been typi-
cally considered for estimating the temperatures from the proxy. One is directly
regressing the temperatures on proxies (reverse regression) and the other is re-
gressing the proxies on temperatures (inverse regression). The former corresponds
to directly estimating the transfer function and the latter to the inversion of the es-
timated response function. In addition to reverse and inverse regression, these two
methods have carried a variety of names in the statistics literature. For example,
they sometimes are called the direct and indirect regression (Christiansen 2011),
while at other times may have been called the inverse and classical calibration
(Krutchkoff 1967). The comparison between these two statistical estimation meth-
ods has long been discussed going back to Eisenhart (1939) and later reviewed in
Brown (1993). Here we compare these two approaches in the context of estimating
temperatures using proxy data.

Both temperatures and proxies are random variables and they are jointly dis-
tributed. In principle we can construct the conditional distribution of temperature
given proxies in order to estimate unknown temperatures at given proxies. How-
ever, from a modeling perspective the inverse regression is preferred over reverse
regression for two reasons. First, the transfer function may not be the most ap-
propriate model for describing the relationship between temperatures and proxies.
It is commonly agreed that the proxy is noisy with the signal to noise ratio to be
roughly 0.25 by variance (Smerdon 2012), while the temperature measurements,
though contain noise, are relatively more accurate estimates. In this sense, it might
be more appropriate to model the linear relationship by having proxies as the re-
sponse variable with temperature as the predictor and to actually represent the
source of errors. This seems to suggest that estimation of the response function
is more natural and sensible than the direct estimation of the transfer function.
Estimates of out of sample temperatures should be obtained through the inversion
of the estimated response function. Another disadvantage of the reverse regression
method is that it is unclear whether the past temperatures are from the same
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population as the observed temperatures. With this uncertainty it may be less
risky to model temperatures as predictors.

In terms of statistical properties of the estimated temperatures, the two esti-
mation methods each have their own advantages and disadvantages. Direct estima-
tion of the transfer function encounters the classical problem of errors in variables
(Klepper and Leamer 1984). Ordinary Least Squares (OLS) estimators are biased
and inconsistent if the tree-ring index series used as a predictor in the transfer
function is subject to measurement error due to disturbances (εt) in the response
function. Therefore, the estimates of the parameters of this direct estimation of
the transfer function are biased downward. However, compared to the inversion
of response function, the direct estimation reduces the variability. To demonstrate
this, consider the simplest static case below, which omits the issue of lags and
leads discussed earlier, but can be easily extended to the general case.

Specify the response, Dt, as determined by the contemporaneous impact of Tt
with measurement error εt|Tempt ∼ N(0, σ2):

Dt = βTt + εt. (3)

As is standard in the literature, both Dt and Tt are standardized to have mean 0
and standard deviation 1. In equation (3) this implies a coefficient of determination
(R2) of β2. Given the standardization the OLS estimate of β based on a sample
of size n is:

β̂ =

∑n
t=1Dt · Tt∑n
t=1 T

2
t

= cov(Dt, Tt).

The specification of the reverse regression used to reconstruct Tt’s from Dt’s is

Tt = γDt + ηt. (4)

Given the standardization, the OLS estimate of γ is given by:

γ̂ =

∑n
t=1Dt · Tt∑n
t=1D

2
t

= cov(Dt, Tt).

The OLS estimate, γ̂, of the reverse equation equals the OLS estimate of the
response function parameter β̂, because of the standardization of Dt’s and Tt’s.
Given the causal relation in (3), the matching transfer function to be used for
reconstruction is given by:

Tt =
1

β
(Dt − εt) =

1

β
Dt + ηt,

noting that ηt = − 1
β εt. If we take the ratio of the coefficients on the tree ring index

from the reverse regression in (4) and the inverse regression in (3) and notice that
for |β| < 1, we get:

γ̂
1

β̂

= γ̂2 � 1.

Thus the OLS estimate of the coefficient of Dt in the reverse regression is biased
toward zero by a proportion (1−β2). Since β2 is the coefficient of determination of
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the OLS estimate of the response function, the bias grows as the fit of the response
function deteriorates. This corroborates the discoveries in Ammann et al. (2010).

The reverse regression is subject not only to bias of the estimated coefficient
but also to underestimation of the variance of the reconstructions, T̂ rt :

var
(
T̂ rt

)
= γ2var (Dt) = γ2β2var (Tt) + γ2var (εt) = γ2,

since var (εt) = 1 − R2 = 1 − γ2. The variability of the reconstruction by reverse
regression is determined by the estimate of the coefficient, γ , which equals β
in expectation. Hence the variability of the reconstruction is also biased down-
ward and decreases as the fit of the response function declines. This is consistent
with the observation made in von Storch et al. (2004). On the other hand, if the
transfer function is obtained by inversion of the estimated response function, the
variance of the reconstruction,T̂ it , in expectation is overestimated relative to the
true (unobserved) climate:

var
(
T̂ it

)
= var

(
1

β
Dt

)
=

1

β2
var (Tt) = var (Tt) +

1

β2
var (εt) =

1

β2
> 1.

The overestimation of the true variance of the climate series grows as the fit of the
response function declines. A noisy proxy therefore leads to a noisy reconstruction.

In summary, the direct estimate of transfer function will yield biased pa-
rameter estimates and thus bias predictions. However, these predictions have
smaller variance than those obtained from the inversion of response function. Let
σ2
T =

∑
(Tt − T̄t)2/n. Asymptotically, Brown (1993, p 32) gives

E(T̂ i) = T, var(T̂ i) = σ2/β2;

E(T̂ r) = ρ2T + (1− ρ2)T̄ , var(T̂ r) = ρ4σ2/β2,

where ρ2 = β2σ2
T /(σ

2 + β2σ2
T ), 0 ≤ ρ2 ≤ 1.

The bias of T̂ r is small if the new T is close to T̄ , the mean of the temperature
in the training data. In general, T̂ r has smaller mean-squared error than T̂ i when
T is close to T̄ , particularly so if ρ2 or signal to noise ratio β2σ2

T /σ
2 is small

(Krutchkoff, 1967), otherwise T̂ i performs better by this measure. With T centered,

E(T̂ r) = ρ2T , and

MSE(T̂ i)−MSE(T̂ r) = σ2/β2 − ρ4σ2/β2 − (1− ρ2)2T 2.

Then T̂ r is better than T̂ i if and only if T 2 < σ2/β2 + 2σ2
T = σ2

T (1/ρ2 + 1). In cli-
matology, we mainly focus on the long term climate variability, so we would prefer
the unbiased estimation method regardless of the comparison in MSE. (Tingley
and Li 2012) point out that in some settings a Bayesian framework can regularize
the instability problem of the inverse regression.
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3.2 Specification of the Transfer Function

In this section we illustrate the specification and estimation issues in a simple case
in which the response function contains only the current value and one lag of the
climate variable (e.g. Briffa et al. 1992). The issue in this section generalizes to
situations with more complicated lag structures and is only applicable to settings
where the response function is not static. Let Dt be the annual increment of tree-
ring width and Tt temperature at date t. The regression equation of the response
function of tree growth on the temperature index is given by

Dt = βo · Tt − β1 · Tt−1 + εt = βo (1− φL)Tt + εt, (5)

where φ = β1

βo
and the lag operator L is defined as LpTt = Tt−p, p ε N . The

measurement error εt is assumed to be i.i.d. and εt|Tempt ∼ N(0, σ2) . Inversion
of equation (5) will vary depending upon the ratio of the parameters, βo and β1.
First consider the case where |φ| < 1. Assuming that Tt is a bounded sequence,
we can solve equation (5) for Tt as follows (Hamilton 1994) (page 19):

Tt = (βo (1− φL))−1 (Dt − εt) (6)

=
1

βo

(
Dt + φDt−1 + φ2Dt−1 + φ3Dt−3 . . .

)
+ νt

∼=
1

βo

(
Dt + φDt−1 + φ2Dt−1 + φ3Dt−3 . . .+ φmDt−m

)
+ νmt

where νt = − 1
βo

(
1 + φL+ φ2L2 + φ3L3 . . .

)
εt and

νmt = − 1
βo

(
1 + φL+ φ2L2 + φ3L3 . . .+ φmLm

)
εt. If Dt is determined by the

current and the first lagged value of Tt in the response function, the corresponding
transfer function should be defined as the weighted sum of the lags of the tree
growth measures and of the errors in the estimated response function back to the
distant past with geometrically decreasing weights. Only then will it reflect the
biological relation that specifies the direction of causality in the response function.
If |φ| < 1, the marginal effect of current temperature is larger than that of the
previous year. The above inversion shows that given response relation (3), Tt in
the transfer function should be regressed on the current observation and previous
observations of tree-ring growth, rather than on Dt and its first lead, Dt+1, as is
the standard approach .

Now consider the case where |φ| > 1. We can invert equation (5) using the lead
operator, which is the inverse of the lag operator L−pTt = Tt+1 where p > 0, to
get the transfer function (Hamilton 1994) (page 41):

Tt = (βo (1− φL))−1 (Dt − εt)

= − 1

βo

(
φ−1Dt+1 + φ−2Dt+2 + φ−3Dt+3 . . .

)
+ νt

∼= −
1

βo

(
φ−1Dt+1 + φ−2Dt+2 + φ−3Dt+3 . . .+ φ−(m+1)Dt+m+1

)
+ νmt ,

where νt = − 1
βo

(
φ−1L−1 + φ−2L−2 + φ−3L−3 . . .

)
εt and

νmt = − 1
βo

(
φ−1L−1 + φ−2L−2 + φ−3L−3 . . .+ φ−(m+1)L−(m+1)

)
εt. For this pa-

rameterization of the response function (4), where lagged climate has a larger
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impact on tree ring growth than current climate, the matching transfer function
is the one where current temperature is not a function of current tree growth, but
is a weighted sum of leads of tree growth and the errors εt with geometrically
declining weights.

It is common (e.g. Briffa et al. 1990, Briffa et al. 1992) to estimate the transfer
function directly, after estimating the response function as a first step to determine
the relevant number of lags. This approach ignores the fact that a transfer function
including one or two leads of Dt is misspecified if the underlying response function
that is correctly specified has one or two lags. Assuming that climate is accurately
measured by the climate index in the sample period, the transfer function relating
a climate variable to tree growth should be generated by inverting the estimated
response function. If tree growth is generally limited by the current and previous
years’ climatic conditions (LaMarche Jr 1974) the climate measure in a given year
should be calculated as a function of either current and past tree growth if |φ| < 1,
or of future tree growth excluding current year tree growth if |φ| > 1. The relevant
specification of the transfer function therefore depends upon the relative size of the
marginal effect of the current (βo) and the previous year’s (β1) climate on current
tree growth. Empirically, the weights of the lags/leads should be calculated from
the estimated response function parameters.

If the order of lags of Tt on Dt is not known a priori, the order of lags of the
temperature series can be estimated ex post and utilized in inverting the response
function into the transfer function, as illustrated above for the one-lag case for
|φ| < 1 or |φ| > 1. In the following section we discuss an additional statistical
problem that arises if the transfer function is misspecified as described above.

3.3 Time Series Properties of Climate Reconstructions

The autocorrelation order of long run history of the reconstructed climate series
is another important characteristic in making inferences about its baseline fluctu-
ation. When the dependent variable (Dt) is caused by the lagged and the current
realizations of Tt, the dependent variable exhibits time dependent behavior (even
without serial correlation of εt). Let us consider the implications for the autore-
gressive order of the estimated climate series from the two estimation approaches
using the following simple response function equivalent to (4) as an example:

Dt = βoTt + β1Tt−1 + εt, (7)

where both Dt and Tt are standardized to have mean zero and unit variance
and εt ∼ N(0, σ2). Applying reverse regression the following transfer function is
estimated directly:

Tt = γoDt + γ1Dt+1 + ηt. (8)

Since the variables are standardized we can represent the OLS estimates in (6) as
a function of the OLS estimates in (7):

γ̂o =
β̂o

(
1− β̂2

1

)
1− β̂2

o β̂2
1

and γ̂1 =
β̂1

(
1− β̂2

o

)
1− β̂2

o β̂2
1

.
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Then the reconstruction of the climate series using reverse regression, T̂ rt , is given
by T̂ rt = γ̂oDt+ γ̂1Dt+1. To focus on the problem caused by estimating a misspec-
ified transfer function, abstracting from the errors-in-variables problem discussed
above, we remove the unobserved factor, εt, from Dt, resulting in a perfect fit
for the response function. Recognizing that β̂i is an unbiased estimate of βi for
i = 0, 1, and using the true relation between β’s and γ’s, we obtain:

T̂ rt =
1

1− β2
oβ2

1

[
β2
o

(
1− β2

1

)
+ β2

1

(
1− β2

1

)]
Tt

+
1

1− β2
oβ2

1

[
βoβ1

(
1− β2

1

)
Tt−1 + βoβ1

(
1− β2

o

)
Tt+1

]
.

The reconstructed T̂ rt is the weighted sum of the lag and lead of Tt as well
as the current value. Reconstructions show dependency across time even if they
are reconstructed from error-free variables. This is due to the misspecified trans-
fer function, which does not reflect the physical causal relationship given by the
response function. On the other hand the reconstruction by inversion of the re-
sponse function will only exactly match the true Tt if Dt is free from errors, εt,
as assumed in this illustration. When there are errors in the response function,
its inversion also introduces time dependent behavior in the reconstructed series -
even if the errors, εt, are i.i.d.

In summary, a noisier response function will result in noisier reconstructions,
with potential time dependence, even if the response function is correctly inverted.
But the estimation of a misspecified transfer function induces time dependency due
not only to the errors in the response relation but also to the misspecification of
the transfer function. The limitations of this method of reconstruction do not
disappear if the fit of the response relation is perfect. For high-quality data, for
which the response relation has high explanatory power, the inversion method is
superior. For low-quality data, little can be expected from either method.

4 Performance Comparison

In order to more fully investigate the issues of specification estimation addressed
above, we conduct several Monte Carlo experiments as well as a reconstruction
using an actual tree ring index.

4.1 Monte Carlo Experiment

In the first experiment, we choose βo and β1 so that their ratio is equal to the
ratio of the values found by estimating the response function from the data by
Briffa et al. (1992). A set of independent Tt’s is generated from the standard
normal distribution and held constant for the experiment. The i.i.d. disturbances,
εt, were repeatedly drawn from a mean zero normal with the variance chosen so
that the variance of the Dt’s is 1 given the values of βo and β1. For each experiment
we chose the sample size T = 1000, and we replicated the sample 1,000 times.

To apply the inversion method, we estimated the response function (7) for the
last 100-year subsample, and reconstructed the series Tt for the whole sample from
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the series for Dt via equation (5) using m = 10. The reverse regression method
was implemented by estimating the transfer function (7) from the last 100-year
subsample, and reconstructing the whole sample from this estimated regression
relation. As an initial comparison of the two methods of reconstruction we take
an average of the reconstructions for each year across the 1,000 experiments. The
difference of the mean reconstruction from the true Tt is plotted in Figure 1 over
the whole sample period.

On average, deviations of the values produced by reconstruction via the in-
version method from the true generated time series of Tt’s are dense around 0,
indicating that the reconstruction is quite accurate. On the other hand, the reverse
regression method results in a much noisier estimate of the true mean reflected in
the larger variance of the series plotted in Figure 1. It is important to note the
order of magnitude difference in the vertical scale.

To further compare the performance of the two reconstruction methods, we
perform additional Monte Carlo experiments for different sets of parameter values
for βo and β1. For the first set of experiments we hold βo fixed and explore the
performance of the two reconstruction methods for a range of β1 such that |φ| < 1,
given that the Tt’s and Dt’s are again normalized. As a first measure of perfor-
mance, we use the mean absolute deviation of reconstructions from the generated
“true” value for each of the two reconstruction methods, which is defined as

MAD =

∑T
t=1 |ft − Tt|

T
,

where ft is the average of the reconstructions from 1,000 replications. The quality
of the reconstruction of Tt depends on two factors, the explanatory power of Tt in
the response function and the ratio of the current impact of climate to its lagged
impact. Figure 2 shows the MAD performance of the two methods for three dif-
ferent levels of βo across the valid range of β1. Reconstruction either by inversion
of the estimated response function or by estimation of the transfer function im-
proves as the explanatory power of the climate variable in the response function
increases. If the response variable is severely contaminated by measurement error,
high quality reconstructions of climate variables from the respondent variable are
not possible with either method.

Irrespective of the explanatory power of climate variables in the response func-
tion, the inversion method proves superior in reproducing the true Tt’s. As the
ratio of βo to β1 of the response function decreases, the relative role of the lagged
explanatory variables increases and the accuracy of the reconstructions by inver-
sion deteriorates. The average of the mean absolute deviation from the true values
of reconstructions by reverse regression is almost an order of magnitude higher
than that of the inversion method even when the current effect of Tt on Dt com-
pared to the lagged impact is dominant, for example βo = 0.9, β1 = 0.01. Reverse
regression bias makes the reconstruction less accurate.

Table (1) shows results from Monte Carlo experiments of reconstructions for
seven combinations of (βo, β1) . For each experiment, the true standard deviation
of Tt is exactly 1 for the sample period. The top row in the table indicates the
magnitude of the coefficients of the response function. The share of the variance
in temperature coming from a signal instead of noise (εt) increases as we go to the
right in the table, as indicated by the implicit variance of εt.
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It should be emphasized that the deviations of the variance of reconstructions
in the inversion approach are not due to a problem with the method, but are an in-
evitable consequence of the low explanatory power of climate in the determination
of tree growth. Consistent with Figure (2), the table indicates that the MAD of the
reconstructions using the inverse regression methods is consistently smaller than
that of the reverse regression method and converges towards zero as the response
function becomes less noisy. The reverse regression reconstructions never become
unbiased. The mean of the estimated standard deviation (S.D.) of reconstruction
is biased upwards for the inversion approach and biased downwards for the reverse
regression approach. When the explanatory power of Tt is 0.99 as in the case with
(βo, β1) equal to (0.8, 0.59) or (0.9, 0.42), the means of the estimated standard de-

viation for the reconstructions from reverse regression (T̂ rt ) are 0.85 and 0.92 while

the reconstructions from the inversion method (T̂ it ) have an estimated standard
deviation of 1.04 and 1.03 respectively, which is close to the true value of 1. The
bias in variance reduces dramatically going from left to right as the explanatory
power of the Tt’s increases (as var(εt) goes to 0.01) and almost disappears for the
inverse regression method, but not so for the reverse regression method. The latter
technique’s bias, given a valid response function with high explanatory power, is
predominantly due to misspecification of the transfer function - not to the error
in Dt.

Since MAD is only one measure of performance, we calculate the mean “Re-
duction of Error” (RE) and the “Coefficient of Efficiency”, which range from −∞
to 1. RE is zero if the reconstruction is set equal to the mean of the target series
over the calibration interval, while the CE is zero if the reconstruction is set equal
to the mean of the target series over the validation interval. Both of the measures
are standard in the dendroclimatology literature and described in detail in Cook
et al. (1994) and National Research Council (2006). For each statistic, a value of
zero indicates that the reconstruction method is equivalent in performance to us-
ing the in sample mean. Values less than zero indicate that the mean outperforms
the reconstruction. Values greater than zero and less than one indicate the supe-
rior predictive ability of the model relative to simply using the mean. As Table
(1) indicates, the inverse regression method for both statistics always outperforms
the mean. For inverse regression, both RE and CE come close to the theoretical
maximum of 1 for the last two low noise scenarios. The reverse regression method
has negative values for both statistics for the first two scenarios. Further, for the
reverse regression method neither the RE nor the CE is greater than those of the
inverse regression method for any of the considered coefficients.

The bottom six rows of Table (1) show supporting Monte Carlo evidence of our
theoretical claim from the previous section, that the reverse regression method will
overestimate the order of the autoregressive process. In each experiment above we
have generated Tt as an independent process over time, which implies that Tt is
AR(0). For each iteration and reconstruction method, we use the Schwarz criterion
to render a consistent estimate of the order of the process. (Note that using the
inconsistent AIC would further increase the estimated order of the autoregressive
process.) As above, the success of each method in correctly identifying the order
of the autoregressive process depends on the explanatory power of the series Tt in
determining Dt. When explanatory power is very low, neither method is successful
at correctly identifying the correct order. When the variances of errors, εt, are less
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than 0.2, the reconstructions by inversion of the response function are successfully
identified as independent processes over time in most of the cases. For the response
function, which contains the least degree of noise (β0 = 0.9; β1 = 0.42), the inverse
regression method based reconstructions are correctly identified as following an
AR(0) process for 100% of the reconstructions, while the autoregressive order of
the reverse regression method based reconstructions is identified as higher than
AR(5) 100% of the time.

The reconstructions by reverse regression yield consistently erroneous, positive
orders of the autoregressive process. This is one likely reason that Seater (1993)
identified the underlying process of the reconstructed temperature series of Briffa
et al. (1992) as AR(17). The second Monte Carlo (II) uses parameters whose ratio
is equal to that of those estimated in Briffa et al. (1992) and shows that the recon-
structions from reverse regression indicate an AR(5) or higher order AR process
in 14% of the cases even though the true process is AR(0). von Storch et al. (2004)
have pointed out this underestimation of the variability of the climate reconstruc-
tions, looking at studies using principal components of the proxy data series as
predictors of the instrumental temperature series. Above we formalize this notion
and show an additional methodological issue contributing to the underestimate of
variability in the reconstruction.

4.2 Estimation and Reconstruction: Briffa et al. (1992)

To provide a concrete example of the consequences from reconstructing a climate
index using a proxy index, we estimate the response function using the 1876-
1974 temperature and latewood density index used by Briffa et al. (1992), and
reconstruct the climate series for a 1524 year time span. For the reverse regression
we estimate the first model given in Table (2) in Briffa et al. (1992) using one lead
of the tree ring and maximum latewood density index via least squares, which
corresponds to equation (7) above. For the inverse regression method we only use
the maximum latewood density index with one lag, which is significant in the
response function using Newey and West (1994) standard errors. The fit of the
response function in this example is very good for this given data set (similar to
the 4th and 5th example in Table (1)). The results from the two reconstruction
methods are summarized in Table (3). Figure 3 plots the actual temperature and
reconstructions using both methods.

Matching the results from the Monte Carlo experiment, the estimated standard
deviation of the reconstructions from the inversion method is 1.45 times the true
standard deviation, thus overestimating the climate variability. The reconstruction
via the inversion method results in a reconstruction with an autoregressive process
matching the order of original series - AR(0). On the other hand, estimation of the
reverse regression underestimates the standard deviation by 29%, resulting in an
overly smooth series. It follows an AR(3) process, not matching the order of the
actual temperature series. These results provide supporting evidence of what von
Storch et al. (2004) noted - namely that traditional reconstruction methods result
in an overly smooth historical climate record. Here we show that this excessive
smoothing is a consequence of the statistical estimation issues pointed out above
as well as the misspecification of the transfer function. We further conducted
calibration/verification exercise using the year 1925-1976 as a calibration period



14 Maximilian Auffhammer et al.

and the year 1876-1924 as a verification period. As Table (2) shows, the inverse
regression method outperforms the reverse regression method using the commonly
used RE and CE measures of fit that we have also employed earlier.

5 Conclusion

In this paper we investigate the adequacy of a simple, intuitive but traditional
reconstruction method of past climate fluctuations from paleoclimatic data series
such as tree-ring index series, ice cores, pollen series, assuming that the response
function relating the chosen paleoclimatic index to the climate measure is correctly
specified and the temperature index is free of measurement error. We identify two
problems with the traditional approaches, one with the estimation methodology,
the other with the specification of the estimated relationship between climate and
the paleoclimatic index. We demonstrate that reconstruction from the correctly
specified inversion of the estimated response function is preferred, from a statistical
point of view, to direct estimation of a transfer function relating the climate index
to a paleoclimatic index.

We show that the specification of the transfer function should be determined
by the specification of the response function. Whether leads and/or lags of the
environmental factors should be included as predictors in the transfer function
depends on the relative size of the parameters of the response function. Whether
or not the transfer function is correctly specified, direct estimation of the transfer
function is a classic example of the reverse regression problem, which causes the
estimators to be biased in large as well as small samples.

Further, we have explored the underlying causes of the issue raised by von
Storch et al. (2004): The estimated degree of variation of reconstructed climate,
which is central to the climate change debate, is underestimated by the standard
approach as measured by the standard deviation of the reconstructions. Further,
the method proposed in this study improves the accuracy of a climate reconstruc-
tion found in the literature (Briffa et al. 1992) on average by an order of 3 or 4,
measured by mean absolute deviations, in our Monte Carlo experiment.

In addition, the misspecification of the transfer function results in overesti-
mation of the order of the autoregressive process of the reconstructed series. The
reconstructions by the direct estimation of a misspecified transfer function yield
consistently erroneous and positive orders of the autoregressive process in Monte
Carlo experiments and the empirical example. As a result of misspecification of
the transfer function, and the bias induced by the reverse regression estimation
procedure, fluctuations of the reconstructed climate series are underestimated. In-
ferences from such series regarding the existence of abnormalities in particular
periods, including the most recent period, are unreliable.

The quality of the paleoclimatic data series, the specification of the response
relation, and its explanatory power, are of course crucial issues in reconstruction
of the history of climate change. What we show here is that even if the data are
excellent, and the response relation is correctly specified and has high explanatory
power, direct estimation of a correctly or incorrectly specified transfer function can
produce highly unreliable information about the history of climate. The inversion
of the estimated response function is the preferred method for reconstruction of
climate history. It generally generates more reliable information, given the quality
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of the available data and the specification of the response relation. It will inevitably
tend to overstate the variation of climate due to the errors in the noise component
in the underlying response function, but the bias is small when the underlying
response function has high explanatory power. If the underlying response function
is noisy, neither method provides reconstructions of sufficient quality.

This article mainly attempts to illustrate the problem with reverse regression
in the paleoclimate reconstruction, but it by no means indicates that inverse re-
gression is the optimal method. Indeed, the Bayesian hierarchical modeling (BHM)
framework has many advantages except that it often requires heavy computation.
The BHM typically sets the response function at one level, and then it can in-
clude other information from other sources, such as the dynamics of the physical
process, climate models or energy balance equations (Li et al. 2010) (Tingley and
Huybers 2010). In addition, Tingley and Li (2012) showed that the inverse re-
gression becomes unstable when the response function is noisy, while the BHM
can potentially ameliorate this problem by introducing only a weakly informative
prior. Recently, Tingley et al. (2012) provides a detailed review of the paleoclimate
reconstruction and discusses the modeling of each hierarchy and challenges when
using a BHM model for the reconstruction.
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Table 1: Summary of Monte Carlo Experiment

β0 β1 β0 β1 β0 β1 β0 β1
0.4 0.1 0.4 0.2 0.6 0.2 0.8 0.2

var(εt) 0.83 0.8 0.6 0.32
Inv. Rev. Inv. Rev. Inv. Rev. Inv. Rev.

MAD 0.10 0.66 0.12 0.65 0.04 0.50 0.02 0.30
SD 2.84 0.47 3.13 0.49 1.75 0.67 1.26 0.85
RE 0.15 -3.39 0.12 -2.79 0.35 -0.45 0.66 0.50
CE 0.15 -3.42 0.12 -2.81 0.35 -0.46 0.66 0.49

AR(0) 19% 18% 5% 2% 15% 1% 53% 0%
AR(1) 80% 46% 87% 23% 78% 59% 47% 95%
AR(2) 1% 20% 9% 31% 7% 30% 1% 5%
AR(3) 0% 9% 0% 16% 0% 7% 0% 0%
AR(4) 0% 4% 0% 14% 0% 3% 0% 0%

AR(5+) 0% 3% 0% 14% 0% 0% 0% 0%

β0 β1 β0 β1 β0 β1
0.9 0.1 0.8 0.59 0.9 0.42

var(e) 0.18 0.0119 0.0136
Inv. Rev. Inv. Rev. Inv. Rev.

MAD 0.01 0.16 0.03 0.44 0.00 0.34
SD 1.13 0.94 1.04 0.85 1.03 0.92
RE 0.82 0.78 0.96 0.57 0.98 0.78
CE 0.82 0.78 0.96 0.56 0.98 0.78

AR(0) 93% 28% 100% 0% 100% 0%
AR(1) 7% 72% 0% 0% 0% 0%
AR(2) 0% 0% 0% 0% 0% 0%
AR(3) 0% 0% 0% 0% 0% 20%
AR(4) 0% 0% 0% 0% 0% 80%

AR(5+) 0% 0% 0% 100% 0% 0%

Notes: This table shows the results from the Monte Carlo experiment discussed in section
4.1 We use a time series of length T=1,000 with 1,000 iterations. Inv. stands for the Inverse
Regression Method and Rev stands for the Reverse Regression Method. The coefficients β0
and β1 correspond to the estimated parameters in Briffa et al. (1992). The εt is chosen to
give the temperature series a variance of 1. MAD the mean absolute devation as defined in
section 4.1. SD is the standard deviation of the reconstructions, which if unbiased should be
equal to 1. RE and CE are measure of fit as given in Mann and Rutherford (2002). The AR(
) rows indicate which order autoregressive process is chosen for the reconstructions based on
the Schwarz Information Criterion.
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Table 2: Comparison of the reconstructions for the in sample period using the Fennoscandia
sample used by Briffa et al., 1992

Actual Reconstruction by Reconstruction by
Temperature Inversion Method Reverse Regression

Average 0 0 0
Standard deviation 1.01 1.46 0.71

Order of AR process 0 0 3
Correlation with Temperature 1 0.71 0.72

RE** – 0.52 0.2
CE** – 0.52 0.21

Notes: The series were normalized to have mean zero and standard deviation 1 for the entire
sample. We used the years 1925-1976 as a calibration period and 1876-1924 as the verification
period. RE and CE are calculated using the formulas given in Mann and Rutherford (2002)
with N=101.
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Fig. 1: Difference of the Mean Annual Reconstruction from the True Temperature (βo = 0.68;
β1 = 0.10)
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Notes: The top panel plots the difference of the mean reconstruction from the true Tt for
each year in the sample period using the reverse regression method. The bottom panel plots
the difference of the mean reconstruction from the true Tt for each year in the sample period
using the inverse regression method. The scale for the bottom panel is compressed.
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Fig. 2: Mean Absolute Deviations of Reconstructions
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Notes: The three panels above show the MAD performance of the two methods for three
different levels of βo across the valid range of β1. Reconstruction either by inversion of the es-
timated response function or by estimation of the transfer function improves as the explanatory
power of the climate variable in the response function increases.
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Fig. 3: Reconstruction of the Observed Temperature Record in Briffa et al (1992)
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Notes: The top panel plots the the actual temperature data from Briffa et al. (1992), which are
normalized to mean 0 and standard deviation 1. The middle panel displays the reconstructions
from the reverse regression method. The bottom panel displays the reconstructions from the
inverse regression method.


