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1 Model and solutions

For a given firm, production takes the standard CES form Q = F (X) = A
[∑I

i=1 αiX
σ−1
σ

i

]ν σ
σ−1

, with σ > 0

denoting the elasticity of inputs across the I inputs. Returns to scale are captured by ν > 0, with ν = 1

indicating constant returns to scale. The A coefficient captures Hicks-neutral total factor productivity. When

σ → 1, production converges to the Cobb-Douglas form, F (X) = A
[∏I

i=1X
αi
i

]ν
, with

∑I
i=1 αi = 1.

The partial derivatives of F with respect to input Xi are given by

Fi(X) =

νA
(∑I

i=1 αiX
σ−1
σ

i

)ν σ
σ−1−1

αiX
−1/σ
i = νQαiX

−1/σ
i

(∑I
i=1 αiX

σ−1
σ

i

)−1

, σ 6= 1

νA
(∏I

i=1X
αi
i

)ν
αiX

−1
i = νQαiX

−1
i , σ = 1

(1)

while the output elasticities are given by

Fi(X)
X

Q
=

ναiX
(σ−1)/σ
i

(∑I
i=1 αiX

σ−1
σ

i

)−1

, σ 6= 1

ναi , σ = 1

To ease notation in the following, let

Φ =


(∑I

i=1 α
σ
i ω

1−σ
i

) 1
σ−1

, 0 < σ 6= 1∏I
i=1

(
αi
ωi

)αi
, σ = 1

(2)

which can be seen as a firm-specific productivity term reflecting the benefit of access to cheaper inputs. It is also

the inverse of the firm-specific ideal cost index, in the sense that cost-minimizing total cost may be expressed as

C(Q) = Q
1
νA−

1
ν Φ−1, as will be shown below.

1.1 Cost minimization

Let ωi denote the firm-specific price for each factor of production, which the firm treats as exogenous. For a given

level of output Q̄, the firm’s cost minimization problem can be written as

min
{Xi≥0}

I∑
i=1

ωiXi + λ
[
Q̄− F (X)

]
(3)

The first order conditions for cost minimization imply that Fi(X) = λωi ∀i. Taking the ratio of first order

conditions for inputs m and k, we see that in an optimum, the relative factor proportions must satisfy ωk
ωm

=

αk
αm

(
Xm
Xk

)1/σ

for all σ > 0, or re-writing,

Xk = Xm

(
ωm
αm

)σ (
αk
ωk

)σ
, σ > 0 (4)

It follows that cost-minimizing factor shares of total cost are constant for all levels of output and TFP levels,

ωiX
∗
i∑I

i=1 ωiX
∗
i

=
ωi

[
Xm

(
ωm
αm

)σ (
αi
ωi

)σ]
∑I
i=1 ωi

[
Xm

(
ωm
αm

)σ (
αi
ωi

)σ] =
ασi ω

1−σ
i∑I

i=1 α
σ
i ω

1−σ
i

, σ > 0 (5)
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In order to obtain factor demands, we can substitute for Xi in the production constraint:

Q̄ ≡


A

(∑I
i=1 αi

[
Xm

(
ωm
αm

)σ (
αi
ωi

)σ]σ−1
σ

)ν σ
σ−1

= AXν
m

(
ωm
αm

)νσ [∑I
i=1 α

σ
i ω

1−σ
i

]ν σ
σ−1

, 0 < σ 6= 1

A
[∏I

i=1X
αi
m

(
ωm
αm

)αi (
αi
ωi

)αi]ν
= AXν

m

(
ωm
αm

)ν [∏n
i=1

(
αi
ωi

)αi]ν
, σ = 1

(6)

and then solve for X∗m, finding:

X∗m =


(
Q̄
A

) 1
ν
(
αm
ωm

)σ [∑I
i=1 α

σ
i ω

1−σ
i

] σ
1−σ

, 0 < σ 6= 1(
Q̄
A

) 1
ν
(
αm
ωm

)∏I
i=1

(
ωi
αi

)αi
, σ = 1

(7)

or

X∗m = Q
1
νA−

1
ν Φ−σ

(
αm
ωm

)σ
(8)

In order to obtain the minimum cost function, we can substitute the optimal factor demands into the cost

function such that C(Q̄,ω) =
∑n
i=1 ωiX

∗
i , or:

C(Q̄,ω) =


(
Q̄
A

) 1
ν
[∑I

i=1 α
σ
i ω

1−σ
i

] 1
1−σ

, 0 < σ 6= 1(
Q̄
A

) 1
ν ∏I

i=1

(
ωi
αi

)αi
, σ = 1

(9)

or more simply,

C(Q̄,ω) = Q
1
νA−

1
ν Φ−1 (10)

Then the marginal cost of output is given by

c(Q̄,ω) =


1
νA
− 1
ν

(∑I
i=1 α

σ
i ω

1−σ
i

) 1
1−σ

Q̄
1−ν
ν , 0 < σ 6= 1

1
νA
− 1
ν

∏I
i=1

(
ωi
αi

)αi
Q̄

1−ν
ν , σ = 1

(11)

or more simply,

c(Q,ω) =
1

ν
Q

1−ν
ν A−

1
ν Φ−1 (12)

Thus, it can also be seen that the ratio of average cost to marginal cost is equal to the returns to scale, ν.

Finally, recalling that marginal products are given by equation (1), we can now define cost-minimizing marginal

products. It can be shown that

(
I∑
i=1

αiX
σ−1
σ

i

)−1

= A
1
νA−

1
ν

1
σQ−

1
νQ

1
ν

1
σ

X−1
m = Q−

1
νA

1
ν Φσ

(
ωm
αm

)σ
X
− 1
σ

m = Q−
1
ν

1
σA

1
ν

1
σ Φ

(
ωm
αm

)

X
− 1
σ

m

(
I∑
i=1

αiX
σ−1
σ

i

)−1

= A
1
νQ−

1
ν Φ

(
ωm
αm

)
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and thus, cost-minimizing marginal products are given by

Fm = νωmA
1
νQ

ν−1
ν Φ, ∀m (13)

while the cost-minimizing output elasticity is given by

∂Q

∂Xm

X∗m
Q

= νωmA
1
νQ−

1
ν Φ

[
Q

1
νA−

1
ν Φ−σ

(
αm
ωm

)σ]
= νασmω

1−σ
m Φ1−σ (14)

1.2 Profit maximization

Under price-taking behavior, firms take prices as given, i.e., P (Q) = P̄ . Alternatively, we may assume that

firms face downward sloping demand curves. In particular, assume that demand is isoelastic with Q(P ) = θεP−ε

denoting the demand function, and P (Q) = θQ−1/ε the inverse demand function, with ε > 1. Notice we can treat

the firm as choosing Q to maximize profits, with input demands then determined based on cost minimization.

Thus, we write the firm’s maximization problem as

max
Q≥0

P (Q)Q− C(Q) (15)

Let ε(Q) = −(∂Q/∂P )(P/Q), and let µ(Q) = ε(Q)/(ε(Q) − 1). The first order condition requires P (Q) +

(∂P/∂Q)Q ≡ c(Q), or P (Q) [1− 1/ε(Q)] ≡ c(Q), or P (Q) ≡ µ(Q)c(Q).

In the competitive case, ∂P/∂Q = 0 and we have that firms choose Q such that price equals marginal cost.

In the monopolistic case, given isoelastic demand, ε(Q) = ε and µ(Q) = µ = ε/(ε− 1). This implies the familiar

constant markup over marginal cost condition and implicitly defines Q∗ as that value such that P (Q) ≡ µc(Q).

Price-taking. Cost-minimizing marginal costs are given by equation (11). Assuming ν < 1, setting marginal

cost equal to price and solving for quantity, optimal output levels are given by

Q∗ =

A
η (νP )

νη

[(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]νη
, 0 < σ 6= 1

Aη (νP )
νη
[∏I

i=1

(
αi
ωi

)αi]νη
, σ = 1

(16)

or, for all σ > 0,

Q∗ = AηννηP νηΦνη (17)

with η = 1
1−ν . Notice that ν < 1 implies η > 1, with η →∞ as ν → 1. As will be shown below, η can be seen as

the inverse of the share of variable profits in revenue. Thus, as ν → 1 and η →∞, the variable profit share goes

to 0, highlighting that decreasing returns to scale are a necessary condition for positive profits under price-taking.

Also notice that η − 1 = 1
1−ν −

1−ν
1−ν = ν

1−ν = νη, such that νη + 1 = η. Using this fact, we see that optimal

revenue, PQ∗, is given by

Y ∗ =


(AP )ηνη−1

[(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]η−1

, 0 < σ 6= 1

(AP )ηνη−1
[∏I

i=1

(
αi
ωi

)αi]η−1

, σ = 1

(18)

or, for all σ > 0,

Y ∗ = AηP ηνη−1Φη−1 (19)

Input demands may be calculated substituting target output levels from equation (16) into the equation for
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cost-minimizing factor demands in equation (7):

X∗m =


A−

1
ν

(
αm
ωm

)σ [∑I
i=1 α

σ
i ω

1−σ
i

] σ
1−σ

(
Aη (νP )

νη

[(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]νη) 1
ν

, 0 < σ 6= 1

A−
1
ν

(
αm
ωm

) [∏I
i=1

(
ωi
αi

)αi](
Aη (νP )

νη
[∏I

i=1

(
αi
ωi

)αi]νη) 1
ν

, σ = 1

which can be simplified

X∗m =


(
αm
ωm

)σ
A
η−1
ν (νP )

η

[(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]−σ [(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]η
, 0 < σ 6= 1(

αm
ωm

)
A
η−1
ν (νP )

η
[∏I

i=1

(
αi
ωi

)αi]−1 [∏I
i=1

(
αi
ωi

)αi]η
, σ = 1

Observe that η−1 = 1
1−ν −

1−ν
1−ν = ν

1−ν = νη, and (η−1)/ν = η. Recall that ν < 1 implies η > 1, with η →∞
as ν → 1. Then finally,

X∗m =


(
αm
ωm

)σ
(νAP )

η

[(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]η−σ
, 0 < σ 6= 1(

αm
ωm

)
(νAP )

η
[∏I

i=1

(
αi
ωi

)αi]η−1

, σ = 1

(20)

or, for all σ > 0,

X∗m =

(
αm
ωm

)σ
(νAP )

η
Φη−σ (21)

And substituting optimal output levels into the expression for cost-minimizing total costs, equation (9), we

have

C(Q∗) = A−
1
ν

[
AηP η−1νη−1Φνη

] 1
ν Φ−1 = A

η−1
ν P

η−1
ν ν

η−1
ν Φη−1 = A

νη
ν P

νη
ν ν

νη
ν Φη−1

or,

C(Q∗) = AηP ηνηΦη−1 (22)

and observe that total revenue is equal to total cost times 1/ν, i.e., Y ∗ = (1/ν)C∗.

Then variable profits are given by

Π∗var = AηP ηνη−1Φη−1 −AηP ηνηΦη−1 = AηP ηνηΦη−1 (1− ν) (23)

which highlights that variable profits can only be positive for ν < 1. Variable profits can also be written

Π∗var = (1− ν)Y ∗ (24)

Collecting equations in their simplest forms, we have

Q∗ =AηP η−1νη−1Φνη (17 revisited)

Y ∗ =AηP ηνη−1Φη−1 (19 revisited)

X∗m =

(
αm
ωm

)σ
νηAηP ηΦη−σ (21 revisited)
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and

C∗ =AηP ηνηΦη−1 (22 revisited)

Π∗var =AηP ηνη−1Φη−1 (1− ν) (23 revisited)

Monopolistic. In the monopolistic case, firms choose quantities such that the implied price is equal to marginal

cost times a markup. Given isoelastic demand with Q(P ) = θεP−ε, and P (Q) = θQ−1/ε, optimal output levels

are implied by

Q s.t. θQ−1/ε =


µ
νA
− 1
ν

(∑I
i=1 α

σ
i ω

1−σ
i

) 1
1−σ

Q̄
1−ν
ν , 0 < σ 6= 1

µ
νA
− 1
ν

∏I
i=1

(
ωi
αi

)αi
Q̄

1−ν
ν σ = 1

with µ = ε/(ε− 1), which implies that

Q∗ =

A
ηθνη

(
ν
µ

)νη [(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]νη
, 0 < σ 6= 1

Aηθνη
(
ν
µ

)νη [∏I
i=1

(
αi
ωi

)αi]νη
, σ = 1

(25)

or, for all σ > 0,

Q∗ = Aηθνη
(
ν

µ

)νη
Φνη (26)

with η = ε
ν+ε−εν = µ

µ−ν . In general, the sign of η is ambiguous. But as will be shown below, η can once again be

seen as the inverse of the share of variable profits in revenue. Thus, positive profits requires η > 0, or equivalently,

µ > ν. Notice that η > 1, with ν → µ =⇒ η →∞.

In order to obtain optimal revenue, first observe that revenue is equal to Q × P (Q), so that the revenue

function is Y (Q) = θQ
ε−1
ε . Next, observe that η− 1 = µ

µ−ν − 1 = ν
µ−ν = ν

µη. Thus, θθ
ν
µη equals θθη−1 equals θη.

Now substituting Q∗ directly into the revenue function, we have

Y ∗ =


θη(A

1
µ )η

(
ν
µ

)η−1
[(∑I

i=1 α
σ
i ω

1−σ
i

) 1
σ−1

]η−1

, 0 < σ 6= 1

θη(A
1
µ )η

(
ν
µ

)η−1 [∏I
i=1

(
αi
ωi

)αi]η−1

, σ = 1

(27)

or, for all σ > 0,

Y ∗ = θη(A
1
µ )η

(
ν

µ

)η−1

Φη−1 (28)

Moreover, it will be useful to observe that given ε (and θ), we can simply invert the revenue function to infer

quantities:

Q∗ = (Y ∗)
ε
ε−1 θ−

ε
ε−1 (29)

In order to derive a convenient expression for optimal pricing, observe that ν
ε η − 1 = ν

ε+ν−εν − 1 = (ν − 1)η.

Then substituting Q∗ into the inverse demand function, it can be shown that

P ∗ =


A−

1
ε ηθη−νη

(
ν
µ

)− νε η [(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]− νε η
, 0 < σ 6= 1

A−
1
ε ηθη−νη

(
ν
µ

)− νε η [∏I
i=1

(
αi
ωi

)αi]− νε η
, σ = 1

(30)
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or, for all σ > 0,

P ∗ = A−
1
ε ηθη−νη

(
ν

µ

)− νε η
Φ−

ν
ε η (31)

Again, it will be useful to observe that given ε (and θ), we can use the demand function to infer prices from

revenue:

P ∗ = θ
[
(Y ∗)

ε
ε−1 θ−

ε
ε−1
]−1/ε

= (Y ∗)−
1
ε−1 θ

ε
ε−1 (32)

Input demands may be calculated substituting target output levels from equation (25) into the equation for

cost-minimizing factor demands in equation (7):

X∗m =


A−

1
ν

(
αm
ωm

)σ [∑I
i=1 α

σ
i ω

1−σ
i

] σ
1−σ

(
Aηθνη

(
ν
µ

)νη [(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]νη) 1
ν

, 0 < σ 6= 1

A−
1
ν

(
αm
ωm

) [∏I
i=1

(
ωi
αi

)αi](
Aηθνη

(
ν
µ

)νη [∏I
i=1

(
αi
ωi

)αi]νη) 1
ν

, σ = 1

which we can simplify

X∗m =


(
αm
ωm

)σ
A
η−1
ν

(
ν
µ

)η
θη
[(∑I

i=1 α
σ
i ω

1−σ
i

) 1
σ−1

]−σ [(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]η
, 0 < σ 6= 1(

αm
ωm

)
A
η−1
ν

(
ν
µ

)η
θη
[∏I

i=1

(
αi
ωi

)αi]−1 [∏I
i=1

(
αi
ωi

)αi]η
, σ = 1

Recall that η − 1 = µ
µ−ν − 1 = ν

µ−ν = ν
µη, and (η − 1)/ν = 1

µη. Then we can write A
η−1
ν = (A

1
µ )η, and

X∗m =


(
αm
ωm

)σ
θη(A

1
µ )η

(
ν
µ

)η [(∑I
i=1 α

σ
i ω

1−σ
i

) 1
σ−1

]η−σ
, 0 < σ 6= 1(

αm
ωm

)
θη(A

1
µ )η

(
ν
µ

)η [∏I
i=1

(
αi
ωi

)αi]η−1

, σ = 1

(33)

or, for all σ > 0,

X∗m =

(
αm
ωm

)σ
θη(A

1
µ )η

(
ν

µ

)η
Φη−σ (34)

And substituting optimal output levels into the expression for cost-minimizing total costs, equation (9), we

have

C(Q∗) = A−
1
ν

[
Aηθνη

(
ν

µ

)νη
Φνη

] 1
ν

Φ−1 = A
η−1
ν θη

(
ν

µ

)η
Φη−1

or,

C(Q∗) = (A
1
µ )ηθη

(
ν

µ

)η
Φη−1 (35)

and observe the implication that total revenue is equal to total cost times µ/ν, i.e., Y ∗ = (µ/ν)C∗.

Thus, variable profits are given by

Π∗var = Y ∗ − C∗ = (A
1
µ )ηθη

(
ν

µ

)η−1

Φη−1 − (A
1
µ )ηθη

(
ν

µ

)η
Φη−1

or

Π∗var = (A
1
µ )ηθη

(
ν

µ

)η−1

Φη−1

(
1− ν

µ

)
(36)
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which highlights that variable profits can only be positive when µ > ν. (Equivalently, observe that Gorodnichenko

(2012) defines ν/µ as the returns to scale in the revenue function, which will imply a negative profit share in

revenue if it exceeds unity; this is identical to the result here.) Variable profits can also be written

Π∗var =

(
1− ν

µ

)
Y ∗ (37)

Collecting equations in their simplest forms, we have

Q∗ =Aηθνη
(
ν

µ

)νη
Φνη (26 revisited)

Y ∗ =A
η
µ θη

(
ν

µ

)η−1

Φη−1 (28 revisited)

P ∗ =A−
η
ε θη−νη

(
ν

µ

)− νε η
Φ−

ν
ε η (31 revisited)

X∗m =

(
αm
ωm

)σ
A
η
µ θη

(
ν

µ

)η
Φη−σ (34 revisited)

and

C∗ =A
η
µ θη

(
ν

µ

)η
Φη−1 (35 revisited)

Π∗var =A
η
µ θη

(
ν

µ

)η−1

Φη−1

(
1− ν

µ

)
(36 revisited)

1.3 Selected ratios

Factor intensity of revenue. Let Ω∗m = ωiX
∗
i /Y

∗ denote the factor of intensity of revenue of input m.

Letting µ = 1 in the price-taking case, then for both the monopolistic and price-taking cases, for all σ > 0, we

can write

Ω∗m =
ν

µ
ασmω

1−σ
m Φ1−σ =

(
∂Q

∂Xm

X∗m
Q

)
/µ (38)

Notice that Ω∗m is equal to the cost-minimizing output elasticity in equation (14), divided by the markup.

That is, observing a given firm’s factor share of revenue, we also know that firm’s output elasticity up to a scale

factor. Under perfect competition, Ω∗m is exactly the firm’s output elasticity, while in the presence of markups,

this measure of output elasticities will be downward biased. More generally, if we assume or estimate a common

markup across firms within an industry, we can recover firm-specific output elasticities. However, if the common

markup assumption is untrue, then firms with higher than average markups will have downward-biased estimated

output elasticities.

Alternatively, given an assumed or estimated common output elasticity at the industry level, we can recover

firm-specific markups (e.g., De Loecker 2011). However, recall that firm-specific output elasticities (which result

from allowing either firm-specific ωi or αi parameters, or both) are needed to rationalize variation in input mixes

within the same detailed industry. If the common output elasticity assumption is untrue, then firms with higher

than average output elasticities at a given level of factor intensity will have upward-biased markups.
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Factor-output ratio / inverse average revenue product. It follows immediately that for both the

monopolistic and price-taking cases, for all σ > 0, we can write

(y∗m)−1 =
X∗m
Y ∗

=
ν

µ
ασmω

−σ
m Φ1−σ (39)

Taking the derivative with respect to ωm, we see that ∂(X∗m/Y
∗)/∂ωm < 0. Thus, the inverse average revenue

product should be decreasing with wage, or increasing with inverse wage. More intuitively, the implication is that

the average revenue product, like the marginal revenue product, is increasing in the wage rate.
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2 Comparative statics of productivity shocks

2.1 Proportional productivity shock, A′ = A(1− τA)

Consider a productivity shock of the form A′ = A(1− τA). So that replacing A with A′ and differentiating with

respect to τA, we have

∂Q∗/∂τA
Q∗

=
∂Y ∗/∂τA

Y ∗
=
∂X∗m/∂τA

X∗m
=
∂Π∗var/∂τA

Π∗var

= − η

1− τA
(40)

∂Ω∗m/∂τA
Ω∗m

= 0 (41)

with η = 1
1−ν . Recall that ν < 1 implies η > 1, with η →∞ as ν → 1.

Under monopolistic competition, we have

∂Q∗/∂τA
Q∗

= − η

1− τA
(42)

∂P ∗/∂τA
P ∗

=
η/ε

1− τA
(43)

∂Y ∗/∂τA
Y ∗

=
∂X∗m/∂τA

X∗m
=
∂Π∗var/∂τA

Π∗var

= − η/µ

1− τA
(44)

∂Ω∗m/∂τA
Ω∗m

= 0 (45)

with η = ε
ν+ε−εν = µ

µ−ν .

2.2 Additive productivity shock, A′ = A− tA
Consider a productivity shock of the form A′ = A− tA. Under price-taking behavior, we have that

∂Q∗/∂tA
Q∗

=
∂Y ∗/∂tA

Y ∗
=
∂X∗m/∂tA

X∗m
=
∂Π∗var/∂tA

Π∗var

= − η

A− tA
(46)

∂Ω∗m/∂tA
Ω∗m

= 0 (47)

with η = 1
1−ν . Recall that ν < 1 implies η > 1, with η →∞ as ν → 1.

Under monopolistic behavior, we have that

∂Q∗/∂tA
Q∗

= − η

A− tA
(48)

∂P ∗/∂tA
P ∗

=
η/ε

A− tA
(49)

and

∂Y ∗/∂tA
Y ∗

=
∂X∗m/∂tA

X∗m
=
∂Π∗var/∂tA

Π∗var

= − η/µ

A− tA
(50)

∂Ω∗m/∂tA
Ω∗m

= 0 (51)

with η = ε
ν+ε−εν = µ

µ−ν .
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3 Comparative statics of factor price shocks

3.1 Proportional factor price shock, ω′
m = (1 + τm)ωm

Consider a proportional factor price shock, ω′m = (1 + τm)ωm. In this case, we can write

Φ =


[∑I−1

i=1 α
σ
i ω

1−σ
i + ασmω

1−σ
m (1 + τm)1−σ

] 1
σ−1

, 0 < σ 6= 1[∏I
i=1

(
αi
ωi

)αi]
(1 + τm)−αm , σ = 1

(52)

with, for all σ > 0 (and letting µ = 1 under price-taking), we have

∂Φ

∂τm
= −Φασmω

1−σ
m (1 + τm)−σΦ1−σ (53)

Φ−1 ∂Φ

∂τm
= −ασmω1−σ

m (1 + τm)−σΦ1−σ = −µ
ν

(1 + τm)−1Ω∗m (54)

Under price-taking behavior, noting that η − 1 = 1
1−ν −

1−ν
1−ν = ν

1−ν = νη, we have that

∂Q∗/∂τm
Q∗

= νηΦ−1 ∂Φ

∂τm
= −(η − 1)

1

ν

Ω∗m
1 + τm

= −η Ω∗m
1 + τm

and

∂Y ∗/∂τm
Y ∗

=
∂Π∗var/∂τm

Π∗var

= (η − 1)Φ−1 ∂Φ

∂τm
= −(η − 1)

1

ν

Ω∗m
1 + τm

= −η Ω∗m
1 + τm

(55)

∂X∗m/∂τm
X∗m

= (η − σ)Φ−1 ∂Φ

∂τm
− σ

1 + τm
= −(η − σ)

1

ν

Ω∗m
1 + τm

− σ

1 + τm
(56)

∂X∗n/∂τm
X∗n

= (η − σ)Φ−1 ∂Φ

∂τm
= −(η − σ)

1

ν

Ω∗m
1 + τm

(57)

Under monopolistic behavior, we have that

∂Q∗/∂τm
Q∗

= νηΦ−1 ∂Φ

∂τm
= −µη Ω∗m

1 + τm
∂P ∗/∂τm

P ∗ = −ν
ε
ηΦ−1 ∂Φ

∂τm
=

µη

ε

Ω∗m
1 + τm

and

∂Y ∗/∂τm
Y ∗

=
∂Π∗var/∂τm

Π∗var

= (η − 1)Φ−1 ∂Φ

∂τm
= −(η − 1)

µ

ν

Ω∗m
1 + τm

= −η Ω∗m
1 + τm

(58)

∂X∗m/∂τm
X∗m

= (η − σ)Φ−1 ∂Φ

∂τm
− σ

1 + τm
= −(η − σ)

µ

ν

Ω∗m
1 + τm

− σ

1 + τm
(59)

∂X∗n/∂τm
X∗n

= (η − σ)Φ−1 ∂Φ

∂τm
= −(η − σ)

µ

ν

Ω∗m
1 + τm

(60)

Under both price-taking and monopolistic behavior, we have that
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∂Ω∗n/∂τm
Ω∗n

= (1− σ)Φ−1 ∂Φ

∂τm
= −(1− σ)

µ

ν

Ω∗m
1 + τm

(61)

∂Ω∗m/∂τm
Ω∗m

= (1− σ)Φ−1 ∂Φ

∂τm
+

1− σ
1 + τm

= −(1− σ)
µ

ν

Ω∗m
1 + τm

+
1− σ

1 + τm
(62)

3.2 Additive factor price shock, ω′
m = ωm + tm

Consider input price shocks of the form ω′m = ωm + tm. In this case, we can write

Φ =


[∑I−1

i=1 α
σ
i ω

1−σ
i + ασm(ωm + tm)1−σ

] 1
σ−1

, 0 < σ 6= 1[∏I−1
i=1

(
αi
ωi

)αi
ααmm

]
(ωm + tm)−αm , σ = 1

(63)

with, for all σ > 0 (and letting µ = 1 under price-taking), we have

∂Φ

∂tm
= −Φασm(ωm + tm)−σΦ1−σ (64)

Φ−1 ∂Φ

∂tm
= −ασm(ωm + tm)−σΦ1−σ = −µ

ν

X∗m
Y ∗

(65)

Under price-taking behavior, noting that η − 1 = 1
1−ν −

1−ν
1−ν = ν

1−ν = νη, we have that

∂Q∗/∂tm
Q∗

= νηΦ−1 ∂Φ

∂tm
= −(η − 1)

1

ν
(y∗m)−1 = −η(y∗m)−1

and

∂Y ∗/∂tm
Y ∗

=
∂Π∗var/∂tm

Π∗var

= (η − 1)Φ−1 ∂Φ

∂tm
= −(η − 1)

1

ν
(y∗m)−1 = −η(y∗m)−1 (66)

∂X∗m/∂tm
X∗m

= (η − σ)Φ−1 ∂Φ

∂tm
− σ

ωm + τm
= −(η − σ)

1

ν
(y∗m)−1 − σ(ωm + tm)−1 (67)

∂X∗n/∂tm
X∗n

= (η − σ)Φ−1 ∂Φ

∂tm
= −(η − σ)

1

ν
(y∗m)−1 (68)

Under monopolistic behavior, we have that

∂Q∗/∂τm
Q∗ = νηΦ−1 ∂Φ

∂tm
= −µη(y∗m)−1 (69)

∂P ∗/∂τm
P ∗ = −ν

ε
ηΦ−1 ∂Φ

∂tm
=

µη

ε
(y∗m)−1 (70)

and

∂Y ∗/∂tm
Y ∗

=
∂Π∗var/∂tm

Π∗var

= (η − 1)Φ−1 ∂Φ

∂tm
= −(η − 1)

µ

ν
(y∗m)−1 = −η(y∗m)−1 (71)

∂X∗m/∂tm
X∗m

= (η − σ)Φ−1 ∂Φ

∂tm
− σ

ωm + τm
= −(η − σ)

µ

ν
(y∗m)−1 − σ(ωm + tm)−1 (72)

∂X∗n/∂tm
X∗n

= (η − σ)Φ−1 ∂Φ

∂tm
= −(η − σ)

µ

ν
(y∗m)−1 (73)

Under both price-taking and monopolistic behavior, we have that
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∂Ω∗n/∂τm
Ω∗n

= (1− σ)Φ−1 ∂Φ

∂τm
= −(1− σ)

µ

ν
(y∗m)−1 (74)

∂Ω∗m/∂τm
Ω∗m

= (1− σ)Φ−1 ∂Φ

∂τm
+

1− σ
ωm + τm

= −(1− σ)
µ

ν
(y∗m)−1 + (1− σ)(ωm + τm)−1 (75)

13



4 Comparative statics of demand shocks that do not imply changes

in elasticities

4.1 Proportional demand shocks, P ′ = (1− τp)P

In the price-taking case, consider a demand shock of the form P ′ = (1 − τp)P . Under price-taking behavior, we

can write

Y ∗ =AηP η(1− τp)ηνη−1Φη−1

X∗m =

(
αm
ωm

)σ
νηAηP η(1− τp)ηΦη−σ

Thus, we have

∂Q∗/∂τp
Q∗

= − η − 1

1− τp
(76)

∂P/∂τp
P

= − 1

1− τp
(77)

∂Y ∗/∂τp
Y ∗

=
∂X∗m/∂τp
X∗m

=
∂Π∗var/∂τp

Π∗var

= − η

1− τp
(78)

with η = 1
1−ν . Recall that ν < 1 implies η > 1, with η →∞ as ν → 1.

In the monopolistic case, consider a demand shock of the form P ′(Q) = (1− τp)P (Q). Given the assumption

of isoelastic demand, P (Q) = θQ−1/ε, it is straightforward to simply replace every instance of θ with θ(1 − τp),
and differentiate with respect to τp. Thus, we can write

Q∗ =Aη(1− τp)νηθνη
(
ν

µ

)νη
Φνη

Y ∗ =A
η
µ θη(1− τp)η

(
ν

µ

)η−1

Φη−1

P ∗ =A−
η
ε θη−νη(1− τp)η−νη

(
ν

µ

)− νε η
Φ−

ν
ε η

X∗m =

(
αm
ωm

)σ
A
η
µ θη(1− τp)η

(
ν

µ

)η
Φη−σ

Under monopolistic competition, observe that η − νη = η(1− ν), so that we have

∂Q∗/∂τp
Q∗

= − νη

1− τp
(79)

∂P ∗/∂τp
P ∗

= − η

1− τp
(1− ν) (80)

∂Y ∗/∂τp
Y ∗

=
∂X∗m/∂τp
X∗m

=
∂Π∗var/∂τp

Π∗var

= − η

1− τp
(81)

with η = ε
ν+ε−εν = µ

µ−ν . Notice that for ν < 1, (∂P ∗/∂τp)/P
∗ < 0, but the magnitude of the derivative will be

smaller than the impacts on revenue and input demands. Then increasing returns to scale implies that prices will

increase with a demand shock.
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4.2 Additive shock to demand shifters, θ′ = θ − tθ
In the monopolistic case, consider a demand shock of the form θ′ = θ − tθ. Given the assumption of isoelastic

demand, P (Q) = θQ−1/ε, it is straightforward to simply replace every instance of θ with θ− tθ, and differentiate

with respect to tθ. Thus, we can write

Q∗ =Aη(θ − tθ)νη
(
ν

µ

)νη
Φνη

Y ∗ =A
η
µ (θ − tθ)η

(
ν

µ

)η−1

Φη−1

P ∗ =A−
η
ε (θ − tθ)(1−ν)η

(
ν

µ

)− νε η
Φ−

ν
ε η

X∗m =

(
αm
ωm

)σ
A
η
µ (θ − tθ)η

(
ν

µ

)η
Φη−σ

Under monopolistic competition, observe that η − νη = η(1− ν), so that we have

∂Q∗/∂τp
Q∗

= − νη

θ − tθ
(82)

∂P ∗/∂τp
P ∗

= − η

θ − tθ
(1− ν) (83)

∂Y ∗/∂τp
Y ∗

=
∂X∗m/∂τp
X∗m

=
∂Π∗var/∂τp

Π∗var

= − η

θ − tθ
(84)

with η = ε
ν+ε−εν = µ

µ−ν . Notice that for ν < 1, (∂P ∗/∂τp)/P
∗ < 0, but the magnitude of the derivative will be

smaller than the impacts on revenue and input demands. Then increasing returns to scale implies that prices will

increase with a demand shock.
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5 Comparative statics of demand shocks that do imply changes in

elasticities

5.1 Vertical demand distortions of the form P ′(Q) = P (Q)− tp
5.1.1 Implicit solutions.

In the price-taking case, it is straightforward to derive explicit solutions under vertical demand shocks of the form

P ′ = P − tp. One simply substitutes P ′ for P in any of price-taking solutions.

In the monopolistic case, consider a vertical demand shock, P ′(Q) = P (Q) − tp. Profits are given by

(P (Q)− tp)Q − C(Q) = P (Q)Q − (C(Q)− tpQ). Optimal output quantities Q∗ (tp) in the monopolistic case

must be defined implicitly as

Q s.t.


θQ−1/ε − µ

[
1
νA
− 1
ν

(∑I
i=1 α

σ
i ω

1−σ
i

) 1
1−σ

Q
1−ν
ν

]
− µtp = 0 , 0 < σ 6= 1

θQ−1/ε − µ
[

1
νA
− 1
ν

∏I
i=1

(
ωi
αi

)αi
Q

1−ν
ν

]
− µtp = 0 , σ = 1

(85)

By the implicit function theorem, for all σ > 0, it can be shown that

∂Q∗/∂tp|tp=0 = −µνηQ
∗

P ∗
(86)

with

P ∗(tp) = θQ∗ (tp)
− 1
ε − tp (87)

Y ∗(tp) =
[
θQ∗ (tp)

− 1
ε − tp

]
Q∗ (tp) = θQ∗ (tp)

ε−1
ε − tpQ∗ (tp) (88)

X∗m(tp) = [Q∗ (tp)]
1
ν A−

1
ν

(
αm
ωm

)σ
Φ−σ (89)

C∗(tp) = [Q∗ (tp)]
1
ν A−

1
ν Φ−1 (90)

Π∗var(tp) = θQ∗ (tp)
ε−1
ε − tpQ∗ (tp)− [Q∗ (tp)]

1
ν A−

1
ν Φ−1 (91)

5.1.2 Comparative statics.

In the price-taking case, consider a demand shock of the form P ′ = P − tp. Then we have

∂Q∗/∂tp
Q∗

= − η − 1

P − tp
(92)

∂P/∂tp
P

= − 1

P − tp
(93)

∂Y ∗/∂tp
Y ∗

=
∂X∗m/∂tp
X∗m

=
∂Π∗var/∂tp

Π∗var

= − η

P − tp
(94)

with η = 1
1−ν . Recall that ν < 1 implies η > 1, with η →∞ as ν → 1.

In the monopolistic case, consider a vertical demand shock, P ′(Q) = P (Q) − tp. Optimal output quantities

Q∗ (tp) in the monopolistic case must be defined implicitly as in equation (85), as are optimal revenues and input
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demands. Consider revenue from equation (88), taking the derivative with respect to tp, evaluated where tp = 0:

∂Y ∗/∂tp
Y ∗

∣∣∣∣
tp=0

=
1

Y ∗

([
ε− 1

ε
θ (Q∗)

− 1
ε

]
∂Q∗

∂tp
−Q∗

)
=

1

Y ∗

(
1

µ
P (Q)

∂Q∗

∂tp
−Q∗

)
=

1

Y ∗

(
1

µ
P (Q)

[
−µνηQ

∗

P ∗

]
−Q∗

)
= −Q

∗

Y ∗
(νη + 1)

or finally, noting that νη + 1 = εν
ε+ν−εν + ε+ν−εν

ε+ν−εν = ε+ν
ε+ν−εν = η + ν

ε η,

∂Y ∗/∂tp
Y ∗

∣∣∣∣
tp=0

= −νη + 1

P ∗
= − (νη + 1) (Y ∗)

1
ε−1 θ−

ε
ε−1 (95)

Taking the derivative of input demands from equation (89), we have

∂X∗m/∂tp
X∗m

∣∣∣∣
tp=0

=
1

ν
(Q∗)−1

(
−µνηQ

∗

P ∗

)
= −µη

P ∗
= −µη(Y ∗)

1
ε−1 θ−

ε
ε−1 (96)

while the derivative of price in equation (87) is given by

∂P ∗/∂tp
P ∗

∣∣∣∣
tp=0

=
1

P ∗

(
−1

ε

P ∗

Q∗
∂Q

∂tp
− 1

)
=
µνη/ε− 1

P ∗
= (µνη/ε− 1) (Y ∗)

1
ε−1 θ−

ε
ε−1 (97)

Finally, taking the derivative of variable profits in equation (91), it is immediate from the envelope theorem

that

∂Π∗var/∂tp|tp=0 = −Q∗ = −(Y ∗)
ε
ε−1 θ−

ε
ε−1

and

∂Π∗var/∂tp
Π∗var

∣∣∣∣
tp=0

= − (Y ∗)
ε
ε−1 θ−

ε
ε−1(

µ−ν
µ

)
Y ∗

= −θ−
ε
ε−1

(
µ

µ− ν

)
(Y ∗)

1
ε−1 = −η(P ∗)−1 (98)

Collecting the derivatives in their simplest forms for the monopolistic case, we have

∂Q∗/∂tp
Q∗

∣∣∣∣
tp=0

= −µνη
P ∗

(99)

∂P ∗/∂tp
P ∗

∣∣∣∣
tp=0

=
µνη/ε− 1

P ∗
(100)

and

∂Y ∗/∂tp
Y ∗

∣∣∣∣
tp=0

= −νη + 1

P ∗
(101)

∂X∗m/∂tp
X∗m

∣∣∣∣
tp=0

= −µη
P ∗

(102)

∂Π∗var/∂tp
Π∗var

∣∣∣∣
tp=0

= − η

P ∗
(103)
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5.2 Horizontal demand distortions of the form Q′(P ) = Q(P )− tq
5.2.1 Implicit solutions.

In the price-taking case, naturally there cannot be a horizontal demand shock. Thus, I focus only on monopolistic

firms.

Consider horizontal demand distortions of the form Q′(P ) = Q(P ) − tq, with corresponding inverse demand

P ′(Q) = θ(Q+ tq)
−1/ε. Optimal output quantities Q∗(tq) in the monopolistic case are defined implicitly as

Q s.t.


θ(Q+ tq)

− 1
ε − 1

ε θ(Q+ tq)
− 1+ε

ε Q−
[

1
νA
− 1
ν

(∑I
i=1 α

σ
i ω

1−σ
i

) 1
1−σ

Q
1−ν
ν

]
= 0 , 0 < σ 6= 1

θ(Q+ tq)
− 1
ε − 1

ε θ(Q+ tq)
− 1+ε

ε Q−
[

1
νA
− 1
ν

∏I
i=1

(
ωi
αi

)αi
Q

1−ν
ν

]
= 0 , σ = 1

(104)

By the implicit function theorem, for all σ > 0,

∂Q∗/∂tq|tq=0 =
νη/ε

ε− 1
(105)

with

P ∗(tq) = θ (Q∗(tq) + tq)
− 1
ε (106)

Y ∗(tq) = θ (Q∗(tq) + tq)
− 1
ε Q∗(tq) (107)

X∗m(tq) = [Q∗ (tq)]
1
ν A−

1
ν

(
αm
ωm

)σ
Φ−σ (108)

C∗(tq) = [Q∗ (tq)]
1
ν A−

1
ν Φ−1 (109)

Π∗var(tq) = θ (Q∗(tq) + tq)
− 1
ε Q∗(tq)− [Q∗ (tq)]

1
ν A−

1
ν Φ−1 (110)

5.2.2 Comparative statics.

Consider a horizontal demand shock of the form Q′(P ) = Q(P )− tq = θεP−ε− tq, with and corresponding inverse

demand P ′(Q) = θ(Q + tq)
−1/ε. Optimal output quantities Q∗ (tq) in the monopolistic case must be defined

implicitly as in equation (104), as are optimal revenues and input demands.

Consider revenue from equation (107), taking the derivative with respect to tq:

∂Y ∗/∂tq
Y ∗

∣∣∣∣
tq=0

=
1

Y ∗

[
−1

ε

P ∗

Q∗

(
∂Q∗

∂tq
+ 1

)
Q∗ + P ∗

∂Q∗

∂tq

]
=
P ∗

Y ∗

[
−1

ε

(
νη/ε

ε− 1
+ 1

)
+
νη/ε

ε− 1

]
=

1

Q∗

[
−1

ε

νη/ε

ε− 1
− 1

ε
+
νη/ε

ε− 1

]
=

1

Q∗

[
νη/ε

ε− 1

(
−1

ε
+ 1

)
− 1

ε

]
=

1

Q∗

[
νη/ε

ε− 1

(
ε− 1

ε

)
− 1

ε

]
=

1

Q∗

[
νη/ε

(
1

ε

)
− 1

ε

]
=

1

Q∗
1

ε

(νη
ε
− 1
)

=
1

Q∗
1

ε
(ν − 1)η

or finally,
∂Y ∗/∂tq
Y ∗

∣∣∣∣
tq=0

= −(1− ν)
η

ε
(Q∗)−1 = −(1− ν)

η

ε
(Y ∗)−

ε
ε−1 θ

ε
ε−1 (111)

Taking the derivative of input demands from equation (108), we have
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∂X∗m/∂tq
X∗m

∣∣∣∣
tq=0

=
1

X∗

[
1

ν
X∗(Q∗)−1

(
νη/ε

ε− 1

)]
=

η/ε

ε− 1
(Q∗)−1 =

η/ε

ε− 1
(Y ∗)−

ε
ε−1 θ

ε
ε−1 (112)

while the derivative of price in equation (106) is given by

∂Y ∗/∂tq
Y ∗

∣∣∣∣
tq=0

− ∂Q∗/∂tq
Q∗

∣∣∣∣
tq=0

= −(1− ν)
η

ε
(Q∗)−1 − ν

ε− 1

η

ε
(Q∗)−1

= −η
ε

(Q∗)−1 + ν
η

ε
(Q∗)−1 − ν

ε− 1

η

ε
(Q∗)−1

= −η(ε− 1)

ε(ε− 1)
(Q∗)−1 +

νη(ε− 1)

(ε− 1)ε
(Q∗)−1 − ν

ε− 1

η

ε
(Q∗)−1

= −η(ε− 1)

ε(ε− 1)
(Q∗)−1 +

ενη − νη
(ε− 1)ε

(Q∗)−1 − νη

(ε− 1)ε
(Q∗)−1

=
ενη − νη
(ε− 1)ε

(Q∗)−1 +
η − εη
ε(ε− 1)

(Q∗)−1 − νη

(ε− 1)ε
(Q∗)−1

= (εν − ν − ε+ 1− ν)
η

(ε− 1)ε
(Q∗)−1

=

(
− ε
η

+ 1− ν
)

η

(ε− 1)ε
(Q∗)−1

= − 1

ε− 1
(Q∗)−1 +

1− ν
ε− 1

η

ε
(Q∗)−1

such that

∂P ∗/∂tq
P ∗

∣∣∣∣
tq=0

= − 1

ε− 1
(Q∗)−1 +

1− ν
ε− 1

η

ε
(Q∗)−1 (113)

Notice that this derivative is unambiguously negative. When ν > 1, this is obvious. When ν < 1, observe

that the derivative of revenue remains unambiguously negative, while the quantity derivative in equation (105)

is unambiguously positive. Given that the derivative of revenue is the sum of derivative of quantity and prices,

it must be that the derivative of price is negative and greater in absolute value than the quantity derivative, as

well as greater in absolute value than the revenue derivative.

Finally, taking the derivative of variable profits in equation (91), it is immediate from the envelope theorem

that

∂Π∗var/∂tq|tq=0 = −1

ε
P ∗ = −1

ε
(Y ∗)−

1
ε−1 θ

ε
ε−1

and

∂Π∗var/∂tp
Π∗var

∣∣∣∣
tp=0

= −1

ε

(Y ∗)−
1
ε−1 θ

ε
ε−1(

µ−ν
µ

)
Y ∗

= −1

ε
θ

ε
ε−1

(
µ

µ− ν

)
(Y ∗)−

ε
ε−1 = −η

ε
(Q∗)−1 (114)

Collecting the derivatives in their simplest forms for the monopolistic case, we have

∂Q∗/∂tq
Q∗

∣∣∣∣
tq=0

=
ν

ε− 1

η

ε
(Q∗)−1 (115)

∂P ∗/∂tq
P ∗

∣∣∣∣
tq=0

= − 1

ε− 1
(Q∗)−1 +

1− ν
ε− 1

η

ε
(Q∗)−1 (116)
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and

∂Y ∗/∂tq
Y ∗

∣∣∣∣
tq=0

= −(1− ν)
η

ε
(Q∗)−1 (117)

∂X∗m/∂tq
X∗m

∣∣∣∣
tq=0

=
1

ε− 1

η

ε
(Q∗)−1 (118)

∂Π∗var/∂tq
Π∗var

∣∣∣∣
tq=0

= −η
ε

(Q∗)−1 (119)
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