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Abstract—This paper estimates a price elasticity using a flexible demand
specification on survey data where prices are observed with errors and are
correlated with household characteristics. The demand function is mod-
eled as a polynomial/trigonometric in the unobserved true prices, and the
form of the dependency between the observed prices and household
characteristics is modeled parametrically. I identify and estimate the
model by adapting the approach of Hausmann et al. (1991) and Schennach
(2004). The flexible specifications allow us to observe that price elastic-
ities vary across the price distribution, something missed in previous work
using linear demand specifications.

I. Introduction

THIS paper contributes to the literature on the estimation
of demand responses using spatial variation in prices

derived from household survey data. The measure of prices
obtained from such data is typically noisy and obtained in a
manner so that the measurement error in prices is usually
correlated with measurement error in quantities purchased.
The object of interest in these exercises and in this paper is
a price elasticity of demand to be estimated flexibly from a
single cross-section of household data when prices are
measured with error. Deaton (1997) estimates elasticities
accounting for measurement error by imposing a linear
structure on the outcome equation, while Deaton and Ng
(1998) estimate elasticities completely nonparametrically
but do not deal with the measurement error problem.

This paper serves as a midway point between the previ-
ous papers by estimating the elasticities using flexible (al-
though still parametric) functional forms while also ac-
counting for the mismeasured prices. The approach is an
extrapolation of the ideas contained in Hausmann et al.
(1991; henceforth HNIP) and the extensions in Schennach
(2004) but incorporating the clustered feature of the data
and the nonclassical nature of the measurement error.

Dividing expenditure by quantity provides a measure of
price that is referred to in the literature as the unit value and
is available on a household basis for households that make
positive purchases. The basic idea is to use these unit values
to estimate demand responses. However, unit values are not
prices since they reflect, in part at least, the quality choices
made by households (so that, for instance, richer households
report higher unit values for the same aggregate commodity
than do poorer households) and also measurement errors in
expenditures or quantities. Deaton (1987, 1988) develops a
framework for dealing with both problems in which the
regression function for demand is modeled linearly. His

results suggest that the quality issue is of smaller magnitude
than the measurement error problem. Deaton and Ng (1998)
calculate the price elasticity nonparametrically using the
method of Hardle and Stoker (1989) but do not control for
the measurement error problem.

This paper offers a more general specification for the
regression function for quantity while accounting for mea-
surement error in a manner essentially analogous to HNIP
and Schennach (2004), but at the cost of ignoring the quality
issue. I model the regression function of interest as a
polynomial in the (unobserved) price as well as a polyno-
mial in expenditure to account for possible nonlinearities in
income effects. In addition, I experiment with Fourier flex-
ible functional forms for the demand function for whose
estimation I need a suitable extension to the HNIP approach.

The paper is organized as follows: Section II describes
the data at hand and outlines the various demand specifica-
tions. Section III discusses the identification of these spec-
ifications. Section IV uses the identification results from the
previous section to outline an estimation strategy and de-
rives the large sample properties of the proposed estimators.
I then discuss the performance of the estimators in the
context of Monte Carlo experiments and implement them on
the data set at hand in section VI. The conclusion follows.

II. Data and Model

Before defining the model, it is instructive to describe the
data since their key features will motivate the model. I use
data from India’s National Sample Survey (50th round,
1993–1994) for rural Maharashtra, which has information
on 4,440 households from 445 villages. Households are
sampled using a two-stage stratified sample design. In the
first stage, C clusters (villages) are chosen, and in the
second, H households are sampled from the selected clus-
ters. The data record household characteristics (expenditure
and age-sex-caste demographics, which I denote by xch), as
well as total expenditure on wheat and total quantity pur-
chased (qch) by each household. The commodity of interest
is wheat,1 a diet staple in the region, which is purchased by
most households (about 82% in the survey), and its average
budget share in total expenditure is about 3%.

The sampling design of the survey provides observations
on several households within one cluster. I assume that the
price of wheat is fixed within a cluster but varies exog-
enously across clusters, so if prices were observed, I could
identify the demand parameters, which are assumed con-
stant within and between clusters, from the between-cluster
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variation in prices. I am implicitly assuming that each
village constitutes a different market, that prices vary ex-
ogenously across markets, and that this variation is inde-
pendent of other village characteristics that influence house-
hold demand. The exogenous variation in prices can be
based on the geographical dispersion of the sampled clusters
across space, coupled with high transportation costs. These
assumptions, while extremely stringent, are common to all
exercises in estimating demand responses from survey data
where prices are derived in the fashion described above, and
their plausibility needs to be weighed against the advantage
of having a rich data set with substantial price variation,
usually hard to come by in a time series context in devel-
oping countries (see Deaton, 1987, 1988).

In addition, I assume that within clusters, household
quantities are a small enough fraction of aggregate demand
so that I can ignore simultaneity between prices and quan-
tities in the regression specification (note that this disaggre-
gation argument is not unproblematic; see Kennan, 1989).
Finally, I abstract from further complex survey design issues
and assume that across clusters, the observations are inde-
pendent and identically distributed (i.i.d.).

The model is specified by two equations for each house-
hold: one for quantities and one for unit values (the latter is
referred to as the measurement error equation). Following
Deaton (1988), I parameterize the error equation as

uch ! zc " x!ch"2 " #ch, (1)

where uch is the log of the unit value for household h in
cluster c; zc is the (log of the) unobserved cluster price; xch

is a vector of household characteristics, including expendi-
ture, which is allowed to enter nonlinearly; and #ch is the
household-specific measurement error. The logarithmic
transformation is adopted for convenience and, if "2 $ 0,
could be interpreted as implying that the error term #ch is
expressed (approximately) as a fraction deviation from the
true price. In subsequent work, I plan to experiment with
untransformed unit values so that the errors will be treated
as being in levels.

There is no theoretical justification for this particular
parameterization, and it differs from the typical (also usu-
ally atheoretical) statement of classical measurement error
because of the presence of the household characteristics.
Their linearity in (1) is purely pragmatic, but clearly their
presence itself is important because I need to account for
household heterogeneity in some fashion (since richer
households on average report higher unit values).

From (1) I define the purged unit value vch as

vch ! uch # x!ch"2
(2)

! zc " #ch,

which states that the residual from the best linear prediction
of the unit value uch given household characteristics xch can
be expressed as the sum of two random variables: a village-

specific term ( zc) that I interpret as the true (unobserved)
price and a household-specific term (#ch) that is interpreted
as measurement error.

I specify three possible demand equations. The first (D1)
expresses quantities purchased as a polynomial function of
the unobserved price

ln qch ! "
j$0

K

%j&zc'
j " x!ch"1 " fc " εch. (D1)

qch is the quantity demanded by household h in cluster c,
and fc is a cluster-level effect independent of both the prices
and the demographics xch. K is the order of the polynomial
in the unobserved price variable,2 and for K ( 1 the model
is not linear in the measurement error #ch so that standard
instrumental variable approaches are no longer feasible. The
independence of the cluster-level effect and prices is quite
strong but necessary for identification. A possible scenario is
that prices vary across villages solely due to transportation
costs and that these variations are independent of any other
village-level characteristics that affect household demand.

The second specification (D2) follows Deaton and Muell-
bauer (1980),

wch ! "
j$0

K

%j& zc'
j " x!ch"1 " fc " εch, (D2)

where wch is the budget share of wheat for the household.
The final specification (D3) follows the suggestion of

Gallant (1981) and Eubank and Speckman (1990), and
the regression function is modeled using a Fourier ex-
pansion by adding trigonometric functions to the qua-
dratic terms. The simple Fourier flexible form estimated
in this paper is

wch ! "
j$0

K

%j& zc'
j " x!ch"1 " "

m$1

M

%K)m sin &mzc'

" %!K)m cos &mzc' " fc " εch.
(D3)

The justification for this specification arises from both the
observation that exclusively polynomial expansions are of-
ten sensitive to outliers and the general arguments that a
combination of polynomial and trigonometric terms often
has desirable approximation properties (see, e.g., Gallant,
1981, for an exposition on the advantages of such a speci-
fication).

In all three specifications, the error term εch is indepen-
dent of the random vector { zc, xch} and is independent
across households. However, it is allowed to be correlated

2 In principle, one could formulate the problem still more flexibly by
letting K in all the specifications depend on the sample size. This
generalization and its implications for the empirical work are left for
future research.
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with #ch for a given household, and this is most likely the
case since measurement errors in quantities translate quite
directly into measurement errors in unit values as the latter
is obtained by dividing expenditure by the former. We
assume that (εch, #ch) have mean 0 and are i.i.d. across
households and that all required higher moments exist.
These assumptions are all stated formally below.

All three demand specifications attempt to account for the
effect of household characteristics on unit values. In all of
them, the difference between unit value and its expectation
conditional on household variables x is assumed to be
representable as a sum of two independent random vari-
ables:

vh # !&vh#xh' ! z " #h.

In principle, one could obtain E(v#x) nonparametrically if
the dimension of x is not too large. For the data we use,
graphical displays suggest that this conditional expectation
is approximately linear when x is (the log of) expenditure
and household size, so we may not lose too much by directly
modeling the conditional expectation as linear in x.

III. Identification

Throughout, we assume (for expositional ease) that the
number of households in each village is fixed and that the
econometrician has available an i.i.d. sample from the
distribution of the random vector {qh, uh, xh}h$1

H , where h
indexes households. We will also discuss identification
assuming that the values of the parameters ("1, "2) are
known so that the purged unit value vch is identified. This is
without loss of generality, since under the assumptions
stated now, these objects are consistently estimable by a
variety of standard techniques. For instance, under assump-
tion 1, the parameter vector ("1, "2) is identified:

Assumption 1. The error terms (εch, #ch) have 0 mean
and are uncorrelated with the household demographics xch!

for all households h! ! {1, . . . H}, and the matrix ¥h$1
H

!{ ẍchẍ!ch} has full rank.3

A. Identification of Specification D1 and D2

The basic idea for identification in the first two specifi-
cations is straightforward, and we outline the basic idea
before stating the result. Note that if prices were observed
for each village (so that the econometrician observed an
i.i.d. sample from the random vector {{qh, uh, xh}h$1

H , z})
and were independent of the village effect, the parameter
vector % in each of (D1) and (D2) would be identified (e.g.,
as the probability limit of the pooled OLS estimates) since

% ! !& z̃cKz̃!cK'
*1!$ 1

H
"

h$1

H

z̃cKych% , (3)

where z̃K $ (1, z, z2, . . . , zK)! where yh $ ln qh * x!h"1

for the first specification and yh $ wh * x!h"1 for the second
specification. In the case where z is not observed, % would
still be identified if we could identify the outer product
matrix !( z̃Kz̃!K) and the vector !( 1

H ¥h$1
H z̃Kyh). The basic

idea behind identification is that these objects are identified
as long as enough structure is placed on the error terms in
the measurement error and demand specifications. This is
the strategy first outlined in Hausmann et al. (1991), and we
modify the argument to account for the clustered nature of
the data and the nonclassical nature of the measurement
error.

Identification of !( z̃Kz̃!K). To illustrate, as long as the
measurement error term #h has zero expectation, !(vch) $
!( zc) so that the mean of the price vector is identified. Next,
as long as the error terms are independent across households
and independent of prices, the second moment !( zc

2) will be
identified since for h + h!!(vchvch!) $ !( zc

2). In fact, as
we show below, for j , H, the jth uncentered moment of z
is equal to !(vch1

, . . . , vchj
) for hs + hk for all (s, k) !

{1, . . . , j}. We first record this result.

Assumption 2. !(#ch) $ 0 for all h and (#ch, #ch!) are
independent of each other for all h + h! and #ch is
independent of zc .

Lemma 1. Suppose that !( zc
j ) exists and that j $ H and

that "2 is known. Then, under assumption 2, !( zc
j ) is

identified. In particular, !(vch1
, . . . , vchj

) $ !( zc
j ). In fact,

we can consider all (j
H) distinct subsets of size j from the set

{v1, . . . , vH} so that

!& zc
j ' ! !& 1

&j
H'

"
h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

vch1vch2 · · · vchj' .

Since the data set for this paper typically contains about
10 households per village and the maximum order of poly-
nomials considered is quintic, the condition j $ H is
satisfied for the empirical application, and so identification
for the second-moment matrix !( z̃Kz̃K!) for the application
will follow from lemma 1.

If, however, the computation of the second-moment ma-
trix involves the calculation of -j . !( zj) for j ( H, then
we need to strengthen assumption 2 and require that the
higher moments of the measurement error #ch exist. The -j

are then identified recursively using the formulas below for
q $ 0, 1, 2, . . .

3 The double dots above a variable ẍch denote that each element in it is
expressed as a deviation from the corresponding cluster mean.
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!&v1
q)1v2v3 · · · vH' ! "

l$0

q $q
l % -H)l!&#q*l'

" "
l$0

q $q
l % !&#q*l)1'-H)l*1

(4)

E&v1
q)1' ! "

l$0

q)1 $q " 1
l % -l!&#q)1*l'.

Assumption 3. !(#ch) $ 0 for all h and all higher
moments of the error !(#ch

l ) and of the prices, -j . !( zl) in
the formulas above exist. In addition, (#ch, #ch!) are inde-
pendent of each other for all h + h!, and #ch is independent
of zc.

Under assumption 3, we can identify !( zj) for arbitrary
j ! " and j ( H recursively. At each step q, the second
equation in (4) uses the previous information to identify
!(#q)1), and this moment is used in the first equation in (4)
to identify the moment -H)q. There are potentially several
different ways to identify the -j, and we make no claims for
the optimality of the procedure outlined above. An alterna-
tive strategy that places somewhat fewer assumptions on the
higher moments of the measurement error is outlined in the
appendix.

Identification of !( z̃Ky). Identification of the inner
product !( zsy) also follows using the same arguments as in
the previous section. To illustrate, consider the directly
identified object !(vh1

yh2
) for h1 + h2. As long as the error

terms for household h1 are independent of the error terms
for the other households and also independent of the cluster-
level variables ( fc, zc),4 then simple calculations show that
!(vch1

ych2
) $ !( zcych2

) for households h1 + h2. This result
is recorded here for future reference.

Assumption 4. Suppose that the error terms (εch, #ch)
have mean zero, are independent across households, and are
independent of ( zc, fc).

Lemma 2. Under assumption 4 and for j , H, /j .
!( zjych) is identified and is equal to !(vch1

, . . . , vchj
ychj)1

)
where hs + hk for (s, k) ! {1, . . . , j ) 1}

For the data set at hand, this is an adequate identification
strategy since the highest cross-moment needed is !( ychzc

5),
and there are about ten households per cluster.

Identification of %. If the prices are independent of the
village effect in the demand equation, the parameter vector

% is equal to the expression (3), each of whose two com-
ponent terms are identified by the arguments above. We
record the result here for the empirically relevant case 2K $
H. The identification result for the case where 2K ( H will
require further assumptions on the second and higher mo-
ments of the error terms (as in assumption 3).

Lemma 3. Suppose that zc # fc, the moments on the
right-hand side of (3) exist, and assumptions 1 and 4 hold
and 2K $ H. Then the parameter vector % is identified.

B. Identification of Specification (D3)

Following the lines of the previous argument (and assum-
ing for simplicity that K $ 2 and M $ 1), under assump-
tion 1 and if zc # fc, the parameter of interest,

% ! &!& f& zc' f& zc'!''
*1!& f& zc' ych',

where

f& z' ! & z̃2, sin &z', cos &z''!. (5)

The only new objects in these moment matrices are !( f( z)
(sin ( z), cos ( z))), and !((sin z, cos z)!y). In a more
general setting, Schennach (2004) identifies these moments
by identifying the characteristic function of the unobserved
variable z and then applying Parseval’s identity. This ap-
proach can be adapted to the panel data set context in much
the same way as the Hausmann et al. (1991) approach: by
exploiting the independence of the error terms across house-
holds within a cluster.

For expositional ease, assume that there are only two
households per cluster. First, since we assume " is identi-
fied, then the unit values {v1, v2} are also identified, and
therefore their joint characteristic function (!(exp(i(t1v1 )
t2v2)))) is identified. Substituting into the characteristic
function using (2) and using the fact that #h # z, we obtain

!&exp&i&t1v1 " t2v2''' ! !&exp&iz&t1

" t2'''!&exp &it1#11''!&exp&it2#2''.

Taking logs on both sides, we obtain

0v1,v2&t1, t2' ! 0z&t1 " t2' " 0#1&t1' " 0#2&t2',

where 0x(s) denotes the log of the characteristic function of
the random variable x evaluated at the point s. Taking the
derivative on both sides of the equation above with respect
to t1 and evaluating the derivative function at t1 $ 0 and
using the fact that the mean of #2 is zero, we obtain

d
dt1

0v1,v2&t1, t2'(
t1$0

!
d

dt1
0Z&t1 " t2'(

t1$0

. (6)

The last expression is the derivative of the log of the
characteristic function of z evaluated at t2. Define the

4 In fact, the independence between the village-level effect fc and εch is
not necessary, but is imposed for ease of exposition and to maintain
symmetry between the assumptions on the different error terms.
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left-hand side (which is identified) to be 1(t2). We can then
use the fundamental theorem of calculus and obtain the
characteristic function of z, 2(s) as

2&s' ! exp&0z&s'' ! exp$)
0

s

1&t2'dt2%
! exp$)

0

s !3iv1 exp&it2v2'4

!3exp&it2v2'4
dt2%,

assuming enough smoothness to interchange the differenti-
ation and integration operations. Once the characteristic
function 2 is known, !(q( z)) for any (measurable) function
q! can be calculated most cleanly using Parseval’s identity,

!&q& z'' !
1

25 )
*6

6

7&q!, *s'2&s'ds, (7)

where 7(q!, s) $ 8 q(t)exp(its)dt is the generalized
Fourier transform (GFT) of the function q. The GFTs of
polynomial and trigonometric functions (and their products)
are relatively easy to calculate and are given by the Dirac
delta function (denoted by 9(s)) and its derivatives evalu-
ated at a finite set of points.5 To illustrate,

!&sin &z'' !
1

25 ) 7&sin !, *s'2&s'ds

!
i

25
&2&1' # 2&*1''.

A complete list of the relevant GFTs is available on request.
For all the functions q! considered here, the integral in (7)
reduces to the evaluation of the characteristic function 2 and
its derivatives at a finite set of points. Parallel to the
argument above, the expectations !( yfj( z)) for an element
fj( z) of the vector f( z) are similarly identified, and the
formula is

!& yfj& z'' !
*i
25 )

*6

6

7& f!, *s'2&s'
!&i exp&isv2'y1'

!&exp&isv2''
ds.

(8)

As in the preceding argument, this calculation simplifies
because of the relatively simple form of the GFTs of the
functions being considered.

IV. Estimation and Large Sample Distribution

The estimation strategy follows the identification argu-
ment closely. We first construct the sample versions of the
population parameters, which for convenience we define as

: ! &;-j<j$1
2K , ;/j<j$1

K '. (9)

We first discuss the estimation of the -j parameters (the
discussion for estimation of /j is similar). First, if we knew
the value of "2, an unbiased and consistent estimator of
!( zc

j ) would be the statistic -̃j, given by

-̃j !
1
C

"
c$1

C & 1
&j

H'
"

h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

vch1vch2 · · · vchj'.

However, since in practice "2 is estimated (see below for
more details), we construct v̂ch $ uch * xch!"̂2, and the
estimator is given by

-̂j !
1
C

"
c$1

C & 1
&j

H'
"

h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

v̂ch1v̂ch2 · · · v̂chj'.

(10)

Similar arguments lead to

/̂j !
1
C

"
c$1

C & 1
&j

H'
"

h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

v̂ch1v̂ch2 · · · v̂chj*1ŷchj',
(11)

where ŷch $ ln qch * x!ch"̂2 for the first specification and
ŷch $ wch * x!ch"̂2 for the second specification. In an
additional appendix, we outline the asymptotic properties of
the estimator :̂ $ ({-̂j}j$1

2K , {/̂j}j$1
K ) and show that under a

standard set of conditions (e.g., as contained in section 7 of
Newey & McFadden, 1994),

*C &:̂ # :'f !&0, V:'.

For the first two specifications, the object of interest % is a
smooth function only of :6 given by

q&: ' ! +
-0 -1 ! -K

-1 ! ! -K)1

! ! ! !
-K ! ! -2K

,
*1

+
/0

!
!
/K

,
so that we can estimate % by

%̂ ! q&:̂'.
5 See, e.g., Lighthill (1996) for a relatively formal treatment of these

objects (also see Schennach, 2004). 6 Where -0 $ 1 and /0 $ !( ych).
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An application of the delta method therefore suffices to
yield the asymptotic normality of the estimator %̂ with
asymptotic variance given by

V% ! q!&: 'V:&q!&: ''T.

For the third specification, in addition to :, we also need
to estimate the moments !( z̃2(sin z, cos z)), !((sin z, cos
z)!(sin z, cos z)), and !((sin z, cos z)!y). Following the
identification argument, we estimate the characteristic func-
tion of the price variable zc and then use Parseval’s identity
to compute the required moments. Recall that the charac-
teristic function was given by 2(t) $ exp(80

t 1(s)ds),
where the function 1 is defined in (6) and is estimated by

1̂&s' !
¥c$1

C &v̂c1 exp&isv̂c2''

¥c$1
C 3exp&isv̂c2'4

,

where I have assumed for simplicity that each cluster has
only two households. In practice, we can compute the
numerator and the denominator by taking all possible (2

H)
distinct combinations of the households to form 1̂. Finally,
the characteristic function,

2̂&t' ! exp$)
0

t

1̂&s'ds%,

is obtained by solving an ordinary differential equation
(with the boundary condition that 2(0) $ 1). With 2̂ in
hand, we can estimate any element !(qjk( z)) of the outer
product !( f( z) f( z)!) (recall that f( z) was defined in (5)) as

!3qjk& z'4ˆ !
1

25 )
*6

6

7&qjk!, *s'2̂&s'ds. (12)

Since these functions qjk are much simpler than the kinds
considered by Schennach (2004), I can compute 7(qjk!,
*s) analytically rather than adopt the numerical integration
routine suggested in her paper. As discussed in the identi-
fication section, evaluating the integral !(qjk( z)) reduces to
evaluating the derivatives of the characteristic function 2 at
a finite number of points, so that in the sample, we compute
the expectations by evaluating the sample counterparts of
these derivatives. This results in a considerable simplifica-
tion of the problem. To illustrate, the object !(sin z) can be
estimated by (2̂(1) ) 2̂(*1))(i/ 2).

We can estimate !( yfj( z)) in a similar fashion, and the
formula is given by (see Schennach, 2004, for more details)

!& yfj& z''ˆ

!
*i
25 )

*6

6

7& f&t', t, *s'2̂&s'
¥c$1

C &i exp&isvc2'yc1'

¥c$1
C &exp&isvc2''

ds.

(13)

Here again, because of the polynomial-trigonometric choice
of functions, the Fourier transforms take on particularly
simple forms (see the appendix), and the problem reduces in
the same manner as above. In fact, all of the estimates of
elements of the matrices in the normal equations can be
expressed as functions of the characteristic function and its
derivatives evaluated at a finite set of points.

Given estimates of the moments above, we can form
estimates of the matrices !( f( z) f( z)!) and !( f( z) y) and
estimate the parameter of interest by

%̂ ! !& f&z' f̂&z''!*1!& f&z'̂y', (14)

where the elements of !& f&z' f̂&z''! are given by (12) and of

!& f&z'̂y' by (13). Each element of these matrices is a function
of the estimated characteristic function and its derivatives
evaluated at a finite set of points, that is, -=2̂k&s0'

=sk .
k$0

4

for s0 !

{*CK,M, *1, . . . , 1, CK,M}.7 Further, it is possible to
express these derivatives themselves as functions of (2̂(s0),
1̂(s0), 1̂!(s0), . . . , 1̂>(s0)) for s0 ! {*2, *1, . . . , 1,
2}. Therefore, in order to characterize the limiting distri-
bution of %̂ above, it is enough to characterize the limiting
distribution of these estimated quantities. The details for the
asymptotic theory are relegated to the appendix, and the
conclusion is

*C &%̂ # %'f N&0, V'.

Although %̂ converges at the regular rate and has a limiting
normal distribution, it is difficult to construct a consistent
estimator of the variance matrix V because we do not have
an explicit formula for it. One reason is that %̂ is a compli-
cated multistep estimator that depends on the preliminary
steps in a complicated way. In addition, the limiting distri-
bution of some of the preliminary estimates themselves
involves variances that are hard to estimate (these distribu-
tions are functionals of gaussian processes). We will there-

7 As the notation suggests, the constant CK,M depends on K and M. For
instance, with K $ 2 and M $ 1, CK,M $ 2 while for K $ 1 and M $
2, CK,M $ 4.

TABLE 1.—MONTE CARLO RESULTS

(500 SIMULATIONS, CLUSTERS $ 300, HH $ 3)

Error Correlation *.25 *.5 *.75

Method Deaton HNIP Deaton HNIP Deaton HNIP
Mean (true % $ 5) 4.976587 5.003137 4.977571 5.004216 4.974316 5.000928
s.d. .04987 .05058 .05777 .05854 .0524 .052953
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fore use the bootstrap. Although proving that the bootstrap
works in this model is beyond the scope of this paper, the
smoothness of the estimated parameters in the underlying
distribution and the (?C) normality result suggest that the
bootstrapped standard errors should be consistent.8

V. Monte Carlo Results

The estimators themselves are fairly straightforward. The
Monte Carlo (MC) illustrations serve to illustrate two
points: the first is to offer a set of controlled comparisons
between the estimators derived in this paper and the esti-
mator proposed in Deaton (1988) in the linear context, and
the second is to assess the possible effects of misspecifica-
tion.

A. MC for First Specification

The results of the MC simulations for the comparisons
between the alternative estimators for specification 1 are
given in tables 1 and 2. Both estimators have comparable
mean squared errors (MSE) in the linear case, which we
would expect to be the case since both are essentially
correcting the pooled OLS estimates for the plim bias terms
that are present due to measurement error. As robustness
checks, varying the correlation between measurement errors
or the signal-to-noise ratio of the mismeasured prices does
not affect either estimator asymmetrically, and both perform
well in these situations.

When these estimators are applied to data where the
regression function is quadratic in prices, both are inconsis-
tent, and there is no discernible pattern to be obtained from
varying the correlation or signal-to-noise ratios on the
distribution of the estimators. The distribution of the MC

estimators is wildly off from the truth in both cases. The
correctly specified estimator, which takes into account the
quadratic form of the regression function, is well behaved,
as we would expect from the previous section.

Both estimators stem from the same spirit of correcting
OLS estimates for measurement error, and one might per-
haps be able to extend directly the first method to account
for nonlinearities in the regression function as well.

B. MC for Third Specification

The primary purpose of the MC results for the third
specification was to provide a check of the ?C convergence
result (proved in the appendix) for the parameter coeffi-
cients. The true model is given by

y ! 1 " 2z " 4z2 " 3 sin &z' " 2 cos &z' " ε,

where ε is standard normal and the z are unobserved.
Instead, we observe

vj ! z " #j

for j $ 1, . . . , H where # has the Laplace distribution (and
is independent of the ε although that is not required). I also
report results for the case where # has the normal distribu-
tion. The MSE are presented in table 3. Encouragingly,
MSE approximately halves when I double the sample size.
However, in some of the cases, the MSE falls by much more
than would be justified by a central limit theorem argument.

VI. Empirical Results

The theory sketched above is a simplification of the data
at hand in several respects. The first is that I do not observe
positive quantities (and, hence, any unit values) for a subset
of households, and therefore there is a question of how
exactly to include such households in the analysis. In the
first specification, since I work with a log-log specification,

8 Note that strictly speaking this is not enough. See Abadie and Imbens
(2008) or counterexample 1 in Bickel and Freedman (1981) for instances
of ?n consistent and asymptotically normal estimators for which the
bootstrap is invalid (at least without further assumptions).

TABLE 2.—MONTE CARLO RESULTS

(500 SIMULATIONS, C $ 300)

Signal

Noise .1 .5 .9

Estimator Deaton HNIP Deaton HNIP Deaton HNIP
Mean (% $ 5) 4.974557 5.000918 4.974139 5.000687 4.975247 5.002013
s.d. .054903 .0555145 .051808 .0525022 .0533261 .0537687

TABLE 3.—MEAN SQUARE ERRORS FOR THE MONTE CARLO SIMULATIONS

(300 SIMULATIONS)

Laplace Errors Normal Errors

N $ 1,000 N $ 2,000 MSE2000/MSE1000 N $ 1,000 N $ 2,000 MSE2000/MSE1000

292.67 117.7 .402 131.58 55.445 .42138
127.26 12.137 .095 43.515 17.395 .39975
35.303 14.108 .399 19.6973 6.9773 .3584

270.52 25.638 .094 92.082 36.084 .39186
334.46 137.58 .411 141.68 63.561 .44863
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I must perforce drop any households with no recorded
quantities. In the second and third specifications, I include
households purchasing no wheat and set their unit value
equal to the average unit value for the village they live in.
This is a pragmatic imputation with no compelling justifi-
cation. Second, for this analysis, I am ignoring cross-price
effects, although a more complete analysis should include
those as well. Third, the data are sampled using a two-stage
stratified design, and I ignore weighting issues and treat the
sample as if it were i.i.d. across clusters. Fourth, there are
households that do not purchase any wheat but consume
home-grown quantities, and one must take a position on
how to treat such observations. Following the literature
(Deaton, 1988), I have used the National Sample Survey
(NSS) imputed harvest price of domestic production and
calculated the unit value for such households from this
imputation.

I work with a sample of 4,440 households from rural
Maharashtra, of which 82% had consumed either market-
bought or home-grown wheat in the past thirty days. The
3,641 households that consumed some wheat form the
sample for my first specification. Of the remaining house-
holds, 759 lived in villages where at least one other house-
hold had consumed some wheat; these are added to the
sample for my second and third specifications. The remain-
ing 40 households lived in villages where no one consumed
any wheat and are excluded from the analysis. Average total
monthly consumption was Rs1,134 per household, and on
average 3.4% of total household expenditure was spent on
wheat for households that purchased a positive quantity. The
unit values show that households paid an average of Rs5.79
per kilo for wheat. I have not as yet found an independent
source for assessing whether these unit values are in fact
close to the prevailing prices in rural Maharashtra during the
survey, but the assumption for the paper is that these unit
values do provide a measure of price, albeit a noisy one.

Table 4 highlights the spatial and temporal variation in
unit values. Each column reports the F-statistic from a
regression of the (log of the) unit values on a set of
regressors. The regressors in the first column are the 5 NSS
region dummies, and in the second column dummies for the
four quarters (July–September, October–December, Janu-
ary–March, April–June). The F-statistics are all significant
at conventional levels and provide some evidence of con-

siderable price variation across space and time in our data.
Finally, the last column reports the F-statistic from a re-
gression onto a set of village dummies. Since our identifi-
cation assumption is one of identifying the demand function
through between-village variation in price, it is encouraging
to see that the dummies together are jointly significant in the
regression. Finally, table 5 presents the coefficients from a
regression on region and subround dummies.

Table 6 shows the results from the first-stage estimation
for the various specifications. For each specification, the
first stage estimates the parameters {"1, "2} using a standard
fixed-effect model where x $ {age-sex variables, log(total
expenditure), religion, caste status, household size, labor
type}. As might be expected, household size and total
expenditure turn out to be important regressors. The pattern
of results is consistent with Engel’s law in the sense that
although richer households purchase more wheat (the sec-
ond row of coefficients), the share of wheat in the total
budget declines as households get richer (the second set of
coefficients). Of course, the poorest households do not
purchase any wheat, but the result is robust to their inclusion
as well (the final row of coefficients). This does suggest,
however, that the relationship between budget share of
wheat and total expenditure is not necessarily monotonic.

Figure 1 depicts the relationship between purged (log)
quantities and unit values using local polynomial kernel
regression. The function is not clearly linear, and the object
of the first specification is to evaluate the implications of
approximating the true regression function (recall that the
displayed regression line is not of interest since it is the
regression on mismeasured prices) solely with a polynomial
specification.

Following the strategy outlined in the identification sec-
tion above, I next construct sample moments using the
purged unit values and quantities to obtain estimates for the
unobserved moments. For instance, to estimate the mean of
the unobserved price, I take the average of the observed unit
values across all households. Higher moments are estimated
by taking all possible combinations of households that are
consistent for the moment of interest and taking their

TABLE 4.—F-STATISTICS FROM A REGRESSION OF THE LOG OF UNIT VALUES

RHS Variables Region Subround
Region @
Subround Village Dummies

F-statistics 49.83 23.65 18.96 8.6

TABLE 5.—REGIONAL AND SEASONAL DIFFERENCES IN UNIT VALUES

depvar R2 R3 R4 R4 R5 SR2 SR3 SR4

ln(unit value) *.017 *.19 *.159 *.15 *.09 .031 .087 .097
s.e. (.015) (.018) (.016) (.016) (.02) (.012) (.013) (.013)

TABLE 6.—RESULTS FROM FIRST-STAGE REGRESSIONS

depvar ln(expend) ln(hhsize) Hindu
Schedule

Caste

ln(unit value) .073 (.008) *.044 (.01) *.010 (.04) *.003 (.014)
ln(quantity)

(n $ 3,641) .354 (.04) .257 (.05) *.03 (.17) .025 (.067)
Budget share

(n $ 4,400) *.013 (.001) .012 (.002) .0001 (.008) *.006 (.002)

Note: Regressors include log(total expenditure), log(household size), and sociodemographic charac-
teristics.
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weighted average (where the weights are given by the
relative fraction of observations for a particular sample
moment). For instance in calculating E[ z2], we use all (2

H)
possible choices of i + j and compute EFc

vivj. Since some
villages may not have H households, the product vcivcj may
not exist for all clusters, and the average is, naturally, over
all nonmissing values.

The first specification does not use households that report
zero quantities. This leaves a total of 3,641 households
spread across 440 villages. I estimate a series of possible
models starting with the linear model. In this case, I can
compare my estimates with estimates obtained from the
method outlined in Deaton (1997). The results are displayed
in table 7. The point estimates for the elasticity are not too
dissimilar in both cases, with the Deaton method slightly
larger than the linear specification of our method. The most
important difference is in the bootstrapped standard errors,
which are much larger under the newer method, so that the
corresponding confidence intervals are also much larger (I
report the 2.5th and 97.5th percentile based on 1,000 boot-
strapped resamples at the cluster level for the second stage
of estimation).

For models with higher-order polynomials,

=

= ln p
!3q#ln p4 (15)

is a function of the price, and one has to take a position on
where to evaluate these derivatives. I calculate the sample
version of the average derivative,

!$ =

= ln p
!3q#ln p4%,

and report results for the derivative evaluated at the 25th
and 75th percentile of the purged unit value distribution. I
estimate polynomials of order up to five, although the
magnitude of the bootstrapped standard errors for specifi-
cations higher than the quadratic calls into question any
conclusions that one could derive from the higher-order
polynomial models. Specifically, in these models, we cannot
reject the null that the observed elasticity (evaluated at the
candidate values of the price variable) is not significantly
different from 0.

The specifications that are nonlinear in price seem to
provide better approximations to the regression function
graphed above, in that the elasticities are lower at the lower
end of the distribution and higher at the higher end of the
distribution. Note that the plot above is the regression
function for quantities conditional on unit values (mismea-
sured prices), so its usefulness as a guide for the regression
function of quantities on the true prices may be limited.

FIGURE 1.—LOCALLY QUADRATIC REGRESSION OF PURGED QUANTITIES ON

PURGED UNIT VALUES USING A GAUSSIAN KERNEL WITH A BANDWIDTH OF .2
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Note: The vertical lines represent the 5th and 95th percentiles, respectively.

TABLE 7.—AVERAGE PRICE ELASTICITIES FOR DIFFERENT MODELS UNDER SPECIFICATION 1

Model 25th Percentile Average Derivative 75th Percentile

Deaton — *1.438 (*1.84, *1.35) —
Linear *1.575 (*2.13, *1.22) *1.575 (*2.13, *1.22) *1.575 (*2.13, *1.22)
Quadratic *.5607 (*1.30, .32) *1.628 (*2.21, *1.26) *2.393 (*3.59, *1.84)
Cubic *.6626 (*7.82, 3.52) *1.723 (*4.24, .52) *2.536 (*10.47, 4.86)
Quartic *.7785 (*6.86, 5.56) *1.769 (*5.01, .45) *2.555 (*13.01, 6.56)
Quintic *.4848 (*7.39, 4.20) *1.531 (*3.16, *.23) *2.141 (*8.71, 4.03)

Note: All confidence intervals are based on 1,000 bootstrapped replications.

FIGURE 2.—LOCALLY QUADRATIC REGRESSION OF PURGED BUDGET SHARE

ON PURGED UNIT VALUES USING A GAUSSIAN KERNEL WITH A

BANDWIDTH OF .2
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Figure 2 presents the locally weighted quadratic regres-
sion of purged budget shares on purged unit values. The
lines correspond to the 5th and 95th percentiles of the
distribution for purged unit values. Again, the relationship
looks very similar to the relationship in figure 1. Specifica-
tions 2 and 3 attempt to model the relationship between
these purged budget shares and the true (unobserved) prices
using a polynomial model and a Fourier flexible form
approach.

The results from the polynomial models are presented in
table 8. The elasticity estimated in these models (apart from
the linear model) is a function of the budget share and the
price. I fix the budget share equal to the average budget
share for the sample and evaluate the elasticity for two
different values of the price variable (the 25th and the 75th
percentile of the purged unit values) as well as the average
derivative calculation. As might be suggested by figure 2,
the elasticities are lower at the 25th percentile of the purged
unit values and higher when evaluated at the 75th percentile
of the unit value distribution. The average elasticity (eval-
uated at the mean of the purged unit value distribution) lies
between these two. All the models in table 8 exhibit this
pattern. However, note that the standard errors become
extremely large after the cubic specification, and indeed for
all but one of the quartic and quintic specifications, we
cannot reject the null of zero elasticity. The large standard
errors for the higher degree specifications reflect the impre-
cision with which the higher moments are estimated (as
reflected in their bootstrapped standard errors which are not
reported here). Finally, the results from the last specification
(setting K $ 2 and M $ 2) are displayed in table 9. The
point estimates are broadly similar to the ones from the
previous specification, and here again the elasticities are
lower at the lower end of the price distribution relative to
the higher end.

Looking across all the specifications, we see that the
results across various nonlinear models are broadly consis-
tent with each other. While there is no compelling reason to
believe any of the regression functions is correctly specified,
the relative stability of the elasticity estimates across spec-

ifications is encouraging and suggests that misspecification
is not driving the results. Overall, the elasticities derived
from the budget share specification are more precisely
estimated (as expected) relative to the log-quantity specifi-
cation. While no specification clearly dominates the others,
the quadratic choice for all three specifications is relatively
straightforward to implement and provides broadly consis-
tent and reasonably precise estimates of the price elastici-
ties.

For comparison, we provide results from estimating a
specification without accounting for measurement error.
We implement a quadratic version of the first specifica-
tion. The results are presented in table 10 and should be
compared against the third row of results in table 7. Both
the point estimates and the standard errors for the naive
estimator differ from those of the estimator that accounts
for measurement error. Two differences emerge. First, the
estimates without correction suggest much less sampling
uncertainty than the results in table 7, which is reason-
able since the former do not account for measurement
error in any way. If the proposed model in the paper is
correct, the naive estimator seems to significantly under-
estimate sampling uncertainty. Second, the point esti-
mates are quite different as well and suggest much
smaller differences in the elasticities across the price
distribution. The differences in this case seem to stem
from the fact that the estimated higher moments of the
purged price distribution are quite different for the two
models. If specification 1 is correct, then the naive
estimator’s computation of these moments will be incon-
sistent since it does not purge the measurement error.

To conclude, the most substantive point, and one that
comes across in all the specifications, is the evidence that
price elasticity does vary across the price distribution. Es-
timated price elasticities are generally lower (in absolute
magnitude) in the lower tails of the distribution and are
generally larger in the upper tails, something that a linear
specification of the demand equation would miss.

TABLE 8.—ELASTICITIES ESTIMATED FROM SPECIFICATION 2

Model 25th Percentile Average Derivative 75th Percentile

Deaton — *1.465 (*2.15, *1.13) —
Linear *1.463 (*1.95, *.89) *1.463 (*1.95, *.88) *1.463 (*1.95, *.89)
Quadratic *.965 (*1.58, *.25) *1.424 (*1.89, *.89) *1.765 (*2.35, *1.21)
Cubic *.988 (*1.84, .175) *1.445 (*2.20, *.69) *1.803 (*3.30, *.85)
Quartic 11.94 (*13.19, 6.74) *.089 (*2.43, .68) *10.10 (*6.32, 4.66)
Quintic *1.28 (*9.31, 8.78) *1.50 (*2.44, *.48) *1.532 (*6.48, 4.65)

Note: Elasticities are evaluated at the average budget share for three different points in the unit value distribution. All confidence intervals based on 1,000 bootstrapped replications.

TABLE 9.—ELASTICITIES ESTIMATED FROM SPECIFICATION 3

25th Percentile Average Derivative 75th Percentile

*1.3724 (*2.09, *.43) *.8806 (*1.41, *.28) *1.5943 (*3.40, *.88)

Note: Elasticities are evaluated at the average budget share for three different points in the unit value
distribution. All confidence intervals based on 200 bootstrapped replications.

TABLE 10.—ELASTICITIES ESTIMATED WITHOUT ACCOUNTING FOR

MEASUREMENT ERROR

25th Percentile Average Derivative 75th Percentile

*1.4732
(*1.48, *1.46)

*1.7614
(*1.768, *1.75)

*1.9492
(*1.95, *1.942)

Note: Elasticities are evaluated at the average budget share for three different points in the unit value
distribution.
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VII. Conclusion

This paper estimates price elasticities by modeling flex-
ibly the regression function for quantities demanded (and
budget shares) as a function of price while at the same time
accounting for the effect of measurement error in prices that
is fundamentally nonclassical in nature. In such a setting,
standard instrumental variable techniques are no longer
available. We adapt the strategy suggested by Hausmann et
al. (1991) and Schennach (2004) to account for the nonclas-
sical nature of the measurement error and exploit the clus-
tered nature of the data to achieve identification of the price
elasticity. We next propose an estimator based on the iden-
tification strategy and discuss its large sample properties.
Next, we discuss its performance in MC simulations and
finally apply it to estimate a price elasticity using data from
rural India. Kernel regressions from the data suggest poten-
tial evidence of nonlinearity in the true conditional expec-
tation, and we estimate a series of alternative specifications
to account for this. The estimator confirms the initial pre-
sumption, and for all the specifications considered, the
estimated price elasticities are somewhat lower at the bot-
tom of the price distribution and higher at the top.

Two potential further directions for research are to in-
clude and estimate cross-price effects and also to consider
estimation in the case where the number of polynomial (or
trigonometric) terms increases with the sample size.
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APPENDIX

A1 Identification

Proof of lemma 1. Consider the directly identified quantity (for ha + hb
for all (a, b) ! {1, . . . , j},

!&vch1 · · · vchj' ! !&& zc " #ch1' · · · & zc " #chj''

! !$ zc
j " zc

j*1 "
h1$1

j

#ch1 " · · ·

" zc "
h1$1...

2 "
hj*1$hj*2)1

j

&#ch1 · · · #chj*1' " &#ch1 · · · #chj'%
! !& zc

j ',

where the last equality follows from the independence between zc and #ch
and the fact that !(#ch) $ 0 (assumption 2). Note that for this result alone,
mean independence rather than independence will suffice. Further, we can
consider all ( j

H) distinct subsets of size j from the set {v1, . . . , vH}, each
of whose expectation will be equal to that of !( zc

j ) by the same argument
as above so that

!& zc
j ' ! !& 1

&j
H' "

h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

vch1vch2 · · · vchj' .

Proof of lemma 2. As in lemma 1, consider j ) 1 distinct households
and the directly identified quantity !(vch1

, . . . , vchj
ychj)1

). Rewriting this,
we obtain

!$ychj)1$ zc
j " zc

j*1 "
h1$1

j

#ch1 " · · ·

" zc "
h1$1...

2 "
hj*1$hj*2)1

j

&#ch1 · · · #chj*1' " &#ch1 · · · #chj'%%
! !& zc

j ychj)1' " !$ychjzc
j*1 "

h1$1

j

#ch1%
" !$ychj "

h1$1...

2 "
hj*1$hj*2)1

j

&#ch1 · · · #chj*1'%
" !& ychj&#ch1 · · · #chj''

! !& zc
j ychj)1',

where the last equality follows from the fact that all the terms are of the
form

!& ychj)1g& zc'r&#ch1, . . . , #chj''
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for appropriately specified functions g! and r!. This expectation is
identically 0 since

!& ychj)1g& zc'r&#ch1, . . . , #vhj'' ! !&& f& zc' " fc

" εchj)1' g& zc'r&#ch1, . . . , #vhj''

! !& f& zc' g& zc'r&#ch1, . . . , #vhj''

" !& fcg& zc'r&#ch1, . . . , #chj'' " !&εchj)1r&#ch1, . . . , #chj''

! 0,

where the first two terms are 0 since (#chs
)s$1

j is independent of ( zc, fc)
and !(r(#ch1

, . . . , #chj
)) $ 0 and the last term is 0 since εchj)1

is
independent of (#chs

)s$1
j (all of which follow from assumption 4).

Proof of lemma 3. Under assumption 1, the parameters " $ ("1, "2) are
identified, and therefore { ych, vch} are identified. Next, under the assump-
tions stated in the lemma, % can be obtained as

% ! !& z̃cKz̃!cK'
*1!$ 1

H "
h$1

H

z̃cKych% ,

and each element on the right-hand side is identified by the previous two
lemmas.

A2 Large Sample Theory

The asymptotic theory for the first two specifications is straightforward
and can be derived using standard results from two-step estimation theory
(e.g., section 6 of Newey & McFadden, 1994). In the first step, the
elements of " can be consistently estimated (up to a constant) using the
sample version of the moment conditions9

!/¥h$1
H &ẅch # ẍ!ch"1' ẍch

¥h$1
H &üch # ẍ!ch"1' ẍch0 ! 0.

Under the assumptions for lemma 3 and that the second moments of the
bivariate vector of the composite error terms (ε̈ch, #̈ch) exist,10 standard
arguments yield

*C &"̂ # "'f !&0, V"',

where

V" ! $ II2 $ "
h$1

H

!& ẍhẍ!h'%*1

M$II2 $ "
h$1

H

!& ẍhẍ!h'%*1

,

where M is the second moment matrix of the moment conditions.
In the second step, we estimate the elements of the parameter :—de-

fined in (9) by (10) and (11). Rewriting these to reflect the dependence on
the first-stage estimates " and writing them out in a common format,

1
C "

c$1

C & 1
&j

H' "
h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

&uch1 # x!ch1"̂2' · · · &uchj # x!chj"̂2''
# -̂j ! 0

1
C "

c$1

C & 1
&j

H' "
h1$1

H*j)1 "
h2$h1)1

H*j)2

· · · "
hj$hj*1

H

&uch1 # x!ch1"̂2' · · · &uchj*1 # x!chj"̂2'

% &wchj # x!chj"̂1''# /̂j ! 0,

where for the first specification, we replace wch with qch. We collect these
2K ) K moment conditions and, denoting them collectively by the
moment, vector g((wch, xch, uch)h$1

H , :̂, "̂). Note that the moment condi-
tions are in fact linear in the second-stage parameters. We can derive the
asymptotic normality of the parameter vector under the following addi-
tional assumption:

Assumption 5. The error terms (ε̈ch, #̈ch) have finite second moments.
The true parameter (:, ") lies in the interior of the Euclidean parameter
space. The moment function g satisfies !, (1 g((wch, xch, uch)h$1

H , :, ")12)
is finite and its first derivative (with respect to (:, ") is uniformly bounded
over a neighborhood of the truth in expectation. The expressions in the
first three displays after equation (16) exist, and the matrix V: is nonsin-
gular.

We can now verify the conditions of theorem 6.1 of Newey and
McFadden (1994) to conclude that

*C &:̂ # :'f !&0, V:',

where

V: ! !&rr!',

where

r ! g&&wch, xch, uch'h$1
H , :, "' " G"m&&wch, xch, uch'h$1

H , "'

and

G" ! !$=g&&wch, xch, uch'h$1
H , :, "'

=" % .

A3 Asymptotic Distribution for the Third Specification

Under the assumptions outlined above, we derive the limiting distri-
bution for the case where K $ 2 and M $ 2. As mentioned in the text,
in order to characterize the limiting distribution of the estimator %̂, it
suffices to characterize the limiting distribution of the vector

&2̂&s0', 1̂&s0', 1̂!&s0', . . . , 1̂>&s0'' (16)

for s0 ! {*4, *1, . . . , 1, 4}. Apart from the first term, each term can
be estimated by its sample average; this is because we can calculate the

derivatives of
!3v1 exp&itv2'4

!3exp&itv2'4
analytically, invoking the appropriate DCT to

allow interchange of integration and differentiation. Each derivative can
then be consistently estimated by the analogy principle, and the analysis
of the limiting distribution is considerably simplified by the fact that both
the numerator and denominator are Lipschitz continuous in t. However,
there is an added complication due to the fact that we do not observe vs
directly. Consider, for instance, the estimator of the parameter

1&t' !
!3v1 exp&itv2'4

!3exp&itv2'4
,

which we estimate by

m&&wch, xch,uch'h$1
H ,"'

9 Note that no claim of optimality for the choice of moment conditions
is being made. It is possible to construct more efficient estimators of the
"’s given the assumptions above; however, this is not pursued here. The
double dots denote that the variations are in deviations from their cluster
means.

10 As usual, the notation f( zc) denotes the flexible specifications of the
price variable in the demand equation.
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1̂&t' !
¥c$1

C &v̂c1 exp&itv̂c2''

¥c$1
C exp&itv̂c2'

!
m̂1&t'
m̂2&t'

.

In order to study the asymptotic properties of this estimator, we first
introduce an easier (but infeasible) estimator:

1̃&t' !

1
C

¥c$1
C vc1 exp&itvc2'

1
C

¥c$1
C exp&itvc2'

!
m̃1&t'
m̃2&t'

.

We will study the limiting properties of ?C (1̂(t) * 1(t)) by looking at

*C &1̂&t' # 1&t'' ! *C &1̂&t' # 1̃&t'' " *C &1̃&t' # 1&t'',

and we will characterize the joint limiting properties of ?C (1̂(t) *
1̃(t)) and ?C (1̃(t) * 1(t)).

Consider first the second term ?C (1̃(t) * 1(t)), and consider first
the convergence properties of the numerator m̃1(t) and the denominator
m̃2(t) individually (we will then apply the delta method to obtain the
limiting properties of 1̃). Standard arguments can be used to show that for
a fixed t, the normalized sample averages ?C (m̃1(t) * m1(t), m̃2(t) *
m2(t))! . (?C (m̃(t) * m(t))) converge in distribution to a bivariate
normal distribution. In fact, they can be used to show that for any finite set
of {t1, . . . , tk}, the corresponding vector ?C ((m̃(t1), . . . , m̃(tk))! *
(m(t1), . . . , m(tk))) converges to a multivariate normal distribution.11 For
any fixed t, then, the asymptotic normality of ?C (1̃(t) * 1(t)) follows
from an application of the delta method and the additional assumption that
m2(t) + 0.

Consider the first term now. We can rewrite the difference between
m̃2(t) and m̃2(t) as

1

*C
"
c$1

C

exp&it&uch2 # x!ch"̂2'' # exp&it&uch2 # x!ch"2'',

and a standard mean-value argument and the results for the first-stage
estimation in (14) will yield that ?C (m̂2(t) * m̃2(t)) will converge
weakly to a normal distribution with zero mean and variance:

!& xch exp&itvch''V"!&x!ch exp&itvch''.

Similar arguments yield the asymptotic normality for ?C (m̂1(t) *
m̃1(t)). The delta method will then yield the asymptotic normality of ?C
(1̂(t) * 1̃(t)) and hence the asymptotic normality of ?C (1̂(t) * 1(t))
(note that the variance of the limiting distribution will require an addi-
tional calculation of the covariance between the two limit distributions).
Similar arguments can be adduced to show the convergence of the
expressions (1̂!(s0), . . . , 1̂>(s0)).

The large sample distribution for the estimator 5̂(s) is somewhat more
complicated since it depends on the value of the estimator 1̂ at all points
[0, s] rather than just a finite number of them. This implies that we need
to consider not just the pointwise convergence of 1̂ (in t) but rather
convergence that is uniform in t in some appropriate sense.

As a first step, we will need to show that ?C (m̂! * m!) when
viewed as stochastic processes (in t for t ! [0, s]) converge weakly. As
before, we consider the decomposition

*C &m̂&t' # m&t'' ! *C &m̂&t' # m̃&t'' " *C &m̃&t' # m&t''. (17)

We first use results from the empirical process literature to study the
limiting properties of the second term. One method is to show that the
function classes (suppressing the dependence on h)

" ! ;t ! 30, s4 : f&vc, t' ! exp;ivct<<

# ! ;t ! 30, s4 : f&v1c, v2c, t' ! v1c exp;iv2ct<<

are Donsker. In particular, it is easy to show that conditions of example
19.7 of van der Vaart (1998) are satisfied since the functions are Lipschitz
in t with appropriate moments existing because of the identification
assumptions. Therefore, we can conclude that the class " above is
Donsker and hence converge weakly to a tight (gaussian) process W1 with
zero mean covariance given by

Cov &W1&s', W1&t'' ! !&exp&i&t " s'vc'' # !&exp&itvc''!&exp&isvc''

(see also Feuerverger & Mureika, 1977, for more details). Similarly, we
can show that the class # is also Donsker and also converges weakly to a
tight gaussian process W2 with zero mean and covariance given by

Cov &W2&s', W2&t'' ! !&v1c
2 exp&i&t " s'v2c''

# !&v1c exp&itv2c''!&v1c exp&isv2c''.

Since showing the Donsker property element by element implies the Donsker
property for the vector of elements, we can conclude that the process ?C
(m̃! * m!) converges weakly to to gaussian limit process X!.

Finally, we deal with the first term in the decomposition (17). Consider
the term

W̃1C&t' ! m̂2&t' # m̃2&t'

!
1

*C
"
c$1

C

exp&it&uch # x!ch"̂2'' # exp&it&uch # x!ch"2''.

Using the previous results, it follows that for any finite collection (ts)s the
vector (W̃1C(ts))s converges to a normal distribution W̃1 with zero mean
and covariance given by

Cov &W̃1&ta', W̃1&tb'' ! !&exp&itavch'x!ch'V"!&exp&itbvch'xch'.

In addition, the space [0, s] with the usual metric is totally bounded. In
order to show a weak convergence result for the process W̃1C!, we need
only to verify that condition ii (asymptotic tightness) of theorem 18.14 of
van der Vaart (1998) holds. To see this, for any given (ε, #), partition [0,

s] into intervals of length no larger than
ε

cA # 1&1 # #'
where A*1 is the

inverse of the standard normal CDF. Then, as C3 6, the probability that
the maximum value of the difference W̃1C(s) * W̃1C(t) over any
partition (i.e., (s, t) are in the same partition) will exceed ε will be less
than #. Therefore, the process is also asymptotically tight, and the weak
convergence result follows. Similar arguments can be used to show that
the process ?C (m̂1! * m̃1!) also converges to a gaussian process.
Therefore, by the continuous mapping theorem, each element of the
vector-valued process ?C (m̂! * m!) converges to a gaussian
process, which we denote by X!.

Having shown that the process ?C (m̂! * m!) converges to a
gaussian process, we next apply the functional delta method to the
function

g& x!' ! )
0

s x1&t'
x2&t'

dt.

This function is Frechet differentiable at m! with continuous derivative
$m! given by

$m&h' ! )
0

s 1
m2&t'

h1&t' #
m1&t'

&m2&t''2 h2&t'dt.

Then we can apply theorem 20.8 of van der Vaart (1998) to conclude that
?C (5̂(s) * 5(s)) converges to the random variable $m(X!), and since
$m! is a continuous linear functional applied to a tight gaussian process,
$m(X!) will be normally distributed (see, e.g., lemma 3.9.8 of van der
Vaart & Wellner, 1996).

11 In fact, we will show below that the process (indexed by t ! [0, s],
?C (m̃! * m!) converges to a gaussian process because that is needed
to study the limiting distribution of 2̂.
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