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Abstract

Cities are increasingly adopting road pricing policies to address the congestion and air pollution externalities

associated with urban driving. A first-best road pricing scheme would charge drivers according to the social

damages associated with each trip. In practice, road pricing often takes the form of cordon zones — regions in

the center of a city where road users are charged for entry. These pricing schemes deviate from the first-best

policy in two key ways: First, feasible cordon systems cannot account for all of the heterogeneity in trip-level

externalities. Second, cordon zones leave nearby roads unpriced, allowing for externality leakage. As a result,

it is generally unclear how to optimally set cordon prices. In this paper, I adapt models from public finance to

demonstrate how to optimally set cordon prices in the face of these policy imperfections. Calculating optimal

prices requires information about (i) the heterogeneity in marginal trip-level externalities, (ii) the relationship

between these externalities and individual price-responsiveness, and (iii) the elasticity of substitution between

priced and unpriced trips. I then use administrative microdata from bridge tolls in the San Francisco Bay

Area to back out each of these parameters. Armed with this model of urban driving demand, I calculate

optimal prices for planned cordon zones in three cities ––– San Francisco, Los Angeles, and New York.

In each city, I find that leakage drives optimal peak-hour prices ($2-7) well below average social damages

($4-12). Due to the blunt nature of cordon pricing, these policies are relatively ineffective at internalizing

congestion and pollution externalities. In these three cities, I estimate that second-best optimal cordon

prices recover 15 to 40% of the welfare gains that would be achieved under an ideal Pigouvian policy. To

conclude, I discuss the prospects for improving the performance of congestion pricing through expanding

spatial coverage or allowing for granular time-of-day pricing.
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1. Introduction

Economists have long advocated for charging road users to address the negative externalities associated with

urban driving (Vickrey, 1963; Johnson, 1964; Parry, 2002). Following early policy experiments in Singapore

and London, a growing number of cities including New York, Los Angeles, and San Francisco, are considering

implementing road pricing. Despite its history of advocating for road pricing, however, the economics litera-

ture offers little insight on how to implement road pricing in practice, especially given that real-world policy

instruments differ significantly from the first-best policies prescribed by economists.

A first-best road pricing policy would charge drivers for the marginal social damages (the time cost imposed

on others plus the social cost of pollution generated) associated with every vehicle trip. Practical constraints,

however, render first-best road pricing infeasible in most settings. Implementing a first-best policy would require

detailed information about each driver’s routes and emissions, as well as real-time traffic data. It is typically too

costly to collect this information through a passive sensor network, and proposals for GPS-based pricing schemes

are often rejected on privacy grounds (Lehe, 2019; Giuliano, 1992). Consequently, city-wide road pricing often

takes the form of cordon zones — regions in the center of a city where drivers are charged for entry. Real-world

road pricing schemes therefore deviate from the first-best policy along two important dimensions: First, feasible

cordon systems cannot account for all of the heterogeneity in congestion and pollution externalities across trips

that all enter the cordon. Second, cordon zones leave nearby roads unpriced, allowing for externality leakage.

As a result, it is generally unclear how to set cordon prices even if policymakers have perfect information about

the social damages associated with trips that pass through the city center (Parry, 2009).

In this paper, I adapt models from public finance to characterize optimal cordon prices in the face of these

policy imperfections. I then generate empirical estimates of how drivers would respond to road pricing, and use

these estimates together with formulas derived from the theoretical framework to calculate second-best cordon

prices.

The second-best pricing framework I build stipulates a set of parameters necessary for calculating second-

best road prices accounting for both leakage and imperfect pricing (i.e., many vehicle trips with different

externalities are charged the same price). Calculating optimal prices requires information about (i) the het-

erogeneity in marginal trip-level externalities, (ii) the correlation between trip-level externalities and individual

price-responsiveness, and (iii) the elasticity of substitution between priced and unpriced trips. Outside of road

pricing, this framework can be applied to any setting where externality heterogeneity and leakage simultaneously

prevent the implementation of a first-best corrective policy (e.g., electricity markets, or sin taxes).

In the empirical section of this paper, I use a natural experiment from the San Francisco Bay Area to

recover estimates of each of the parameters necessary to calculate optimal cordon prices. In 2010, bridge tolls

increased on all of the region’s bridges, and peak-hour pricing was implemented on the region’s busiest bridge.

I use this variation in road prices together with administrative microdata from the region’s electronic tolling

system to estimate a discrete choice model of driving demand. The results from this exercise imply that the

two policy imperfections –– leakage and heterogeneity –– create a tension in optimal cordon pricing. Trips

associated with higher social damages are more elastic. Absent leakage, this heterogeneity would imply second-

best optimal prices that are above average social damages (Diamond, 1973). The discrete spatial and temporal

cutoffs in cordon pricing, however, incentivize some drivers to shift trips in time and space to avoid tolls.

Absent heterogeneity, this leakage would imply optimal prices that are below average social damages (Green

and Sheshinski, 1976). The structure of this discrete choice model simplifies the information required to apply

the second-best tax framework (items (i)-(iii), above). Namely, it allows me to populate a substitution matrix

between alternative driving times and routes based on a small number of parameters that describe driving

choices.

I use this model of driving demand to calculate second-best optimal prices for the proposed cordon zones in
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San Francisco, Los Angeles, and New York. I find that the leakage effect strongly dominates the heterogeneity

effect in each of these cities, resulting in second-best optimal prices that are below the average social damages

associated with trips that enter the cordon. In San Francisco, for example, when cordon prices are constrained

to peak hours, the second-best optimal prices that account for both heterogeneity and leakage are $2 to $3.

This is roughly half of the average social damages generated by trips that use the cordon during those periods

($4 to $6). Unsurprisingly, peak-hour cordon pricing performs poorly relative to the (infeasible) Pigouvian

prescription. The second-best optimal road pricing scheme in San Francisco, for example, achieves only 28%

of the total welfare gains, 30% of the congestion reductions, and 22% of pollution reductions relative to a

policy where drivers are charged according to the marginal damages of each trip. Across the three cities that I

examine, I find that optimal peak-hour cordon prices are more effective at internalizing congestion than they are

at internalizing pollution. This reflects the fact that while congestion and pollution externalities are spatially

correlated, average trip-level pollution damages do not exhibit the same within-day variation as congestion

externalities, and are therefore poorly targeted by peak-hour congestion prices.

To conclude, I investigate the prospects for improving cordon pricing policies. Allowing a policymaker to set

a fixed schedule of hourly prices between 6 a.m. and 7 p.m. generates sizable welfare gains relative to a cordon

policy constrained to charge prices only during peak hours. I estimate that these welfare gains range from $146

million annually in San Francisco to $286 million annually in New York. In each city, however, a cordon zone

with second-best hourly prices would realize less than half of the welfare gains possible under first-best prices.

This paper makes three primary contributions. First, this paper provides the first empirical estimates of

optimal cordon prices that account for both pollution and congestion. I recover optimal peak-hour cordon prices

that range from $2.20 in San Francisco to $7.92 in New York. While there are robust literatures documenting

the reduced-form relationship between road pricing and traffic speeds (Yang, Purevjav, and Li, 2020; Gibson

and Carnovale, 2015; Leape, 2006), as well as traffic and local air pollution (Currie and Walker, 2011; Anderson,

2020; Gibson and Carnovale, 2015; Knittel, Miller, and Sanders, 2016; Tonne, Beevers, Armstrong, Kelly, and

Wilkinson, 2008), these results have yet to be combined into optimal cordon prices that account for both of

these externalities, as noted by Parry (2009). Importantly, the optimal road prices presented in the paper also

account for imperfections in real-world policies. Both theoretical and empirical studies suggest that while price

or quantity-based cordons can ameliorate pollution and congestion in some settings (Zhong, Cao, and Wang,

2017; Börjesson, Eliasson, Hugosson, and Brundell-Freij, 2012), policies designed without regard to agent re-

optimization and heterogeneity may lead to poor or perverse policy outcomes (Davis, 2008, 2017; Zhang, Lawell,

and Umanskaya, 2017; Hanna, Kreindler, and Olken, 2017; Green, Heywood, and Paniagua, 2020). Calculating

optimal cordon prices through a second-best tax framework explicitly accounts for these considerations.

Second, this paper contributes to the literature on externality taxation by characterizing second-best prices

in the presence of both heterogeneous externalities and externality leakage. This framework combines two

canonical models of second-best pricing: the “Diamond” model (Diamond, 1973), which shows that second-best

uniform prices are a weighted average of heterogeneous externalities, and the “leakage” model, where second-

best optimal prices reflect marginal damages, less a term that captures leakage (substitution) to other unpriced

goods that also generate externalities (Green and Sheshinski, 1976, see also Davis and Sallee, 2020; Gibson,

2019; Holland, 2012). Specifically, I consider the setting where there are many externality-generating goods, the

externalities vary across consumers and goods, and only a subset of the goods are taxable. I show that in the

presence of both heterogeneity and substitution, the optimal second-best tax formula combines characteristics

of the canonical Diamond and leakage models. Holding fixed all other taxes, the optimal tax on any one good is

the Diamond-weighted marginal damages associated with the consumption of the good, less a term governed by

the Diamond-weighted leakage to other goods. The optimal second-best tax vector solves a system of equations

where terms in this system reflect individual externalities, own-price elasticities, and cross-price elasticities.

This characterization is most closely related to Allcott, Lockwood, and Taubinsky (2019), who characterize the
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optimal vector of taxes on sugary drinks in the setting with welfare weights that reflect a planner’s distaste

for inequality. The optimal taxation problem in this paper also resembles the optimal collection of government

revenue when taxes are distortionary (Ramsey, 1927). Namely, the solution to the road pricing problem involves

a matrix of substitution elasticities, as does the general solution to the canonical Ramsey tax problem. In this

setting, an untaxed good’s idiosyncratic externality is analogous to each good’s distortions in the many-good

Ramsey problem.

This extension of optimal second-best pricing is applicable in settings outside of transportation. In energy

markets, for example, the externalities associated with electricity generation differ based on the location of

powerplants (urban or rural; upwind or downwind of population centers), and policies implemented by states

or utilities may allow for externality leakage if electricity is imported from other jurisdictions. Sin taxes (e.g.,

alcohol taxes, cigarette taxes) similarly have heterogeneous impacts on consumers, and taxing any single product

may induce consumers to substitute towards related (and undertaxed) sin products.

Lastly, this paper presents a new approach for estimating the willingness of commuters to shift the schedule

of their trips. Scheduling costs are key parameters in the transportation economics literature (Vickrey (1963),

Arnott, De Palma, and Lindsey (1990), Arnott, De Palma, and Lindsey (1993)) and an important driver of

the theoretical welfare gains from congestion pricing (Kreindler, 2018). Adapting tools from the public finance

literature on bunching (Saez, 2010; Kleven and Waseem, 2013), I develop an estimator that infers scheduling

costs from the excess density of trips taken during times of day that fall just outside a peak pricing window.

Because peak pricing is used to alleviate congestion in bridges and tunnels in many cities, this estimation

approach can be applied to understand scheduling in many other metro areas.

The rest of this paper is organized as follows: Section 2 characterizes the second-best optimal externality

taxes in the presence of heterogeneity and leakage. Section 3 details the discrete choice model of driving demand

that I use to back out the statistics necessary to estimate optimal prices. Section 4 outlines the setting and

natural experiment that I use to estimate the model of driving demand, and Section 5 covers the data. In

Section 6, I describe the empirical strategy that I use to estimate the model of driving demand. I present results

in Sections 7 and 8, discuss these results in Section 9, and conclude in Section 10.

2. Theory: Externality Taxation Under Heterogeneity and Leakage

Public economics provides an unambiguous prescription for addressing market externalities: apply a (Pigouvian)

tax equal to the marginal damages associated with consuming the externality-generating good. In practice, how-

ever, policy instruments typically lack the precision and coverage to execute this prescription. When corrective

taxation cannot account for heterogeneous externalities or leakage (substitution) to other externality-generating

goods, the second-best optimal tax on any given good may differ substantially from the tax instituted in the

ideal Pigouvian policy. In this section, I outline canonical models for optimal taxation under each of these

separate imperfections (heterogeneity and leakage), and then present a model that can be applied to instances

where heterogeneity and leakage simultaneously prevent the implementation of the first-best.

2.1. Heterogeneity

For practical or legal reasons, policymakers are often constrained to apply a uniform corrective price to a good

where the consumption externalities associated with that good are not uniform. In cordon zones, for example,

drivers typically face a single charge for daytime trips, or a toll that charges one price for peak-hour trips, and

a lower price for off-peak trips.

Under these pricing schemes, many trips that generate different externalities will be charged the same price.
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1 Sources of congestion heterogeneity include the total length of the trip, the time that the trip is taken, and

the specific roads used within and outside of the cordon. Sources of pollution heterogeneity include vehicle

attributes, travel speed, and trip length.

Diamond (1973) characterizes the second-best optimal uniform tax on a good which generates heterogeneous

externalities when consumed by different agents: The optimal tax is a weighted average of the individual

externalities, where the weights (henceforth Diamond weights) are the individual own-price elasticities.

Formally, consider n consumers that derive utility from their consumption of an externality-generating good,

αi, and disutility from other’s consumption of this good:

U i = U(α1, ..., αi, ....αn) + µi

The second-best optimal uniform tax in this setting is:

τ∗ =
−
∑
h

∑
h6=i

∂Uh

∂αi
α′i∑

h α
′
h

(1)

Where α′i is the derivative of consumer i’s demand for α with respect to the price of α, and ∂Uh

∂αi
is the marginal

external cost that consumer i imposes on consumer h by consuming α.

This expression captures an important principle in second-best corrective taxation: If individual elastici-

ties are positively (negatively) correlated with idiosyncratic externalities, the second-best uniform tax on the

externality-generating good will be larger (smaller) than the naive average of marginal damages. Intuitively,

the role of corrective taxes is to move individuals to adjust their consumption of a product to the level where

private marginal benefit equals the social marginal cost. If a given group is unresponsive to price, however, the

second-best optimal tax described above will provide the correct incentive for the responsive group to consume

at the level that balances private and social marginal costs.

2.2. Leakage

Legal, political, or practical constraints often prevent policymakers from pricing all related externality-producing

goods. Cordon prices, for example, price only trips that pass over the cordon’s boundary, leaving trips that

avoid the cordon unpriced.

Green and Sheshinski (1976) show that in the case of two externality-generating goods (one of which is

taxable and one of which is not) and homogeneous marginal damages, the second-best prescription is to tax the

taxable good at its marginal damages, less a term that is increasing in the substitutability of the two goods,

and increasing in the marginal damages of consuming the untaxable good.

Formally, consider two goods, x and y, with associated marginal external damages φx and φy. A represen-

tative consumer with an exogenous income derives utility from these two goods, and a quasilinear numeraire

good, z:

U = U(x, y) + z

If a social planner is constrained to only tax x, the optimal tax is:

1Verhoef, Nijkamp, and Rietveld (1995) provide a theoretical overview of the Diamond model as it applies to congestion and

pollution externalities.
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τ∗x = φx +
dy/dpx
dx/dpx

φy (2)

The second-best optimal price balances the direct social damages associated with consumption of the taxable

good (φx), with the leakage-associated social damages that result from an increase in the price of the taxable

good ( dy/dpxdx/dpx
φy). In this paper, I will refer to the first term in this expression ( dy/dpxdx/dpx

) as the leakage share

between x and y.

As noted by Davis and Sallee (2020), equation 2 reflects separability insights from Kopczuk (2003): The

second-best tax on x is the sum of a) direct damages associated with the consumption of this good, an b) a

term that captures interactions between x and existing market distortions.

In the remainder of this section, I cover two extensions to the above models. In Section 2.3, I characterize

optimal taxes for a general set of externality-generating goods, where only a subset of them can be taxed. In

Section 2.4, I characterize optimal taxes for a general set of externality-generating goods, where only a subset

of them can be taxed, and marginal damages are heterogeneous by consumer.

2.3. Leakage with Many Goods

Before characterizing second-best optimal taxes under both heterogeneity and leakage, I first extend the two-

good model in Section 2.2 to the case of many (homogeneous) externality-generating goods, some of which are

untaxable. This problem is a generalization of the two and three-good direct vs. indirect taxation problems

presented in Green and Sheshinski (1976) and Sandmo (1978), and provides intuition useful for understanding

the model with heterogeneity presented in Section 2.4.

Setup: A representative consumer chooses quantities of M goods, (h1, ..., hM ) and a numeraire, z. Each non-

numeraire good has an associated (homogeneous) externality, φm that is linear in the consumption of m. A

policymaker can choose tax levels τj for goods j ∈ {1, ..., J} where J < M . I assume goods k /∈ {1, ..., J} are

un- or under-taxed.

In Appendix A, I show that under these constraints the optimal tax for good j holding fixed the taxes on all

other taxable goods k is:

τj = φj +
1
∂hj

∂pj

 J∑
k 6=j

∂hk
∂pj

[φk − τk] +

M∑
l=J+1

∂hl
∂pj

φl

 (3)

This intermediate results is a generalization of the two-good case. Holding fixed all taxes other than τj , the

optimal value for this final tax is its externality, φm, plus a term that captures the extent to which consumers

switch to other goods, and the level of unpriced externality of those goods. Identifying the optimal tax vector

requires simultaneously solving J equations in the form of Equation 3.

To do so, one can rewrite Equation 3 to separate the tax and externality terms:

τj +
1
∂hj

∂pj

(

J∑
k 6=j

∂hk
∂pj

τk) = φj +
1
∂hj

∂pj

M∑
l=1

∂hl
∂pj

φl

This yields J equations, each linear in the J tax levels:
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aj1τ1 + ...+ ajl τl + ...+ ajJτJ = bj ∀ j ∈ [1, J ] (4)

Where ajl and bj are defined as:

ajl =

∂hl

∂pj
∂hj

∂pj

(5)
bj = φj +

M∑
m=1

∂hm

∂pj
∂hj

∂pj

φl (6)

The a and b terms have intuitive interpretations. ajl is the share of the reduction in overall consumption of good

j that shifts to good l as a results of an increase in the price of good j. That is, each a term is a leakage share

between taxable goods. bj is the overall reduction in externalities that results from the increase in the price of

good j; this consists of a direct component, φj , plus the sum of leakage terms:
∑M
m=1

∂hm

∂pj
/
∂hj

∂pj
φl, which are

negative if j is a normal good and m is a substitute for j.

This system can be written compactly as:

a1
1 ... a1

J

...

aJ1 ... aJJ


τ∗1...
τ∗J

 =

b1...
bJ


Aτ = b (7)

The optimal tax vector when there are J taxable goods out of M total externality-generating goods is:

τ = A−1b (8)

Equation 8 shows that solving for the second-best optimal vector of corrective taxes in a setting with incom-

plete tax coverage and substitution between many externality-generating goods requires a) the consumption

externalities associated with each good, and b) the substitution matrix between all goods.2

2.4. Heterogeneity and Leakage

Finally, I characterize second-best taxes where a) there are many externality-generating products, b) policy-

makers can tax only a subset of these products, and c) externalities are heterogeneous in consumption of the

products.

While I apply this model to urban driving externalities in this paper, many markets feature externalities

and policy instruments that fit this description. Electricity generation, for example, produces environmental

externalities that vary by location (Muller and Mendelsohn, 2007; Hernandez-Cortes and Meng, 2020), and local

environmental policies may induce leakage if utilities import electricity across jurisdictional borders. Similarly,

the consumption of “sin” goods may be associated with externalities or internalities that vary across consumers,

and taxing any one product (e.g., cigarettes) may induce leakage towards other products (e.g., vape pens) that

do not fall under a policymaker’s purview (Herrnstadt, Parry, and Siikamäki, 2015).

Lastly, as I introduce heterogeneity, it is worth noting that I assume that the social planner acts to maximize

aggregate welfare, as in Diamond (1973). The formulae that follow do not account for redistributive preferences

2Note that this substitution matrix contains cross-price consumption derivatives and not cross-price consumption elasticities.

A contains 1’s along the diagonal; when all j goods are substitutes, the off-diagonal terms of A fall in the closed interval [0,−1].
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— heterogeneity is included in the model to reflect the implications of differences in externalities, rather than

understand how externality taxation interacts with inequality aversion.3

Setup: N heterogeneous consumers choose between M externality-generating goods and a numeraire, z. I

denote individual i’s consumption of good m as hmi . Each individual has an exogenous income µi. I as-

sume that each consumer’s utility is a function of their consumption of these M goods and a quasilinear nu-

meraire, as well as other’s consumption of these goods (which generate externalities and decrease i’s utility):

Ui(h
1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h

1
N , ...h

M
N ) + zi.

As in Section 2.3, a policymaker can choose tax levels for goods j ∈ {1, ..., J} where J < M . I assume goods

m /∈ {1, ..., J} are un- or under-taxed. I denote τ j as the tax on good j.

In Appendix A, I show that the optimal tax on τj as a function of the k other tax levels is:

τj =

∑N
i=1

∑N
g (∂U

i

∂h1
g

∂h1
g

∂pj
+ ...+ ∂Ui

∂hM
g

∂hM
g

∂pj
)∑N

i=1
∂hj

i

∂pj

+

∑J
k 6=j

∂hk
i

∂pj
τk∑N

i=1
∂hj

i

∂pj

(9)

This expression for the optimal level of a given tax is equivalent to the equation for substitutes with homogeneous

damages where each of the marginal damages have been replaced by Diamond-weighted externalities that account

for heterogeneity in marginal damages across individuals. As in the case of many substitutes with homogeneous

damages, the optimal tax vector solves a system of J equations:

a1
1 ... a1

J

...

aJ1 ... aJJ


τ∗1...
τ∗J

 =

b1...
bJ


Aτ = b (10)

Where ajl and bj are defined as:

ajl =

∑N
i=1

∂hl
i

pj∑N
i=1

∂hj
i

∂pj

(11)

bj =

∑N
i

∑N
g 6=i

∂Ui

∂hj
g

∂hj
g

∂pj∑N
i
∂hj

i

∂pj︸ ︷︷ ︸
Diamond-weighted externality of good j

+

M∑
l 6=j

∑N
i

∑N
g 6=i

∂Ui

∂hl
g

∂hl
g

∂pj∑N
l
∂hj

i

∂pj︸ ︷︷ ︸
Diamond-weighted leakage shares

(12)

Solving for the second-best optimal vector of corrective taxes therefore requires (i) the (heterogeneous) exter-

nalities associated with each good, (ii) the relationship between these heterogeneous externalities and individual

price elasticities, and (iii) individual-level substitution matrices between goods.

These are considerable information requirements. In what follows, I demonstrate how to use the structure

of discrete choice modeling to reduce the dimensionality of this problem. Specifically, rather than estimating

how each driver substitutes between each possible trip, I use a discrete choice model over routes and times of

day to populate the substitution matrix of options facing drivers based on the attributes of those trips.

3See Allcott, Lockwood, and Taubinsky (2019) for a characterization optimal corrective taxation with incomplete instruments

and social preferences for redistribution.
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3. A Discrete Choice Model of Driver Behavior

The theory outlined in Section 2 stipulates that calculating the second-best optimal cordon prices requires

information about the heterogeneity in the price responsiveness of different types of trips that cross a cordon,

as well as the rates of substitution between trips that can and trips that cannot be priced. To recover these

parameters, I estimate a canonical “bottleneck” model of driving demand (Arnott, De Palma, and Lindsey,

1990, 1993).

Formally, imagine drivers i who choose between departure times h and a routes r to satisfy their demand for

travel. Included in this choice set is the outside (no trip) option, which is normalized to zero utility. Each driver

has an exogenous ideal arrival time, hAi . Drivers are atomistic and face travel times T (h, r) and tolls p(h, r) that

may vary by route and time of day. A driver arriving before or after their ideal arrival time incurs disutilities

γe and γl per minute, respectively. Drivers also incur disutility α from each minute spend commuting. Utility

is thus:

u(hi, ri) = −αT (hi, ri)− γe |hi + T (hi, ri)− hAi |−︸ ︷︷ ︸
time early

−γl |hi + T (hi, ri)− hAi |+︸ ︷︷ ︸
time late

−βp(hi, ri) (13)

Each driver chooses the route (ri) and time of day (hi) that maximizes their expected utility:

{h∗i , r∗i } = arg maxhi,ri{u(hi, ri))} (14)

To clarify the mapping between this discrete choice model and the optimal tax formula (Equation 10), a “good”

(hj in the notation used in Section 2) is a trip taken on a given route at a given time of day : {h, r}. Typical

cordon zones have discrete spatial and temporal cutoffs.4 The possibility of leakage reflects the ability of drivers

to adjust trips in time (h) and space (r) to avoid tolls. Heterogeneity in externalities results from the fact

that trips that enter a cordon zone during the same time of day are charged the same price, but differ in

pollution externalities (a function of trip length, vehicle characteristics, and travel speed) as well as congestion

externalities (a function of trip length and traffic density along the trip). To estimate the relationship between

idiosyncratic externalities and price-responsiveness, I allow β (the coefficient on price) to vary across externality

quantiles during estimation.

The value of estimating this discrete choice model is that it greatly reduces the number of parameter estimates

required for applying the optimal tax formula outlined in Section 2. For any choice set (e.g., cordon vs. non-

cordon routes at various times of day), equation 13 implies a matrix of own and cross-price elasticities between

choices, which reflect model primitives (αe, γe, γl, β) and trip attributes (T , p, time late, and time early). In

Section 4 through 7, I use tolling microdata to recover estimates of each of these parameters using a mixed logit

model. I also apply a bunching estimator to the introduction of peak-hour pricing in the Bay Area to produce

separate estimates of scheduling parameters, γe and γl.

4The London Cordon Zone, for example, charges road users £15 between 7 a.m. and 10 p.m. for entering the city center. The

Milan Cordon Zone charges users €2 to €5 based on vehicle type between 7:30 am and 7:30 pm. The proposed cordon zones in

San Francisco would only charge drivers for trips during peak hours (6-10 am and 3-7 pm).
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4. Natural Experiment: Traffic Tolling in the San Francisco Bay Area

I use administrative tolling data from the San Francisco Bay Area together with revisions to regional bridge

tolls to estimate the model of driving demand outlined in Section 3.

4.1. Bay Area Bridge Tolls

FasTrak is an electronic tolling system used in California. Drivers are charged for using certain roads (bridges

and high-occupancy toll lanes) via transponders mounted to the car’s dash.5 In the San Francisco Bay Area,

tolls are collected on each of the region’s trans-bay bridges (mapped in Figure 1) for westbound trips only.

Figure 1 — San Francisco Bay Area Bridges

Figure 1: This maps shows the four San Francisco Bay Area bridges used to estimate driver responses to toll prices in this paper.

The Richmond Bridge connects Richmond and the eastern Bay Area to San Rafael and Marin County. The Bay Bridge connects

Oakland to San Francisco. The San Mateo Bridge connects Hayward to San Mateo. The Dumbarton Bridge connects Fremont to

Palo Alto. Each of these bridges charges drivers for westbound trips (as detailed in Figure 2).

4.2. Variation in Toll Prices

Bay Area FasTrak tolls vary by bridge, vehicle type, and time of day. I focus on passenger vehicles (as opposed

to light and heavy-duty trucks), which constitute roughly 97% of vehicle trips on Bay Area bridges.6 Currently,

passenger vehicles are charged between $3 and $7 dollars, depending on the time of day, the number of occupants,

and whether or not the vehicle is electric/hybrid.

5Drivers can pay with cash if they do not purchase a FasTrak device. Between 2010 and 2019, cash payers represented roughly

10% of all trips on Bay Area bridges.
6Between 2009 and 2019, the four major Bay Area bridges recorded roughly 285,000 FasTrak transactions daily for passenger

vehicles, versus 7,000 daily transactions for vehicles with three of more axles.
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In this paper, I leverage several changes in the tolling structure that occurred on July 1, 2010 to identify the

parameters necessary to calculate optimal road prices. In 2009, the Bay Area Toll Authority (BATA) adopted

Resolution 90, which increased the base prices for passenger vehicles from $4 to $5 beginning on July 1, 2010,

and established peak-hour pricing on the Bay Bridge (detailed below). This intertemporal variation in toll

prices is plotted in Figure 2.

Figure 2 — Variation in Passenger Vehicle Bridge Tolls

Figure 2: This figure shows Bay Area bridge tolls between 2009 and 2012 for passenger vehicles. Prices are uniform across bridges,

with the exception of the Bay Bridge, which connects San Francisco and Oakland. Beginning in 2010, passenger vehicles crossing

the Bay Bridge faced a two-dollar difference between peak and off-peak prices. The peak ($6) and off-peak ($4) prices are plotted

above as dotted and dashed lines, respectively. EV and carpool trips were free on all bridges prior to 2010. Beginning in July

of 2010, EV/carpool trips were charged the base rate ($5 on the San Mateo, Dumbarton, and Richmond Bridges; $4 on the Bay

Bridge), except during peak hours, where they receive a discount ($2.5) on all bridges.

4.3. Peak-hour Pricing on the Bay Bridge

To address acute congestion on the region’s busiest bridge, the Bay Area Toll Authority imposed peak hour

pricing on the Bay Bridge (which connects San Francisco and Oakland) beginning on July 1, 2010. Passenger

vehicles crossing westbound through the Bay Bridge toll plaza on weekdays between 5 a.m. and 10 a.m., or

between 3 p.m. and 7 p.m. (henceforth peak hours) were charged $6. Tolls for all other hours (henceforth

off-peak) remained at the pre-2010 price of $4.

Prior to July 1, 2010, passenger vehicles with two or more passengers, as well as eligible electric and hybrid

electric vehicles were not subject to tolls on any Bay Area bridges. Starting in 2010, these vehicles were subject

to the full toll value during off-peak hours, but retained a discount during peak hours: EV/carpool trips were

charged $2.50 to use Bay Area bridges between July 1, 2010 and January 1, 2019.
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Figure 3 — Peak Pricing on Bay Area Bridges

Figure 3: This figure displays peak-hour pricing schemes for passenger vehicles (vehicles with two axles) on California’s Bay Bridge,

which connects San Francisco and Oakland. Beginning on July 1, 2010, passenger vehicles crossing westbound on weekdays during

peak hours (between 5 a.m. and 10 a.m., or between 3 p.m. and 7 p.m.) faced higher prices than vehicles crossing during off-peak

hours. Peak-hour prices are displayed on large variable-message sign about the Bay Bridge toll plaza. Weekend trips on the Bay

Bridge and trips on the other major Bay Area bridges are not subject to peak pricing, instead charging the base rate for passenger

vehicles ($4 for pre-2010 and $5 for July 2010 - December 2018).

Foreman (2016) uses reduced-form approaches to provide valuable estimates of the responses of Bay Area drivers

to this change in bridge prices. The number of vehicle trips during peak hours on the Bay Bridge decreased by

6 to 8% (400 to 550 vehicles per hour) following the imposition of peak hour pricing. Travel during off-peak

hours on the Bay Bridge increased by 4 to 20% (225 to 400 vehicles per hour). Point estimates suggest the

$1 increase on the San Mateo and Dumbarton bridges led to modest decreases in bridge use (15 to 48 vehicles

per hour). Notably, crossings on the San Mateo Bridge increased by 100 to 200 vehicles (around a 5%) during

peak hours, implying that some drivers switched from the Bay Bridge its closest substitute in response to the

peak-hour price difference across routes.

To summarize this variation in road prices in this empirical setting, the 2010 revision to bridge tolls in

the San Francisco Bay Area replaced uniform prices with prices that varied across bridges and times of day.

Reduced-form analyses of this policy suggest that drivers responded to these pricing by reducing the overall

number of trips, as well as shifting their trips in time and space. In the following sections, I use this variation

in prices together with microdata on driver choices to estimate the model of personal vehicle travel described

in Section 3.
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5. Data

5.1. Reconstructing Choice Sets

Estimating the model outlined in Section 3 requires individual-level data on travel choices, travel times, and

road prices. To construct this choice set, I combine administrative microdata from the FasTrak tolling system

with historic travel time data purchased from TomTom’s Historic Traffic Stats database.

FasTrak Toll Data: I use administrative microdata from the FasTrak tolling system to create a panel of

individual-level driving choices. These microdata record any transactions that occurred on the four trans-bay

bridges between January 1, 2009 and July 1, 2019. A single observation in this data set includes the date, time,

and location of the vehicle crossing, as well as the vehicle class (axle number), the price paid, and an indicator

for whether the vehicle used the EV/carpool lane. For vehicles with registered FasTrak devices (vehicles that

did not pay cash) the microdata also include a unique FasTrak id number. Roughly 40% of observations that use

a FasTrak device also list the home zip code associated with the FasTrak holder. These data contain hundreds

of millions of trip records.

I restrict the dataset on several dimensions. First, I include only devices with a valid (Bay Area) zip code.

Second, I drop devices with infrequent use (fewer than 50 weekday trips in the year prior to the 2010 price

change), or users that take multiple trans-bay trips per day (greater than 500 weekday trips in the year to

the 2010 price change). Lastly, for the purposes of estimation, I consider only trips taken in a narrow window

(weekdays between June 15th to July 15th) before and after the 2010 change in toll prices. The resulting panel

consists of 32,104 FasTrak devices and 1,078,044 bridge crossings.

These sample restrictions reflect the information requirements of the discrete choice model of driving demand.

Recall that this model specifies driver utility as a function of trip attributes: travel time, time late or early,

and price. Zip code information is necessary for assigning travel times to vehicle trips based on the distance

between households and bridges. The restrictions based on the frequency of trips reflects the need to infer

ideal arrival times for drivers. For FasTrak devices associated with daily commuters, ideal arrival times can be

inferred based on bridge-crossing times prior to July 1, 2010 (detailed below). Drivers that infrequently use

bridges, or that use bridges many times a day, are not well-described by the discrete choice model I employ

in this paper, as it is unclear how to assign these trips an ideal arrival time and trip termini. While imposing

these sample restrictions comes at the cost comprehensiveness, estimating the discrete choice model provides a

distinct benefit relative to a reduced-form approach: For any given choice set (e.g., driving options subject to

cordon prices) the structure of the discrete choice model directly implies the substitution parameters required

for calculating optimal prices.

Travel Time Data: Because the FasTrak microdata include only the device zip code and bridge used, I must

infer trip travel times. I do so in two steps.

First, based on the zip code and travel behavior of a given vehicle, I use data from the 2012 California

Household Travel Survey (CHTS) to infer a probability distribution over destinations for that vehicle. For

example, if I observe a driver from Oakland traveling via the Bay Bridge, I enumerate the destination cities of

all CHTS drivers from Oakland who reported using the Bay Bridge. I repeat this for all of the driver’s trips,

resulting in a probability distribution over endpoints for each FasTrak device.

Second, I use TomTom’s Historic Traffic Stats data to reconstruct the travel time between an individual’s

home zip code and each of the possible destination endpoints. The FasTrak data provide hourly traffic speeds

for major roads in the 12 months before and the 12 months after the July 2010 adjustment to Bay Area tolls.

Importantly, I also use the TomTom data to estimate counterfactual travel times. The result is a reconstruction
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of each driver’s choice set, namely the travel time and price for each trip that driver took, as well as the price

and travel time if they had taken that same trip at a different time of day, or using a different bridge. This

choice set construction is described in full detail in Appendix E.

Ideal Arrival Times: Ideal arrival times, hAi in equation 13, are not directly observed, and therefore must

be inferred from each driver’s activity. For each driver, I assign hAi as the modal bridge crossing time of each

individual during weekdays between January 1, 2010 and July 1, 2010, plus the weighted average travel time

between the bridge toll plaza and each of the possible endpoints for that driver.

For an illustrative example, consider a driver who exclusively uses the Bay Bridge during the pre-period,

and who most commonly crosses this bridge at 9 in the morning. A trip taken by this individual that crosses the

bridge at 9 a.m. would be assigned a value of zero for time late and time early. A trip taken by this individual

that crosses the bridge at 10 a.m. would be assigned a value of time late of 1, plus any difference in expected

after-bridge travel time between 9 a.m. and 10 a.m.

Lastly, it is worth noting that pre-period bridge crossing times may not indicate actual ideal crossing times

if within-day traffic conditions provide sufficient incentive for drivers to shift their trips in time to reduce overall

commute times. The estimates of scheduling elasticities that I recover from responses to peak-hour pricing

on the Bay Bridge, however, are inconsistent with this type of strategic scheduling. If Bay Area drivers have

schedule costs low enough to induce them to strategically reschedule trips in the absence of peak-hour pricing,

a much higher portion of drivers should have responded to the imposition of peak-hour pricing by rescheduling

trips.

5.2. Externalities

Although data on trip-level externalities is not necessary for estimating a model of driving demand, second-

best optimal road prices depend on the correlation between the price elasticity of demand for a given trip and

the idiosyncratic externalities associated with that trip (see Section 2). I therefore estimate the externalities

(congestion and pollution) associated with each FasTrak trip.

Note that I do not include accident externalities when calculating trip-level externalities. Although most

estimates of per-mile externalities in the economics literature suggest that accident externalities constitute a

significant portion of the overall social costs of driving (Parry and Small, 2005; Anderson and Auffhammer,

2014), empirical evidence suggests that the social benefits from reduced accidents in cordon zones are an order

of magnitude smaller than the benefits associated with reduced congestion and air pollution (Green, Heywood,

and Paniagua, 2020). Broadly, this empirical evidence reflects the fact that the type of driving curtailed by

cordon pricing ––– slow, daytime trips in city centers ––– results in relatively few fatal traffic accidents. I

provide further discussion of the relationship between accidents and optimal cordon prices in Appendix H.

Congestion Externalities: Congestion externalities vary significantly in space and time. The transportation

economics literature canonically presents congestion externalities as a function of traffic density, measured in

vehicles per lane-mile (Small, Verhoef, and Lindsey, 2007). To assign congestion externalities to trips in the

FasTrak dataset, I use estimates from Yang, Purevjav, and Li (2020), who show that the marginal external

(travel time) cost of traffic is convex in traffic density. That is, congestion externalities are negligible when

there are few other vehicles on the road, but increase sharply with the number of vehicles per lane-mile. The

congestion costs from this paper are reproduced in Figure 4.

Using a comprehensive network of traffic sensors on roadways in the Bay Area, I infer the density along

the route for each FasTrak trip. These traffic sensors are mapped in Figure 13. For each trip, I use HERE

Technology’s Routes API to identify the likely route between the zip code associated with the device and the
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bridge crossed. For each traffic sensor along the driver’s route, I use estimates from Yang, Purevjav, and Li

(2020) to assign a marginal external congestion cost (in dollars per mile)7 to this point based on the average

traffic density at that sensor at the time of day when the trip was taken. A trip’s total congestion externality is

then the average of the external congestion costs (in dollars per mile) along the route, times the length of the

trip.

As noted above, because one of the trip termini is missing from the FasTrak data, I impute the congestion

externalities for the missing segment of the trip (between the bridge to the place of work) using the likely

destination locations conditional on observable characteristics (home zip code, bridge used). Note that the

majority of variation in externalities is driven by the choice of bridge and time of day, suggesting any noise

in this imputation process should not meaningfully impact estimates of the relationship between idiosyncratic

externalities and price responsiveness.

Figure 4 — Congestion Costs, Reproduced from Yang et al. (2020)

Figure 4: Congestion costs reproduced from Yang, Purevjav, and Li (2020), who exploit variation in traffic density generated by

Beijing’s driving restriction to estimate the relationship between traffic density and speed. The original results are presented in

Yuan/Vehicle/km. I convert these values to dollars by a) converting currencies, and b) replacing the Beijing-specific value of time

from (50% of the average wage rate in Beijing) with a $20 value of travel time, which reflects San Francisco-specific estimates from

Goldszmidt et al. (2020).

Emissions Externalities: Fuel combustion and brake wear in passenger vehicles generates several air pollu-

tants. These include “global” pollutants like CO2 and methane, which contribute to climate change, as well as

“local” pollutants like particulate matter (PM), nitrogen oxides (NOx) and reactive organic compounds (ROCs),

which negatively impact the health of nearby residents (Anderson, 2020; Currie and Walker, 2011; Deryugina,

Heutel, Miller, Molitor, and Reif, 2019). Vehicle emissions factors ––– the amount of a particular pollutant that

a vehicle emits while traveling a mile ––– depends on a number of variables, including the type of fuel consumed,

the fuel economy, the vehicle vintage8, and vehicle speed.9

7The estimates from Yang, Purevjav, and Li (2020) are in yuan/vehicle/km. I convert these values to dollars by a) converting

currencies, and b) replacing the Beijing-specific value of time from (50% of the average wage rate in Beijing) with a $20 value of

travel time, which reflects research by Goldszmidt, List, Metcalfe, Muir, Smith, and Wang (2020).
8Older vehicles have higher emissions factors for two reasons: They were subject to less stringent tailpipe emissions and fuel

economy standards when they were built, and emissions abatement technologies (catalytic converters) depreciate over a vehicles

lifetime
9Vehicle speed impacts emissions through engine efficiency and the intensity of brake ware.
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I estimate emissions for FasTrak trips using data from the California Air Resource Board’s Emissions Factor

Database (EMFAC). This database contains estimates of the average emissions rates of vehicles registered in

each county as a function of vehicle speed. I then assign social costs to these trip-level emissions. I value global

pollutants using the EPA’s 2021 social cost of carbon ($51 per ton) and methane ($1,500), respectively. Local

pollutant damages reflect the cost of emitting each pollutant at ground level in San Francisco, according to the

EASIUR model of local pollution damages. See Appendix C for details on individual pollutant costs.

Figure 5 — Pollution Externalities at Various Speeds

Figure 5: This figure plots per-mile pollution externalities at various speeds for an average passenger vehicle in the Bay Area.

These costs reflect VMT-weighted average emissions factors (in grams/mile) of different pollutants at different speeds reported by

California’s Emissions Factor Model (EMFAC). The EMFAC emissions factor estimates reflect state DMV and smog check data.

To convert these emissions factors to per-mile costs, I multiply the emission factor for each pollutant by the corresponding social

cost of each pollutant. For local pollutants, the social cost is calculated using the Estimating Air pollution Social Impact Using

Regression (EASIUR) Online Tool, calibrated with coordinates from San Francisco. For global pollutants, I use the EPA’s 2021

social costs of $51 per ton of CO2 and $1,500 per ton of CH4, respectively. All values are in 2020 dollars.

Together, the data described in this section allow me to recreate the choices and choice set facing a sample of

Bay Area drivers, augmented with estimates of the social costs associated with each trip choice.

6. Empirical Strategy

I use two strategies to recover the primitives that determine driving behavior. In my preferred specification, I use

the variation in toll prices in 2010 together with the FasTrak microdata to estimate the parameters of Equation

13 using a mixed logit regression. As a check for the results from this first method, I apply a bunching estimator

to the Bay Bridge’s notched tolling schedule, producing a second set of empirical estimates of scheduling costs.

6.1. Multinomial and Mixed Logit Regressions

As described in Section 5, the FasTrak microdata and the TomTom historic traffic data allow me to reconstruct

the attributes of elements in the choice set (routes and times of day) for each driver. I then use this reconstructed

choice set to estimate the discrete choice model of driving demand outlined in Section 3.
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1(hi = 1 ∧ ri = 1) = −αT (hi, ri)− γe |hi + T (hi, ri)− hAi |−︸ ︷︷ ︸
time early

−γl |hi + T (hi, ri)− hAi |+︸ ︷︷ ︸
time late

−βp(h, r) + εh,r,i (15)

Where 1(hi = 1 ∧ ri = 1) is an indicator variable that takes a value of 1 if individual i crosses bridge r at time

of day h, and zero otherwise. The routes available to a driver are each of the four Bay-Area bridges. Times of

day are discretized at 12-minute intervals.

This estimation strategy leverages variation in trip-level attributes that reflect both the 2010 changes in toll

prices, as well as differences in the attributes of trips available to drivers across routes or times of day.

The identifying variation in price, p(hi, ri), comes from the revision to bridge tolls, which is detailed in

Section 4. Peak-hour pricing on the Bay Bridge constitutes a potential threat to identification through reverse

causality. Peak-hour pricing was imposed on the Bay Bridge in response to high demand for trips connecting

Oakland to San Francisco during peak hours. If the high peak-hour demand on this bridge is completely

explained by trip attributes ––– travel time and scheduling costs ––– then price will be uncorrelated with the

error term εh,r,i. If, however, this high demand was the result of factors unobserved by the researcher that

make peak-hour travel on the Bay Bridge attractive, then peak-hour pricing on the Bay Bridge would create a

mechanical correlation between p(hi, ri) and εh,r,i. To address this threat to identification, I also estimate an

instrumental variables regression where post acts as an instrument for price, which leverages only the level shift

in prices to estimate the coefficient on price.

The identifying variation for travel time T (hi, ri) comes from both within-day differences in travel time

along a given route for each driver, as well as differences in travel times across routes (bridges) conditional on

departure time. The variation in total travel times in response to the 2010 change in toll prices is negligible

Foreman (2016). The schedule cost parameters reflect i) the tradeoff between travel time and late or early

arrival induced by variation in travel times throughout the day, and ii) the tradeoff between early or late arrival

and lower toll prices for peak-hour travelers on the Bay Bridge.

The estimated parameters of equation 15 imply a matrix of own and cross-price elasticities between routes

and hours of day that I use to solve for second-best cordon prices in San Francisco. Formally, the own and

cross-price elasticities from a multinomial logit regression used to estimate this model are:

ε{hj ,rk},{hl,rm} =

βp(hl, rm)(1− s{hl,rm}), if i = l ∧ j = m

βp(hl, rm)s{hl,rm}, otherwise
(16)

Where {hj , rk} denotes route rk taken at time hj , s{hj ,rk} is the share of total trips taken via route rk at time

hj , and β and p(h, r) are defined as above. Importantly, ordinary logit models exhibit restrictive substitution

parameters. Namely, the cross-price elasticities for a given good are constant across all alternatives, implying

proportional substitution following a price increase of any one good. I relax this assumption in my preferred

specification — a random coefficients (“mixed”) logit regression. This regression estimates a joint distribution

of coefficients (θ) which implies idiosyncratic pairwise substitution parameters between trip options:

ε{hj ,rk},{hl,rm} =
p(hl, rm)

s{hj ,rk}

∫
βs{hj ,rk}(θ)s{hl,rm}(θ)f(θ)dθ (17)

18



6.2. Bunching Estimator

In this section, I outline how I use notches in the peak-hour tolling on San Francisco’s Bay Bridge to recover

the scheduling costs of drivers. This alternative empirical approach acts as a check for the results from the logit

regressions.

Bunching estimators are used to infer structural parameters from the empirical density of choice variables

around kinks or notches in a budget set (Chetty, Friedman, Olsen, and Pistaferri, 2011; Saez, 2010; Kleven

and Waseem, 2013). While bunching estimators allow for the estimation of structural parameters using cross-

sectional data, doing so often necessitates strong assumptions regarding the distribution of choice variables

under a counterfactual (no-notch) budget set (Blomquist, Newey, Kumar, and Liang, 2021). The panel data

in this setting allow me to directly compare the density of trips under notched (peak-hour) and non-notched

pricing schemes, thereby circumventing distributional assumptions. Broadly, bunching estimators use changes

in the density of choice variables to identify characteristics of a “marginal buncher” –– an individual who is

indifferent between two positions along a notched/kinked budget set. Before presenting the bunching estimator,

it is therefore useful to characterize the marginal bunching individual in this setting.

Consider a group of drivers with homogeneous scheduling costs and perfect control over when they cross a

bridge that charges different tolls during peak and off-peak hours. A “buncher” is a driver who would cross the

bridge during peak hours in the absence of peak-hour pricing, but who would adjust their travel time to just

avoid the extra toll in a world with peak-hour pricing. For the marginal buncher, the utility from the lower

price is equal to the scheduling costs of adjusting their trip to cross outside of peak hours. Equation 18 shows

this indifference condition in terms of structural parameters. For simplicity, I examine the case of a driver who

faces a decision of whether or not to shift their trip earlier:

β∆p︸︷︷︸
Benefit from shifting

= γe∆h︸ ︷︷ ︸
Cost of shifting

(18)

Following the notation from Equation 13, β is the marginal utility of a dollar (normalized to 1), ∆p is the

change in price at the notch, γe is the cost (in dollars/hour) of shifting a trip earlier, and ∆h is the number of

hours between the price notch and the time of day when the marginal buncher would have crossed the bridge

in the absence of a price notch. The scheduling cost, γe, can then be written as a function of the size of the

price notch, and the time that the marginal buncher would have to adjust their trip in order to cross the bridge

before peak hours:

γe =
β∆p

∆h
(19)

If travel times also differ significantly in the neighborhood of the price notch, this condition becomes:

γe =
β∆p+ α∆T

∆h
(20)

Where ∆T is the difference between a driver’s total travel time if they cross the bridge just before the beginning

of peak hours, and a driver’s total travel time if they cross the bridge at the time of day when the marginal

buncher would have crossed the bridge in the absence of a price notch. The characterization of a marginal

buncher is plotted in Figure 6.

Equations 19 and 20 imply that the relevant scheduling cost (either γe or γl) is inversely proportional to the

width of the density trough on the relatively expensive side of the peak-hour price notch. Intuitively, the width
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of the density trough reflects how far the marginal buncher moves their trip in response to a price incentive.

All else equal, decreasing scheduling costs makes drivers more willing to shift their trips further from their ideal

travel time for a given level of compensation. A wider density gap therefore implies lower scheduling costs.

Because the peak-hour pricing on the Bay Bridge (see Figure 3) creates notches rather than kinks in the

budget sets of drivers, the region immediately adjacent to the price notch is strictly dominated under any

scheduling cost. The fact that there is still a positive density of crossings during this dominated period suggests

frictions may prevent drivers from perfectly optimizing (Kleven, 2016). In this setting, these ‘frictions’ may

reflect inattentiveness (Finkelstein (2009), for example, finds that toll prices are less salient for drivers with

automatic toll tags) or the inability to perfectly time bridge crossings due to traffic shocks.

To account for these optimization frictions, as well as heterogeneity in scheduling costs, I use an estimator

similar to Kleven and Waseem (2013). I first compare the density of trips in the dominated region before and

after the imposition of peak pricing to identify the fraction of individuals with crossing times in the vicinity

of the notch who are unresponsive to the price signal. I then estimate the excess trip mass on the relatively

inexpensive side of the price notch:

B =

∫
γe

∫ h∗+∆h

h∗
(1− a)f0(h)dh ' (1− a)f0(h∗)E[∆h] (21)

Where B is the excess bunching mass on the relatively inexpensive side of the notch, a is the fraction of drivers

in the strictly dominated region, and f0(h) is the counterfactual (no-notch) density of vehicle crossings as a

function of the time of day, h. E[∆h] is the average adjustment among drivers who bunch at the price notch.

Solving Equation 21 for ∆h and plugging into Equation 20 yields the bunching estimator:

γe =
β∆p

B/((1− a)f0(h∗))
(22)

Relaxing the assumption that travel times are relatively flat around the notch point is straightforward, but

necessitates the value of travel time:

γe =
β∆p+ α∆T
B/((1− a)f0(h∗))

(23)

In all bunching estimates, I use a $20 value of travel time, which reflects San Francisco specific findings from

Goldszmidt et al. (2020). I also present estimates of scheduling parameters that ignore time savings (equation

22) in Appendix D.
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Figure 6 — The Relationship Between Scheduling Costs and Bunching

Driver who bunches Driver who does not bunch

Figure 6: This figure illustrates the relationship between scheduling costs and bunching behavior in peak-hour toll schemes, as

predicted by the discrete choice model outlined in Section 3. For expositional ease, this figure plots the case where travel times

are constant throughout the day. The triangular shape of the indifference curves reflects the fact that the further a trip is from a

given driver’s ideal crossing time, the higher the compensation (via a lower toll price) required to maintain any given level of driver

utility. In the right two panes, I plot indifference curves (red) of a driver with high scheduling costs, who does not shift their trip

in response to peak pricing. In the left two panes, I plot indifference curves of a diver with low scheduling costs, who does shift

their trip in response to peak pricing. All else equal, when scheduling costs are lower, drivers are more willing to adjust their travel

times in response to peak pricing, implying a larger mass of trips around price notches.
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7. Results

In this section, I present estimates of the parameters in the discrete choice model of driving demand (equation

13) estimated using the empirical approaches outlined in Section 6.

7.1. Logit Regression Results

Table 1 presents the results from equation 15, estimated via multinomial logistic regression. The point estimates

from this regression imply that on average, drivers are indifferent between saving roughly $11 and saving an hour

of travel time; they are indifferent between saving roughly $6 arriving an hour early, and they are indifferent

between saving roughly $4 arriving an hour late.

Table 10 and Figure 14 show results of estimating equation 15 via mixed logit. Allowing for heterogeneity in

the logit parameters produces results that are qualitatively similar to the results in Table 1. In Table 2, I allow

price responsiveness to vary with road user’s idiosyncratic externalities. To do so, I break FasTrak devices into

quartiles based on the average estimated externality (both pollution and congestion) of each device’s trips. The

results in Table 2 suggest that price elasticity and idiosyncratic externalities are positively correlated: drivers

that travel longer distances at more congested times and places are more price responsive on average than are

drivers who take shorter, less-congested trips.

Table 1 — A Discrete Choice Model of Driving Demand

Specification

Variable (1) (2) (3) (4)

Travel Time ($/hr) 12.626 12.575 11.266 9.659

(1.926) (1.912) (1.76) (1.384)

Time Early ($/hr) 6.062 6.043 5.514 2.171

(0.307) (0.305) (0.282) (0.366)

Time Late ($/hr) 4.447 4.433 4.028 2.163

(0.206) (0.205) (0.19) (0.326)

Price 1.000 1.000 1.000 1.000

(1.002) (1.001) (0.91) (0.175)

Day of Week FE Yes Yes Yes

Bridge FE Yes Yes

Table 1: Results from Equation 15, a discrete choice model where drivers choose over routes and times of day, estimated using the

FasTrak tolling microdata described in section 5. The dependent variable is whether an individual i elects to take a trip on route r

at time of day h. Travel time is the travel time (in hours) that driver i would incur by traveling via route r at time h. Time early

is the number of hours that that driver i would arrive before their ideal arrival time if they were to travel via route r at hour h.

Time late is analogously defined. Price is the toll that driver i would incur by traveling via route r at hour h. As the coefficient on

price is normalized to 1, the other coefficients can be interpreted as costs in dollars per hour. Columns (1) through (3) show results

of a standard logit regression. Column (4) presents results of an instrumental variables regression where an indicator for post July

1, 2010 acts as an instrument for price. Standard errors in all regressions are clustered at the individual and zip code levels. All

values are in 2010 dollars.
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Table 2 — Mixed Logit with Price Elasticities by Externality Quartile

variable mean sd

time early −1.247 0.488

(0.113)

time late −3.409 2.078

(0.235)

travel time −5.371 1.57

(0.53)

price (first externality quartile) −0.016

(0.556)

price (second externality quartile) −0.148

(0.105)

price (third externality quartile) −0.285

(0.108)

price (fourth externality quartile) −0.126

0.115

Table 2: Results from Equation 15, a discrete choice model where drivers choose over routes and times of day, estimated using a

random coefficients (“mixed”) logit model. The dependent variable is whether an individual i elects to take a trip on route r at

time of day h. Travel time is the travel time (in hours) that driver i would incur by traveling via route r at time h. Time early

is the number of hours that that driver i would arrive before their ideal arrival time if they were to travel via route r at hour h.

Time late is analogously defined. Price is the toll that driver i would incur by traveling via route r at hour h. I interact price

with externality quartile, a categorical variable defined at the individual level that indicates the average intensity of externalities

(both pollution and congestion) for trips taken by each device in the FasTrak dataset. Two-way standard errors are clustered at

the individual and zip code levels.
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7.2. Bunching Estimator Results

Applying a bunching estimator to notches in the pricing schedule on the Bay Bridge, I recover scheduling cost

parameters (γe and γl in Equation 13) that range from $6 to $15 per hour.

Figure 7 plots the difference between the density of trips by time of day before vs. after the imposition of

peak-hour pricing for the 5 a.m. price notch on San Francisco’s Bay Bridge. The bunch in the density of trips

prior to 5 a.m. (which is does not exist in the data prior to July 1, 2010) is consistent with a model of driving

demand where drivers are willing to shift their trips in response to price incentives, but scheduling costs a)

prevent all drivers from doing so, and b) lead drivers that do shift to adjust their travel time by the minimum

amount necessary to receive the incentive.

Figures 15 and 16 plot the frequency of vehicle trips of before versus after the imposition of peak hour pricing

for all hours of day. Qualitatively, the bunches appear to be most pronounced during the early morning (5 a.m.)

and early afternoon (3 p.m.) price notches. Intuitively, this suggests that it is less costly to arrive early than

arrive late for both morning and evening trips.

Using equation 23, I estimate that during morning commute hours, the marginal driver is roughly indifferent

between saving $6 being an hour early, and indifferent between saving $15 and being an hour late. During

evening commute hours, the marginal driver is roughly indifferent between saving $9 being an hour early, and

indifferent between saving $13 and being an hour late. These estimates are summarized in Table 3

Figure 7 — Bunching in Response to Peak-Hour Pricing

Figure 7: This figure plots the difference in the number of trips in the 6 months before (blue) vs the 6 months after (red) the

imposition of peak-hour pricing on the Bay Bridge on July 1, 2010. To facilitate comparison, the number of trips at each time of

day is normalized (divided by the total number of daily pre or post-period vehicle trips). The red shaded region demarcates times

of day that were subject to peak-hour pricing after July 1, 2010. The vehicle trip counts reflect administrative tolling microdata

collected by the Bay Area Toll Authority. Excluded from this graph are trip using the carpool/EV lane, which face a different

pricing scheme. Figures 15 and 16 plot bunches for the other price notches (10 a.m., 3 p.m., and 7 p.m.) in the peak-hour pricing

scheme on the Bay Bridge.
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Table 3 — Estimating Scheduling Costs via Bunching

Parameter Estimate ($\hour)

Time Early (5 a.m. notch) 6.19461

Time Early (3 p.m. notch) 9.74395

Time Late (10 a.m. notch) 15.49765

Time Late (7 p.m. notch) 13.75856

Table 3: This table shows estimates of the costs to drivers of scheduling trips earlier or later than the driver’s ideal trip time (γe

and γl in equation 13). I recover these estimates using equation 23, which relates scheduling costs to the number of additional

vehicle trips observed in the period just outside of the peak-hour pricing period on San Francisco’s Bay Bridge. In addition to the

number of extra trips, equation 23 reflects scheduling frictions, as well as any time savings that result from drivers adjusting their

trips to fall just outside of peak hours (assuming a $20 value of travel time for Bay-Area travelers, as estimated by Goldszmidt

et al. (2020)). The additional bunching mass at price notches is estimated by comparing the number of trips in the neighborhood

of the threshold time before vs. after the imposition of peak-hour pricing (see equation 21) using administrative tolling data from

the Bay Area Toll Authority. All values are in 2010 dollars.

7.3. Comparisons to Parameter Estimates from the Literature

Several studies from the transportation economics literature provide valuable context for the logit and bunching

estimator results presented in this section.

A common heuristic for the value of travel time is 50% of the wage rate, which reflects seminal work by

Lave (1969), as well as research collated by Small (2012). According to the 2010 - 2012 California Household

Transportation Survey, the median Bay Area household earned roughly $66,000 per worker, equivalent to $31.74

per hour. The 50% heuristic therefore implies a median value of travel time of just under $16. Recent empirical

estimate suggest slightly higher travel time: using a field experiment among Lyft riders, Goldszmidt et al. (2020)

recover estimates of the value of travel time in San Francisco equal to roughly $20, or roughly 75% of the 2017

after-tax wage rate ($17.79 in 2010 dollars).

Estimates of scheduling costs (γe and γl) are less common in the economics literature. In general, existing

studies accord with the canonical analysis by Small (1982), which found that a) it is more costly for drivers to

be late than early, b) on a per-hour basis, the cost of being early is lower than the value of travel time, and c)

the cost of being late can be higher or lower than the value of travel time depending on the setting. Kreindler

(2018), for example, estimates that for drivers in Bangalore, India, early-arrival schedule costs are roughly a

quarter of the value of travel time, and late-arrival is more costly than early arrival. In a 2005 choice experiment,

Tseng, Ubbels, and Verhoef (2005) find that for drivers in the Netherlands, the cost of early arrival (€4.9/hour)

is roughly half of the value of travel time (€9.8/hour), but late arrivals are very costly (€19.7/hour).

The scheduling costs I recover using discrete choice and bunching estimators are qualitatively similar to

previous findings: The bunching estimator suggest that drivers prefer being early to being late. Both estimation

strategies suggest that (on a per-hour basis) early and late scheduling costs are lower than the value of travel

time.
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8. Second-Best Optimal Cordon Prices

In this section I use the discrete choice model estimated in Section 7 to calculate optimal cordon prices. I

first demonstrate this procedure using San Francisco’s proposed cordon, and then consider cordon zones in Los

Angeles and New York.

At a high level, calculating optimal cordon prices in any city takes four steps: First, use travel survey data

(e.g., the National Household Transportation Survey) to identify a representative sample of trips that pass

through a city’s proposed cordon. Second, assign externalities to those trips using information about the vehicle

driven in each trip, and the traffic density along the trip (this process is similar to the process described in

Section 5). Third, apply the model estimated in Section 7 to calculate substitution parameters. And fourth,

apply the optimal tax formula outlined in Section 2 to the ingredients from steps 1-3.

8.1. San Francsico’s Proposed Cordon Zone

The San Francisco County Transportation Authority (SFCTA) intends to pilot a downtown congestion pricing

program in the next 3-5 years, with the goal of implementing cordon pricing by the end of the decade (San

Francisco County Traffic Authority, 2021). Figure 8 shows a map of the proposed cordon zone, and Table 4 the

proposed tolling schedule.

In the main results presented in this section, I treat as fixed the shape of the cordon and the time periods

where prices will be charged. Doing so accords with the setup of the second-best tax problem described in

Section 2, where the set of taxable goods is an exogenous constraint. Here the set of taxable goods, J , includes

only two goods: morning and evening peak-hour trips that pass through the cordon zone. I present results from

expanding the set of taxable goods in Section 8.8.

For simplicity, I also assume that all passenger vehicles will be charged the same price for using the cordon

zone. This assumption abstracts from the low-income cordon price exemptions being considered by planning

organizations in many cities. In Appendix J, I show that because the majority of commuters would not qualify

for this exemption, the changes in welfare, congestion, and pollution that would result from exempting low-

income drivers in the San Francisco Bay Area are second-order. As acknowledged in Section 2, the setup of

this problem also assumes that policymakers do not weigh marginal utility across income groups. For a full

characterization of how policymaker distaste for regressivity impacts corrective taxation, see Allcott, Lockwood,

and Taubinsky (2019).

Table 4 — San Francisco’s Proposed Congestion Pricing Scheme

Income Group

Time Period High Middle Low Very Low

Peak Hours (6-10 a.m., 3-7 p.m.) 6.50 4.33 2.17 Free

Off-Peak Hours Free Free Free Free

Table 4: San Francisco’s proposed cordon pricing scheme as of September 1, 2021. Trips that enter the cordon (see Figure 8) would

be charged during peak hours according to the income of the registered vehicle. An individual’s Income Group depends both on

income and family size. For single individuals without dependants, for example, the annual income thresholds for high, middle,

low, and very low income are $150,000, $116,000, $66,000 and $46,000, respectively.
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Figure 8 — San Francisco’s Proposed Congestion Pricing Zone

Figure 8: San Francisco’s proposed cordon pricing scheme as of September 1, 2021. Trips that enter the cordon would be charged

during peak hours according to the pricing scheme outlined in Table 4. Tolls will be levied using electronic tag readers mounted

on gantries that span roadways on the border of the cordon region.

8.2. Personal Vehicle Trips in the San Francisco Area

The National Household Transportation Survey (NHTS) is a survey of US individual travel habits administered

by the Federal Highway Administration. Participants in this survey are recruited via mail; survey responses are

incentivized by small ($5 to $20) rewards, and can be completed through mail-back forms or online. The 2017

NHTS garnered responses from 381,975 individuals, each of whom filled out “Travel Diaries” that detailed their

travel habits during one randomly selected 24-hour period. In addition to information about the attributes of

the trip taken, the NHTS also collects demographic information about surveyed persons and their households.

I use the 2017 NHTS California Add-On10 to build a representative dataset of trips that cross San Francisco’s

proposed cordon zone.11 Each trip in this dataset consists of a start location (zip code or Census Block), an

end location (zip code or Census Block), information about the vehicle that took the trip (make, vintage, fuel

type), and the time of day that the trip was taken. I determine whether or not a trip passes through the cordon

using the HERE Technology’s Routes API. The resulting dataset contains 1,891 routes that cross the cordon

zone during weekdays between the hours of 4 a.m. and 10 p.m., which I plot in the left pane of Figure 9.

To predict substitution in time and space under San Francisco’s cordon, I construct a set of alternatives for

each trip. For every cordon trip in the NHTS, I construct alternative departure times at 12-minute intervals

throughout the day. Using HERE Technology’s Routes API, I can assign travel times to each of these alternative

trips by varying the departure time. For trips with termini that lie outside of the cordon zone (i.e., trips that only

pass through the cordon zone en route to their destination) I identify the most direct detour that circumvents

10The NHTS Add-On program allows States and Cities to pay the Federal Highway Administration to administer additional

surveys in their region for the purposes of developing a more comprehensive sample.
11Note that the FasTrak microdata used in Section 7 are ill-suited for this task because many of the trips that cross San

Francisco’s proposed cordon do not use any bridge (e.g., trips with two termini within the city of San Francisco).
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the cordon zone. I then calculate travel times for this non-cordon route for each 12-minute interval throughout

an average traffic day. These detour routes are plotted in the right pane of Figure 9.

The result of this data collation is a set of trip endpoints for the San Francisco area, where drivers can choose

over route ∈ {cordon, non-cordon} and time of day ∈ {4.0, 4.2, ... , 22.0}, as well as a generic outside option.

This choice set allows me to predict how drivers would choose between options based on the attributes (travel

time, time early, time late, and toll price) specified by the discrete choice model estimated in Section 3.

Figure 9 — Cordon and Non-Cordon Routes for Bay-Area Trips

Cordon Routes Non-Cordon Routes

Figure 9: This figure plots cordon and non-cordon routes constructed from the 2017 National Household Transportation Survey

(NHTS) California Add-On. The left pane plots 1,891 trips that cross San Francisco’s proposed congestion zone, according to

suggested routes generated with the HERE Technology’s Routes API. The right pane plots detour routes for the subset of these

trips where it is possible to circumvent the congestion zone (i.e., trips with both start and end points that are outside of the cordon).

Each driver’s choice set consists of a cordon route (the left pane) for every 12-minute time of day interval, as well as a non-cordon

route (the right pane), if such a detour exists, for every 12-minute time of day interval. The choice sets of all drivers also include a

generic outside option.

8.3. Trip-Level Externalities

For each trip described above (trips in the NHTS with suggested routes that pass through the cordon, as well

as alternative trips in space and time), I assign traffic and pollution externalities in a manner similar to the

process described in Section 5. The detail of the NHTS survey data, however, allows for more precise estimation
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of both congestion and pollution externalities relative to trips observed in the FasTrak tolling data.

As shown in Figure 5, emissions vary by vehicle attributes as well as travel speed. The NHTS includes

information about the vehicle used on each trip, including the vehicle vintage, make, and fuel type (gasoline,

diesel, EV, or hybrid). Using the travel time and distance information for each trip returned by the HERE

Routes API, I assign an average speed to each trip. I then merge emissions factors onto each trip based on

vehicle vintage, fuel type, and travel speed, using data from California’s EMFAC database. I plot the emissions

externalities for the 1,891 NHTS trips that cross the proposed cordon in Figure 10.

To assign congestion externalities to trips, I use estimates from Yang, Purevjav, and Li (2020), who show

that the marginal external (travel time) cost of traffic is convex in traffic density. Following the procedure used

to assign externalities to FasTrak trips, I rely on a comprehensive network of traffic sensors on roadways in the

Bay Area to estimate the traffic density along each route at different times of day. Concretely, this requires first

identifying sensors along the trip’s route, then assign a marginal external congestion cost (in dollars per mile)

to this point based on the average traffic density at that sensor at the time of day associated with the trip. A

trip’s total congestion externality is then the average of the external congestion costs (in dollars per mile) along

the route, multiplied by the length of the trip. I plot the trip-level externalities for the 1,891 NHTS trips that

cross the proposed cordon in Figure 10.

Figure 10 — External Costs for Trips Crossing San Francisco’s Proposed Cordon

Figure 10: This Figure plots pollution (brown) and congestion (orange) externalities by hour for trips in the 2017 National

Household Transportation Survey (NHTS) with suggested routes that pass through San Francisco’s proposed cordon zone. The

mean externality within any given hour is represented by a dot; the box spans the 25th to 75th externality percentile, and the

bars span the 5th to 95th externality percentile. Trip routes reflect the suggested directions from HERE Technology’s Routes API.

Congestion costs were calculated by identifying traffic sensors along a given route and assigning per-mile congestion costs to each

sensor using estimates of the density-congestion relationship from Yang, Purevjav, and Li (2020) and an average value of travel

time of $20, as per Goldszmidt et al. (2020). Pollution emissions were calculated by merging emissions factors from California

Air Resources Board’s EMFAC database to trips based on vehicle fuel type, vehicle age, and average trip travel speed. I convert

emissions to externalities using EPA social costs for global pollutants and EAISUR costs for local pollutant emissions in San

Francisco. All values are in 2020 dollars.
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8.4. Substitution Between Trips

The last set of parameters necessary for calculating optimal cordon prices are the parameters that govern how

substitutable trips are in time and space. Specifically, calculating optimal prices using equation 10 requires

leakage shares between trips: dhk

dpj
/
dhj

dpj
. Recall that if j and k are trips (defined as a specific route ∈ {cordon,

non-cordon} at a specific hour of day ∈ {4.0, 4.2, ..., 22.0} ) the leakage share between trip k and trip j represents

the share of the reduction in usage of trip k that shifts to trip j as a result of the increase of the price of taking

trip j. For a concrete example, imagine that a one dollar increase in the price of driving through a cordon zone

between the hours of 8 a.m. and 9 a.m. reduces trips by 10%, with 6% of all trips shifting one hour earlier (call

these trips y) and 4% of trips shifting to routes that circumvent the cordon (call these trips z). The leakage

shares are
dhy

dpx
/dhx

dpx
= 0.6 and dhz

dpx
/dhx

dpx
= 0.4, respectively.

The leakage shares are implied directly from parameters of the mixed logit regression estimated in Section

7.12 Formally, for any two trips {hl, rm} and {hj , rk}, where h is the hour of day for a given trip and r is an

indicator for whether or not the trip crosses San Francisco’s cordon, the leakage share between these two trips

for individual i is:

∂{hj ,rk}
∂p{hl,rm}
∂{hl,rm}
∂p{hl,rm}

=

∫
βis{hj ,rk}(θ)s{hl,rm}(θ)f(θ)dθ (24)

where θ is the joint distribution of random coefficients in the mixed logit model, βi is the logit parameter

governing price responsiveness for individual i, and s{hj ,rk}(θ) is the of share predicted trips that take route k

at time j under the random coefficient vector θ.

8.5. Optimal Prices

Figure 11 plots three lines relevant for understanding optimal cordon prices. The blue (solid) line plots the

average externalities for trips that pass through San Francisco’s cordon zone by hour of day, estimated using the

process detailed above. The green (dotted) line shows these externalities re-weighted as per Diamond (1973) to

account for the correlation between the price-responsiveness of trips and idiosyncratic trip-level externalities,

as reported in Table 2. Finally, the red line plots the second-best optimal prices for San Francisco’s proposed

cordon when tolling is restricted to morning and evening peak hours (6-10 a.m. and 3-7 p.m., respectively). The

second-best optimal scheme charges $2.20 during morning peak hours, and $2.85 during evening peak hours.

These second-best optimal prices are calculated using equation 10, and take into account both the correlation

between externalities and elasticities, as well as the substitution to unpriced alternatives in time and space.

12Note the distinction between this formula, which recovers a cross-price derivative, and the canonical formula for a mixed logit

cross-price elasticity (e.g., page 144 of Train (2009))
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Figure 11 — Second-Best Optimal Road Prices

Figure 11: This figure plots three prices relevant for understanding optimal second-best cordon tolls. The blue (solid) line plots the

average externality (pollution and congestion) for trips that cross San Francisco’s cordon by hour of day, estimated using data from

the 2017 NHTS (see Section 8.3). The green (dotted) line plots externalities re-weighted to account for the correlation between

trip-level externalities and trip-level elasticities, as per Diamond (1973). The red line plots the second-best optimal price for San

Francisco’s proposed cordon when tolling is restricted to morning and evening peak hours (6-10 a.m. and 3-7 p.m., respectively).

These second-best optimal prices are calculated using equation 10, and takes into account both the correlation between externalities

and elasticities (“Diamond weights”), as well as the substitution (leakage) to unpriced alternative trips in time or space.

The results plotted in Figure 11 reflect social damages calculated using driving conditions that exist in the

current, untaxed equilibrium. Consistent with the literature on externality taxation, the second-best tax formula

presented in Section 8 phrases optimal taxes as a function of externalities at the optimum. As shown in figures

4 and 25, the marginal damages associated with driving are non-constant in traffic density/speed, meaning

that in general, damages at the taxed equilibrium will be different (lower) than those observed in the untaxed

equilibrium. Whether or not the difference between marginal damages calculated at versus away from the

optimum is a first-order concern depends on the slope of the marginal damages function and the responsiveness

of drivers to taxation. In Appendix F, I use simulations where I iteratively calculate taxes and traffic density

to bound the second-best optimal cordon prices in San Francisco. The fixed point from this exercise constitutes

a lower bound because it ignores “induced demand”, which will tend to attenuate the difference in traffic

conditions between taxed and untaxed equilibria (Duranton and Turner, 2011). I recover lower bounds of $1.60

and $1.80 for the morning and evening peak-hours, respectively.
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8.6. The Impact of Pricing on Congestion, Emissions, and Welfare

After augmenting the NHTS data with information about externalities and the attributes of trips with alternative

routes and travel times, I simulate travel decisions under three scenarios.

1. No congestion pricing. This is the status quo; the only charges that trips may face are the existing

Bay Area bridge tolls, set to 2020 levels.

2. First-best (Pigouvian) pricing. Every trip a driver could choose would be priced according to its

social damages, which include both congestion and pollution externalities.

3. Second-best optimal peak-hour cordon prices. These prices are calculated using equation 10. Trips

that pass through the cordon area are charged $2.20 during morning peak hours, and $2.85 during evening

peak hours (see Figure 11).

I plot outcomes from these simulations in Figures 17 through 19, and summarize the results in Table 5. Two

themes emerge: first, on all three outcome measures ––– trips, congestion externalities, and pollution externali-

ties ––– second-best optimal peak-hour pricing more closely resembles the status quo than the first-best policy.

Second, there are distinct bunches in total trips, congestion, and pollution just outside peak-hour pricing periods.

Table 5 — Congestion, Pollution, and Welfare Effects of San Francisco’s Cordon Zone

Outcome Performance Relative to First-Best (%)

Reduction in Total Externalities 30.276

Reduction in Congestion 31.043

Reduction in Pollution 23.699

Welfare Gain 28.840

Table 5: This table compares the second-best optimal cordon pricing scheme in San Francisco to a first-best policy where all

vehicle trips (all times of day; cordon and non-cordon) are charged based on the social damages they generate. The four outcomes

of interest are total externalities (pollution and congestion), congestion alone, pollution alone, and total welfare (the utility of all

drivers, in dollars, less total externalities). The results in this table reflect 600,000 simulated choices by drivers in the NHTS dataset

constructed above — 600,000 is roughly the number of weekday trips that pass through San Francisco’s proposed cordon, according

to the San Francisco County Transportation Authority. The choice probabilities for different alternatives (cordon vs. non-cordon

trips at different times of day, and a generic outside option) were generated by applying the mixed logit model shown in Table 2 to

the NHTS driver choice sets constructed in Section 8.

8.7. Cordon Pricing in New York and Los Angeles

In addition to San Francisco, city governments in New York and Los Angeles are also considering implementing

cordon pricing zones (mapped in Figure 12). In this section, I calculate optimal peak-hour cordon prices for

each of these cities, and evaluate the performance of the second-best optimal cordon pricing scheme relative to

a policy that prices every trip at social marginal damages.
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Figure 12 — Proposed Cordons in New York and Los Angeles

Figure 12: Proposed cordon pricing schemes in New York and Los Angeles. All proposals are as of August, 2021. The New York

congestion map is courtesy of the Regional Plan Association; The Los Angeles map is courtesy of the LA Metro.

As outlined in Section 2, calculating the second-best optimal cordon prices requires information about the

marginal damages of trips that cross through a cordon zone, as well as information about the elasticity and

substitutability of these trips. For each of the above cities, I follow the same general template as in San Francisco

(see Sections 8.2 through 8.4): First, I use survey data13 and Here Technology’s Routes API to identify trips

where the fastest route passes through the city’s proposed cordon. Second, I use vehicle attributes and travel

speed to assign pollution externalities, and use traffic density data14 from city roads to assign congestion

externalities to those trips. Third, I calculate substitution parameters between those trips.

Ideally, there would be a natural experiment in each city that would allow for the estimation of city-specific

driving demand primitives (price responsiveness, β, scheduling costs, γe and γl, and the value of travel time, α)

that are used to calculate substitution parameters, as well as city-specific correlations between externalities and

price responsiveness (Diamond weights). Absent such experiments, I calculate optimal cordon prices and welfare

outcomes in New York and Los Angeles using the driving demand primitives and Diamond weights estimated

in San Francisco (see Table 2). These results are reported in Tables 6 and 7. In Appendix I, I use questions

from the 2017 NHTS to examine the external validity of the model estimated in San Francisco. Specifically, the

NHTS asks respondents to report their schedule flexibility (Yes/No) as well as their responsiveness to gasoline

demand (Scale of 1 to 5). I use the former question as a proxy for scheduling elasticity, and the latter as a

proxy for price responsiveness. These proxies for demand primitives are broadly similar across the three cities

I examine in this paper.

13The NHTS does not report detailed trip start and end locations for states that are not part of the NHTS Add-On program.

The trip-level data for New York come from the 2018 NY Citywide Mobility Survey.
14Traffic density data for Los Angeles is publicly available through PeMS. Traffic density for NY is courtesy of the NYSDOT

Traffic Monitoring Section.
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Table 6 — Comparing Second-Best Cordon Prices to Social Damages

Value ($)

Period San Francisco Los Angeles New York

Second-Best Price, AM Peak (6-10) 2.201 3.298 7.294

Second-Best Price, PM Peak (3-7) 2.850 4.533 7.919

Average Social Damages, AM Peak (6-10) 3.115 4.877 8.186

Average Social Damages, PM Peak (3-7) 3.821 5.724 12.635

Table 6: This table compares second-best optimal peak hour prices for the proposed cordons in San Francisco, Los Angeles, and

New York to the average social damages associated with trips that pass through the cordon zones during this period. “Social

damages” include both congestion and pollution damages. The second-best optimal cordon prices were calculated using Equation

10 — they reflect both heterogeneity in trip-level externalities, and leakage in time and space.

Table 7 — Congestion, Pollution, and Welfare Effects of Peak-Hour Cordon Pricing

Performance Relative to the First-Best (%)

Outcome San Francisco Los Angeles New York

Reduction in Total Externalities 29.846 20.908 39.105

Reduction in Congestion 30.741 21.361 39.489

Reduction in Pollution 22.031 16.320 34.938

Welfare Gain 28.370 15.060 42.717

Table 7: This table compares the second-best optimal peak-hour cordon pricing scheme in 3 US cities to a first-best policy where

all vehicle trips (all times of day; cordon and non-cordon) are charged based on the social damages they generate. “Peak hours” are

defined as 6-10 a.m. and 3-7 p.m.; second-best cordon prices are constrained to be uniform during these hours. The four outcomes

of interest are total externalities (pollution and congestion), congestion alone, pollution alone, and total welfare (the utility of

drivers, in dollars, less total externalities). The results in this table reflect the simulated choices of 600,000 (SF and LA) to 1

million (NY) drivers. The choice probabilities for different alternatives (cordon vs. non-cordon trips at different times of day, and

a generic outside option) were generated by applying the mixed logit model shown in Table 2 to the driver choice sets constructed

using transportation survey data (see Section 8).

8.8. Hourly Cordon Pricing

Tables 5, 6, and 7 describe results where the policymaker is restricted to only price cordon trips during peak

hours, as is proposed by the San Francisco County Traffic Authority. In this section I relax this constraint,

allowing the policymaker to set a fixed hourly toll schedule during normal commuting times. In the notation of

the second-best tax model outlines in Section 2, The set J now includes 14 taxable “goods,” where each good

covers all cordon trips for a given hour of day ∈ {6, 7, ..., 19}.
Tables 8 and 9 display estimates of welfare outcomes under second-best tax with hourly cordon pricing

versus a first-best policy where every trip is charged according to the social damages associated with that trip.

Relaxing this constraint leads to significant welfare improvements in three cities relative to a peak-hour scheme

––– the welfare gains are roughly twice as large in San Francisco and Los Angeles, and 16% higher in New York
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City. In each of the three cities, however, this more flexible policy fails to achieve more than half of the welfare

gains that would be realized under a first-best policy, due to a combination of externality leakage, and uniform

prices charged to heterogeneous users of the cordon zone within each hour.

Table 8 — Congestion, Pollution, and Welfare Effects of Hourly Cordon Pricing

Performance Relative to the First-Best (%)

Outcome San Francisco Los Angeles New York

Reduction in Total Externalities 44.459 36.596 49.358

Reduction in Congestion 45.097 37.044 50.086

Reduction in Pollution 38.975 32.072 41.457

Welfare Gain 51.104 29.392 49.706

Table 8: This table summarizes the performance of second-best optimal cordon pricing schemes when policymakers are allowed

to set a fixed schedule of tolls between 6 a.m. and 7 p.m., relative to a first-best policy where every trip is charged according to

its social damages. The four outcomes of interest are total externalities (pollution and congestion), congestion alone, pollution

alone, and total welfare (the utility of drivers, in dollars, less total externalities). The results in this table reflect simulated choices

using the mixed logit model shown in Table 2. The number of simulated trips reflects the number of daily trips in the cordon

regions proposed in each city (600,000 in San Francisco and Los Angeles, and 1,040,000 in New York), as estimated by the planning

authorities responsible for designing the cordon in each respective city. The “first-best” is a policy where all trips (regardless of the

time of day or whether they pass through the cordon) are charged according to the marginal damages associated with that trip.

Table 9 — Back of the Envelope Welfare Gains From Cordon Pricing

Welfare Gain Relative to the Status Quo ($ Million)

Policy San Francisco Los Angeles New York

First-Best 852 1, 100 1, 477

Second-Best (Peak Only) 246 166 630

Second-Best (Fixed Hourly) 412 323 715

Table 9: This table displays back of the envelope calculations for the annual welfare gains under three road pricing policies: 1) The

first-best policy where all trips (including those that re-route to avoid a city’s cordon) are priced according to marginal congestion

and pollution damages; 2) second-best peak hour (6-10 a.m. and 3-7 p.m.) prices (see Table 6); and 3) second-best-optimal time-

of-day prices, which are allowed to vary by hour according to a fixed schedule between 6 a.m. and 7 p.m. The cordon prices in rows

(2) and (3) are calculated using Equation 10 — they reflect both heterogeneity in trip-level externalities, and leakage in time and

space. The figures in this table reflect simulated choices using the mixed logit model shown in Table 2. The number of simulated

trips reflect the number of daily trips in the cordon regions proposed in each city (600,000 in San Francisco and Los Angeles, and

1,040,000 in New York), as estimated by the planning authorities responsible for designing the cordon in each respective city.
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9. Discussion

Cordon prices differ from a first-best driving tax in two important ways: incomplete coverage allows for leakage,

and uniform prices cannot reflect the heterogeneity in trip-level damages. I find that these two imperfections are

in tension as they apply to optimal road prices. Absent leakage, the correlation between price-responsiveness

and trip-level externalities (Table 2) implies second-best prices that are above marginal damages. Absent

heterogeneity, leakage to unpriced roads or times of day implies second-best prices that are below marginal

damages.

The results from Figure 11 show that the leakage effect strongly dominates in the case of San Francisco’s

cordon zone: Optimal prices are $2.20 for the morning peak period and $2.85 for the evening peak period —

roughly half of the average social cost for trips that pass through the cordon at those times.

My findings suggest that if the primitive determinants of driver decisions (price responsiveness, value of

travel time, schedule flexibility) are similar across cities, then optimal cordon prices are also below the average

of social damages generated by downtown trips in New York and Los Angeles. Table 6 shows that in New York,

for example, the second-best optimal cordon prices are about $7 for both the morning and evening peaks, which

is below the average social damages associated with cordon trips in each of those periods ($8.18 and $12.64,

respectively). In Los Angeles, the optimal morning and evening peak prices are $3.30 and $4.53, compared to

average social damages of $4.87 and $5.72.

Cordon zones charging the second-best prices described in Table 6 would generate significant welfare gains

for commuters and city residents in all three cities. The benefits from optimal peak-hour cordon prices range

from $246 million annually in San Francisco to $426 million annually in New York (Table 9). To put these

figures in perspective, the 2021 annual budget of the City of San Francisco is $13.7 billion, and the 2021 annual

budget of New York is $88.2 billion. These annual welfare gains are therefore on the order of 0.5 to 2% of city

budgets.

Despite these gains, the results in Section 8 suggest that the blunt nature of cordon pricing limits their

effectiveness relative to an ideal policy. Optimal peak-hour cordons achieve between 15% (Los Angeles) and

41% (New York) of the welfare gains that would be realized under a first-best policy. Notably, peak-hour

pricing policies are less effective at internalizing pollution externalities than they are at internalizing congestion

externalities. This reflects the fact that a) congestion externalities represent the majority of the social damages

from an average cordon trip and are therefore implicitly more heavily weighted in the optimal tax formula, and

b) trip-level pollution externalities are not highly temporally correlated with congestion externalities, as shown

in Figure 10.

What adjustments could improve the performance of the proposed cordon zones in the United States?

Relative to a peak-only tolling scheme, allowing policymakers to set a fixed schedule of prices that vary by time

of day (Table 8) provides sizeable welfare gains: $166 million in San Francisco, $151 million in Los Angeles, and

$85 million in New York. In each city, however, this flexible pricing strategy fails to achieve half of the welfare

gains relative to the first-best.

The theory provided in Section 2 suggests that policymakers may want to set boundaries to preempt spatial

leakage. Depending on the idiosyncratic geography of a city, an optimal cordon zone may include outlying

or relatively uncongested routes that provide close substitutes for congested central roads. Expanding cordon

zones, however, comes at a cost; regardless of the design of the tolling system at the boundaries, trips that

remain entirely inside the cordon are not priced. Expanding the cordon too far may therefore undermine the

policy’s overall coverage. A full characterization of this tradeoff is beyond the scope of this paper, but may

prove an interesting question for future research.
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10. Conclusion

This paper makes three contributions: First, this paper generates the first estimates of optimal cordon prices

that account for both pollution and congestion externalities. While optimal prices vary across proposed cordon

zones in the US, several themes emerge: Congestion externalities constitute the bulk of marginal damages that

determine optimal cordon prices, generally outweighing pollution externalities five- to ten-fold. This finding

accords with work by Parry and Small (2005), who suggest that congestion (rather than pollution) is the largest

component of an optimal gasoline tax. Additionally, optimal cordon prices tend to be below the average social

damages associated with trips that cross through a cordon because of externality leakage in time and space. This

leakage effect dominates the heterogeneity effect (see Diamond (1973)), which, all else equal, pushes second-best

optimal prices above average social damages.

Second, this paper presents the first estimates of the welfare losses that result from imperfections in real-

world cordon policies. Back of the envelope calculations suggest that while a second-best peak hour cordon price

in San Francisco would produce roughly $200 million dollars worth of welfare gains, this policy would fall short

of the first-best policy by $270 million annually. This foregone welfare is significant: $270 million is roughly 2%

of the City of San Francisco’s 2020-2021 Budget ($13.7 billion). The predicted performance of proposed cordons

in New York and Los Angeles are qualitatively similar. Notably, among these imperfect policies, the peak-hour

cordon zone in New York performs the best (capturing 42% of possible welfare gains), and the peak-hour cordon

in Los Angeles performs the worst (capturing just 15% of possible welfare gains). This likely reflects the fact

that it is much more difficult to find substitute routes in New York than it is in Los Angeles due to idiosyncratic

geography.

Lastly, this paper contributes to public and environmental economics by extending existing models of second

best-taxation to simultaneously account for leakage and heterogeneity in externalities. Accounting for these

policy imperfections implies subtly different policy prescriptions than the canonical “Principle of Targeting”

Sandmo (1975). When externality leakage and externality heterogeneity are present, the policy instrument

that generates the largest welfare improvements may not be the tax that best targets the naive average of

externalities. Instead, for each good, the optimal instrument balances the magnitude of externality reduction

with the damages that would result from leakage. The results in this paper highlight a case where, due to policy

imperfections, the optimal policy differs significantly from a tax that best targets the average of consumption

externalities. While applying the second-best tax framework outlined in this paper requires detailed information

about externalities and consumer demand, the increasing availability of microdata continues to lower the costs

for credible estimation of demand systems. This trend, together with the ubiquity of imperfections in externality

taxation, suggest that this framework will be useful for future research in settings outside of optimal road pricing.
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Appendix

A. Theory Appendix

A.1. Substitution with Many Goods

Setup: A representative consumer chooses quantities of M goods, (h1, ..., hM ) and a numeraire, z. Each non-

numeraire good has an associated externality, φm. A policymaker can choose tax levels for goods j ∈ {1, ..., J}
where J < M . I assume goods k /∈ {1, ..., J} are un- or under-taxed.

The consumer’s problem: An agent maximizes utility over M goods (h1, ..., hM ) and a numeraire good z.

max{U(h1, ..., hM ) + z} s.t. (25)

(p1 + τ1)h1 + (pJ + τJ)hJ + pJ+1hJ+1 + ...+ pMhM + z ≤ I (26)

The first-order conditions for an interior solution to the consumer’s problem are:

Uj = λ(pj + τj) ∀ j ∈ {1, ..., J} (27)

Uk = λ(pk) ∀ k /∈ {1, ..., J} (28)

λ = 1 (29)

The planner’s problem: I assume that the planner seeks to maximize aggregate welfare, which is the utility

of the representative consumer less the aggregate social cost of consumption,
∑M

1 φmhm. The planner’s choice

variables are tax levels τ1...τJ , which are applied to the taxable goods j ∈ {1, ..., J}.

max{U(h1, ..., hM ) + z −
M∑
1

φmhm} st.

p1h1 + ...+ pNhN + z ≤ I

(30)

Assuming an internal solution, first-order condition wrt pj (where j ∈ {1, ..., J}) is:

0 =
∂hj
∂pj

[Uj − φj − pj ] +

M∑
k 6=j

∂hk
∂pj

[Uk − φk − pk] (31)

Plugging in the consumer’s first order conditions and solving for τm...

0 =
∂hj
∂pj

[τj − φj ] +

J∑
k 6=j

∂hk
∂pj

[τk − φk] +

M∑
l=J+1

∂hl
∂pj

[φl] (32)

τj = φj +
1
∂hj

∂pj

(

J∑
k 6=j

∂hk
∂pj

[φk − τk] +

M∑
l=J+1

∂hl
∂pj

φl) (33)
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This intermediate results is intuitive. Holding fixed all taxes other than τj , the optimal value for this final tax

is its externality, φm, minus a term that captures the extent to which consumers switch to other goods, and the

level of unpriced externality of those goods.

Identifying the optimal tax level for all taxable goods requires solving J equations simultaneously:

τj +
1
∂hj

∂pj

(

J∑
k 6=j

∂hk
∂pj

τk) = φj +
1
∂hj

∂pj

M∑
l=1

∂hl
∂pj

φl (34)

This gives us J equations, each linear in the J tax levels:

aj1τ1 + ...+ ajkτk + ...+ ajJτJ = bj ∀j ∈ {1, ..., J} (35)

Where ajk and bm are defined as:

ajk =

∂hk

∂pj
∂hj

∂pj

(36)
βj = φj +

M∑
l=1

∂hl

∂pj
∂hj

∂pj

φl (37)

The a and β terms have an intuitive interpretation. ajk is the share of the reduction in overall consumption of

good j that shifts to good m as a results of an increase in the price of good j. βj is the overall reduction in

externalities that results from the increase in the price of good j; this consists of a direct component, φj plus a

(negative) leakage term,
∑M
l=1

∂hl

∂pj
/
∂hj

∂pj
φl.

This system can be written as:

a1
1 ... a1

J

...

aj1 ... aJJ


τ1...
τJ

 =

b1...
bJ

 (38)

Aτ = b (39)

τ = A−1b (40)

A.2. Heterogeneity and Leakage

Setup: N Heterogeneous consumers choose between M externality-generating goods and a numeraire, z. I

denote individual i’s consumption of good m as hmi . Each individual has an exogenous income µi. I as-

sume that each consumer’s utility is a function of their consumption of these M goods and a quasilinear nu-

meraire, as well as other’s consumption of these goods (which generate externalities and decrease i’s utility):

Ui(h
1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h

1
N , ...h

M
N ) + zi.

As in section 2.3, a policymaker can choose tax levels for goods j ∈ {1, ..., J} where J < M . I assume goods

k /∈ {1, ..., J} are un- or under-taxed. I denote τ j as the tax on good j.
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The consumer’s problem: Agent i maximizes utility over M goods (h1
i , ..., h

M
i ) and their consumption of the

numeraire good zi.

max{Ui(h1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h

1
N , ...h

M
N ) + zi} st.

(p1 + τ1)h1
i + (pJ + τJ)hJ + pJ+1hJ+1

i + ...+ pMhMi + zi ≤ µi
(41)

The first-order conditions for this problem are:

∂Ui

∂hji
= λ(pj + τ j) ∀ j ∈ {1, ..., J}

∂Ui
∂hki

= λ(pk) ∀ k /∈ {1, ..., J}

λ = 1

(42)

The planner’s problem: I assume that the planner seeks to maximize aggregate welfare,
∑N

1 (Ui + zi). The

planner’s choice variables are tax levels τ1...τJ , which are applied to the taxable goods j ∈ [1, J ].

max{
N∑
i

(Ui(h
1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h

1
N , ...h

M
N ) + zi)

st. (p1)

N∑
i

h1
i + ...+ (pJ)

N∑
i

hJi + (pJ+1)

N∑
i

hJ+1
i + ...+ (pM )

N∑
i

hMi +

N∑
i

zi ≤
N∑
i

µi

(43)

Assuming an internal solution, first-order condition wrt pj (where j ∈ [1, J ]) is:

0 =

N∑
i=1

∂Ui
∂hli

∂hli
∂pj

+

N∑
i=1

N∑
g 6=i

∂U i

∂h1
g

∂hg1
∂pj

+ ...+
∂U i

∂hMg

∂hMg
∂pj

− p1
∑
i

∂h1
i

∂pj
− ...− pM

∑
i

∂hM1
∂pj

(44)

Plugging in the consumer’s first order conditions and solving for τj ...

τj =

∑N
i=1

∑N
g (∂U

i

∂h1
g

∂h1
g

∂pj
+ ...+ ∂Ui

∂hM
g

∂hM
g

∂pj
)∑N

i=1
∂hj

i

∂pj

+

∑J
k 6=j

∂hk
i

∂pj
τk∑N

i=1
∂hj

i

∂pj

(45)

This expression for the optimal level of a given tax is equivalent to the equation for substitutes with homogeneous

damages where each of the marginal damages have been replaced by a “Diamond” term which accounts for

heterogeneity.
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B. Additional Figures and Tables

Figure 13 — Traffic Sensors in the Bay Area

Figure 13: This figure plots traffic sensors from the Caltrans Performance Measurement System (PeMS). Each sensor reports hourly

vehicle count and speed data that are converted to traffic density (vehicles/lane/mile) using the fundamental equation of traffic

flow. These traffic density readings are then used to assign congestion externalities to vehicle trips based on route and time of day,

as described in sections 5 and 8.

[This space is left intentionally blank]
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Figure 14 — Mixed Logit Results

Figure 14: This figure displays the mean and standard deviation from a random coefficients (“mixed”) logit regression used to

estimate the parameters in Equation 13. The data used in this regression are the FasTrak tolling microdata described in section

5: A panel of 32,104 individuals and 1,078,044 bridge crossings between June 15, 2010 and July 15, 2010, excluding weekends and

holidays. The dependent variable is an indicator variable for whether an individual i elects to take a trip on route r at time of day

h. Travel time is the travel time (in hours) that driver i would incur by traveling via route r at time h. Time early is the number of

hours that that driver i would arrive before their ideal arrival time if they were to travel via route r at hour h; time late is defined

analogously. Price is the toll that driver i would incur by traveling via route r at hour h. The mean and standard deviation of all

time-related variables have been normalized relative to the coefficient on the price variable.

Table 10 — Mixed Logit Results

variable mean sd

Time Early ($/hr) 2.033 0.175

Time Late ($/hr) 5.984 1.032

Travel Time ($/hr) 14.647 1.491

Price 1.000 0.135

Table 10: This table displays the mean and standard deviation from a random coefficients (“mixed”) logit regression used to

estimate the parameters in Equation 13. The data used in this regression are the FasTrak tolling microdata described in section

5: A panel of 32,104 individuals and 1,078,044 bridge crossings between June 15, 2010 and July 15, 2010, excluding weekends and

holidays. The dependent variable is an indicator variable for whether an individual i elects to take a trip on route r at time of day

h. Travel time is the travel time (in hours) that driver i would incur by traveling via route r at time h. Time early is the number of

hours that that driver i would arrive before their ideal arrival time if they were to travel via route r at hour h; time late is defined

analogously. Price is the toll that driver i would incur by traveling via route r at hour h. The mean and standard deviation of all

time-related variables have been normalized relative to the coefficient on the price variable. The mean and standard deviation of

all time-related variables have been normalized relative to the coefficient on the price variable. All values are in 2010 dollars.
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Figure 15 — Bunching at Price Notches

Figure 15: This figure plots the density (the share of total daily crossings) of passenger vehicle trips crossing San Francisco’s Bay

Bridge in the 6 months before (blue) and 6 months after (red) the imposition of peak hour pricing on July 1, 2010. This plot

excludes trips that use the carpool lane, as well as eligible electric vehicles, each of which faced a different pricing scheme. The red

shaded regions demarcate times of day that were subject to peak-hour pricing after July 1, 2010.
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Figure 16 — Detail of Bunching at Price Notches

Figure 16: San Francisco’s Bay Bridge imposed peak hour pricing on July 1, 2010 (see Section 4). This figure plots the density

of passenger vehicle trips crossing the Bay Bridge in the 6 months before (blue) and 6 months after (red) the imposition of peak

hour pricing for the 10 a.m., 3 p.m., and 7 p.m. price notches. This plot excludes trips that use the carpool lane, as well as eligible

electric vehicles, each of which faced a different pricing scheme. The red shaded regions demarcate times of day that were subject

to peak-hour pricing after July 1, 2010.
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Figure 17 — Simulated Travel Choices Under Peak-Hour Cordon Pricing in San Francisco

Figure 17: In this figure I plot the number of trips that pass through or near the cordon under three simulations using the mixed

logit model estimated in Table 2 of Section 7 together with the NHTS trip dataset described in Section 8. In each scenario, I predict

600,000 choices — roughly daily total of vehicle trips that pass through San Francisco’s proposed cordon (San Francisco County

Traffic Authority, 2021). The grey line plots predicted trips by time of day without any pricing (the status quo). The blue line plots

trips under the first-best scheme where every trip a driver could choose (including non-cordon trips) would be priced according to

it’s marginal pollution and congestion externalities. The red line plots trips under the second-best optimal peak-hour cordon price

from Figure 11. Note that all lines include both trips that cross through the cordon, and “detour” trips that circumvent the cordon.
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Figure 18 — Simulated Congestion Under Peak-Hour Cordon Pricing in San Francisco

Figure 18: In this figure I plot the total congestion externalities under three simulations using the mixed logit model estimated in

Table 2 of Section 7 together with the NHTS trip dataset described in Section 8. In each scenario, I predict 600,000 choices —

roughly daily total of vehicle trips that pass through San Francisco’s proposed cordon (San Francisco County Traffic Authority,

2021). The grey line plots the sum of congestion externalities by time of day without any pricing (the status quo). The blue line

plots congestion under the first-best policy where every trip a driver could choose (including non-cordon trips) would be priced

according to it’s marginal pollution and congestion externalities. The red line plots sum of congestion externalities under the

second-best optimal peak-hour cordon price from Figure 11. Note that all lines include congestion from trips that cross through

the cordon, as well as “detour” trips that circumvent the cordon.
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Figure 19 — Simulated Pollution Under Peak-Hour Cordon Pricing in San Francisco

Figure 19: In this figure I plot the total pollution externalities under simulations using the mixed logit model estimated in Table

2 of Section 7 together with the NHTS trip dataset described in Section 8. In each scenario, I predict 600,000 choices — roughly

daily total of vehicle trips that pass through San Francisco’s proposed cordon (San Francisco County Traffic Authority, 2021).

The grey line plots the sum of pollution externalities by time of day without any pricing (the status quo). The blue line plots

pollution externalities under the first-best policy where every trip a driver could choose (including non-cordon trips) would be

priced according to it’s marginal pollution and congestion externalities. The red line plots sum of pollution externalities under the

second-best optimal peak-hour cordon price from Figure 11. Note that all lines include pollution from trips that cross through the

cordon, as well as “detour” trips that circumvent the cordon.
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C. Calculating Emissions Externalities

This section details the process of estimating emissions externalities for each trip in the FasTrak dataset.

The California Emissions Factor (EMFAC) fleet database reports average vehicle emissions rates (measured

in grams per mile) by county. These data are stratified by vehicle fuel type, vehicle vintage, and vehicle

travel speed. The EMFAC database reports the following pollutant species: particulate matter (PM2.5, or

PM), nitrogen oxides (NOx), nitrous oxide (N2O), reactive organic compounds (ROC), ammonia (NH3), carbon

dioxide (CO2), sulfur oxides (SO2), and methane (CH4). The data underlying EMFAC aggregates reflect state

vehicle registrations and data from the California Bureau of Automotive Repair’s (BAR) Smog Check database.

For each FasTrak trip, I assign emission factors for each pollutant based on the average travel speed for that trip

(see Appendix E) and the county where the FasTrak device is registered. The total emissions of any pollutant

is the estimated emissions rate for that trip multiplied by the trip length.

To convert trip-level emissions to costs, I use social cost estimates from two sources. For local pollutants, I

use damages predicted by the EAISUR model (Heo, Adams, and Gao, 2016), which combines a state-of-the-art

chemical transport model together with estimates from the economics and epidemiology literatures to predict

the cost of emitting pollution in different areas of the United States. For global pollutants, I use social damages

from the US EPA. These pollutant values are listed in Table 13.

Table 13 — Social Costs of Vehicle Pollution in San Francisco

Pollutant Damage ($/Ton)

PM2.5 772, 000

SO2 65, 800

NOx 24, 200

NH3 1, 24, 000

CO2 51

CH4 1, 500

N2O 18, 000

ROC 2, 392

Table 11: This table display the social costs of emitting 1 ton of various pollutants in San Francisco. Estimates of local pollutants

(PM2.5, nitrogen oxides (NOx), nitrous oxide (N2O), reactive organic compounds (ROC), ammonia (NH3), sulfur oxides (SO2))

reflect annual averages from the EAISUR model (Heo, Adams, and Gao, 2016). Global pollutants (carbon dioxide (CO2) and

methane (CH4)) are values used by the US EPA.
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Table 13 — Social Costs of Vehicle Pollution in Los Angeles

Pollutant Damage ($/Ton)

PM2.5 1, 270, 000

SO2 44, 750

NOx 52, 750

NH3 825, 750

CO2 51

CH4 1, 500

N2O 18, 000

ROC 2, 392

Table 12: This table display the social costs of emitting 1 ton of various pollutants in Los Angeles. Estimates of local pollutants

(PM2.5, nitrogen oxides (NOx), nitrous oxide (N2O), reactive organic compounds (ROC), ammonia (NH3), sulfur oxides (SO2))

reflect annual averages from the EAISUR model (Heo, Adams, and Gao, 2016). Global pollutants (carbon dioxide (CO2) and

methane (CH4)) are values used by the US EPA.

Table 13 — Social Costs of Vehicle Pollution in New York City

Pollutant Damage ($/Ton)

PM2.5 1, 270, 000

SO2 44, 750

NOx 52, 750

NH3 825, 750

CO2 51

CH4 1, 500

N2O 18, 000

ROC 2, 392

Table 13: This table display the social costs of emitting 1 ton of various pollutants in New York City. Estimates of local pollutants

(PM2.5, nitrogen oxides (NOx), nitrous oxide (N2O), reactive organic compounds (ROC), ammonia (NH3), sulfur oxides (SO2))

reflect annual averages from the EAISUR model (Heo, Adams, and Gao, 2016). Global pollutants (carbon dioxide (CO2) and

methane (CH4)) are values used by the US EPA.
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D. Bunching Estimator

Decomposition of the Bunching Estimator

Table 14 — Bunching Estimator for Scheduling Costs (Shifting Later, 10 a.m.)

Parameter Estimate

Fraction Unresponsive (a) 0.87357

Excess Mass at Notch (B) 0.00136

Baseline Density at Notch, h0 0.00059

Mean Schedule Cost without Friction ($/hour) 87.51086

Mean Schedule Cost accounting for Frictions ($/hour) 11.06393

Mean Schedule Cost accounting for Frictions and Travel Time ($/hour) 15.49765

Table 14: Rows 1-3 of this table show estimates of parameters used to infer scheduling costs from the additional density of trips

just after the end of peak-hour pricing on San Francisco’s Bay Bridge (equation 21). Rows 4-6 show estimates of scheduling costs.

In Row 4, I calculate the naive average scheduling cost under the assumption that there are no optimization frictions. In row 5, I

use the estimated fraction of non-responsive individuals from row 1 to account for optimization frictions. In row 6, I also account

for the difference in travel times for drivers who reschedule their trips to avoid peak-hour pricing.

Table 15 — Bunching Estimator for Scheduling Costs (Shifting Earlier, 5 a.m.)

Parameter Estimate

Fraction Unresponsive (a) 0.76058

Excess Mass at Notch (B) 0.00208

Baseline Density at Notch 0.00019

Mean Schedule Cost without Friction ($/hour) 18.65659

Mean Schedule Cost accounting for Frictions ($/hour) 4.46673

Mean Schedule Cost accounting for Frictions and Travel Time ($/hour) 6.25671

Table 15: Rows 1-3 of this table show estimates of parameters used to infer scheduling costs from the additional density of trips

just after the end of peak-hour pricing on San Francisco’s Bay Bridge (equation 21). Rows 4-6 show estimates of scheduling costs.

In Row 4, I calculate the naive average scheduling cost under the assumption that there are no optimization frictions. In row 5, I

use the estimated fraction of non-responsive individuals from row 1 to account for optimization frictions. In row 6, I also account

for the difference in travel times for drivers who reschedule their trips to avoid peak-hour pricing.
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Figure 20 — Travel Times in the Vicinity Price Notches

Figure 20: This figure plots average travel times for trips traversing the Bay Bridge during the morning hours. The average travel

times in this figure were calculated by 1) identifying all drivers that primarily use the Bay Bridge and b) using TomTom Historic

Traffic Stats to calculate travel times for each individual, for each hour of day as described in Section 5. The red shaded area

represent the approximate range where individuals adjust in response to the imposition of peak-hour pricing, according to FasTrak

toll data. The relatively flat profile of travel times in the price notch neighborhood suggests that the first-order decision facing

drivers who travel at this time of day is between price and scheduling costs, as opposed to changes in total travel time. As shown

in Tables 14 and 15, estimates that account for differences in travel times in the bunching estimators are roughly 30% larger that

estimates that ignore differences in travel times.
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E. Imputing Travel Times

Travel times, Ti, are not directly observed for FasTrak trips, and therefore must be inferred. In this appendix,

I describe the process for inferring T (hi, ri) for each trip in each individual’s choice set.

The choice set of any individual consists of all bridges, {Dumbarton Bridge, San Mateo Bridge, Bay Bridge,

Richmond Bridge} at all times of day, {4.0, 4.2, ..., 22}. A trip in this choice set constitutes a bridge-time pair.

I estimate travel times for each trip in each individual’s choice set in three steps:

Step 1: Infer the distribution of endpoints. The FasTrak tolling data include information about the

bridges used, as well as the home zip code associated with each FasTrak device. Before calculating travel

times using historic traffic data, I must make inferences about the missing endpoints for each driver. To do

so, I use survey data from the 2010-2012 California Household Travel Survey (CHTS). This survey constitutes

a representative sample of Bay Area commuters, an contains detailed information on the driving habits of

respondents. To generate a probability distribution of “work” endpoints for each individual, I subset the CHTS

survey data to trips that match based on home city and bridge used. The Bay Area is relatively unique in that

it is a large metropolitan area that consists of many small cities. The 29 “cities” that serve as termini for travel

time estimation are plotted in Figure 21.

Step 2: Calculate travel times. I use TomTom’s Historic Traffic Stats to calculate the travel times. For

each device, I calculate a travel time between the device’s home city and each of the endpoints assigned positive

probability in Step 1. Importantly, I estimate travel times for both trips that were taken, as well as counterfactual

trips that used a different bridge or were taken at a different hour of day.

Step 3: Aggregate travel times by bridge and time of day. Lastly, I collapse the distribution of possible

travel times within each hour by the probability weights from Step 1. The result is a data set that contains

estimated travel times for each trip taken by each device, as well as the travel times that a driver would have

faced for each trip had they taken it at a different hour of day or using a different bridge.

[This space is left intentionally blank]
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Figure 21 — TomTom Traffic Segments

Figure 21: This figure plots the coverage of the historic travel time data purchased from TomTom (in red) together with the 29

most populous cities in the Bay Area. These road segments were selected using Google Maps suggested driving points between the

origin and destination cities. These traffic data report the average weekday travel times for passenger vehicles traveling along each

segment of road, by hour of day, for the year prior (July 1, 2009 - July 1, 2010) and the year following (July 1, 2010 - July 1, 2011)

the 2010 adjustment to Bay-Area bridge tolls.
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F. Equilibrium Considerations

The second-best cordon price results presented in Section 8 reflect social damages calculated using traffic condi-

tions in untaxed equilibrium. Consistent with the literature on externality taxation, the second-best tax formula

in Section 2 phrases optimal taxes as a function of externalities at the optimum. As shown in figures 4 and 25,

the marginal damages associated with driving are not constant in traffic density/speed, meaning that in gen-

eral, damages at the taxed equilibrium will be different (lower) than those observed in the untaxed equilibrium.

Whether the difference between marginal damages calculated at versus away from the optimum is a first-order

concern depends on the slope of the marginal damages function and the responsiveness of drivers to taxation.

In this appendix, I simulate changes in traffic density under taxation to estimate a lower bound for the

second-best optimal cordon prices in San Francisco. Specifically, I iteratively calculate traffic density, driver

choices, and taxes until I reach a fixed point where driver’s decisions under a given tax vector, τ∗, imply traffic

densities (and associated externalities) such that applying equation 10 yields τ∗.

This algorithm is as follows:

1. Calculate cordon taxes (τn) using equation 10 and the externalities under current conditions (φ0), as

described in Section 8.

2. Use the NHTS dataset to simulate 600,00015 driver choices under τn.

3. Re-scale the hourly sensor-level road densities by comparing the simulated number of trips that would

pass over a given sensor in a given hour under the status quo to the number of trips that would pass over

a given sensor in a given hour under the simulation from step (2).

4. Re-estimate the social damages (φn) associated with each trip according to these updated hourly traffic

densities.

5. Repeat steps 1-4, replacing externalities under current conditions (φ0) in step 1 with φn, until the

optimal cordon price in subsequent iterations meet some arbitrary element-wise threshold for convergence:

|τhn − τhn+1| < ε, where τh is element h of the tax vector calculated in step n.

Figure 22 plots the results of applying this algorithm to cordon pricing in San Francisco using a convergence

threshold of $0.01. The initial points (iteration one) are the taxes calculated with trip-level damages that reflect

current traffic conditions, and are therefore equivalent to the results shown in Section 8 (see row 1 of Table

6). After 9 iterations of recalculating traffic density and taxes, the morning and evening converge to $1.59 and

$1.80, respectively.

The fixed point from this exercise constitutes a lower bound because it ignores “induced demand,” or

“rebound:” marginal drivers who would have chosen not to take a trip in the absence of road pricing, but choose

to take the trip under road pricing due to lower travel times. For any step n > 1 in the above algorithm, induced

demand would imply traffic densities higher than those estimated by the discrete choice model. Induced demand

would therefore attenuate the difference in traffic conditions between taxed and untaxed equilibria (Duranton

and Turner, 2011). Optimal taxes at the true equilibrium therefore lie between the results presented in Section

8 and the fixed point presented here.

15According to the San Francisco County Traffic Authority, roughly 600,000 vehicle trips cross San Francisco’s proposed cordon

daily.
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Figure 22 — Bounding Equilibrium Effects

Figure 22: Per-mile driving externalities are larger under denser traffic conditions (Yang, Purevjav, and Li, 2020). As a result, trip-

level traffic externalities calculated using untaxed traffic conditions may overestimate optimal taxes. This figure displays the results

of the simulation exercise where I iteratively calculate traffic density, driver choices, and taxes until reaching a fixed point where

driver’s decisions under a given tax vector, τ∗, imply traffic densities (and associated externalities) such that applying equation

10 yields τ∗. This optimal tax contains two elements: morning (blue) and evening (red) peak hour prices. The fixed point in this

exercise is a lower bound for the second-best peak-hour cordon prices in San Francisco because it ignores “rebound,” or “induced

demand” ––– drivers adding other trips or shifting from other modes in response to the improved traffic conditions under taxation.

[This space is left intentionally blank]
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G. Congestion Pricing and Accidents

In a manner similar to congestion and pollution externalities, the decision to drive imposes external accident

risk on other drivers. Anderson and Auffhammer (2014) show that this externality relies crucially on vehicle

weight, and exceeds congestion and pollution externalities for the average US driver.

Large accident externalities for the average US driver, however, may not translate to higher optimal cordon

prices because of differences in the risks of accidents in urban vs. rural areas. Empirical studies of the impact

of congestion charges on accidents suggest that the value of accident reductions are several orders or magnitude

smaller than pollution and congestion externalities. Green, Heywood, and Navarro (2016), for example, find

that the London cordon zone reduced overall accidents by 35%, and fatal accidents by 25 to 35%. Because

of the relatively low number of fatal auto-related deaths in London, however, the authors value these safety

improvements at just £28 million annually. For comparison, Leape (2006) estimates the congestion benefits

from London’s cordon zone were estimated at £230 million annually. Similarly, Percoco (2016) finds that

while Milan’s Cordon Zone reduced overall traffic accidents by 16 to 18%, there was no detectable impact on

fatal accidents. Valuations of associated benefits are therefore dominated by the roughly $3 billion in reduced

pollution and congestion externalities (Gibson and Carnovale, 2015).

The relatively small impact of congestion pricing on severe accidents may reflect the fact that many of the

main risk factors severe traffic accidents — high traffic speeds, drinking and driving, and nighttime driving —

are not well targeted by cordon zones. Relatedly, driving in cities in the US and Europe tends to be relatively

safe overall, making it straightforward to put bounds on the accident-related benefits that may accrue from

congestion pricing.

In San Francisco, for example, there are 20 to 30 fatal accidents (including pedestrian fatalities) each year

(City of San Francisco, 2021). Under a $10 million value of a statistical life, reducing traffic fatalities in San

Francisco by 30% would be worth roughly $90 million dollars ––– an order of magnitude smaller than my

estimated of the combined congestion and pollution benefits associated with cordon pricing in San Francisco.

All indicators suggest that a cordon zone would fall well short of this mark. During 2020, for example, the

number of traffic fatalities (31) did not fall amid the 30% pandemic-related decrease in Bay-Area traffic (City

of San Francisco, 2021; Savidge, 2021).

Together, these pieces of evidence suggests that it is unlikely that accounting for accident externalities would

substantively change the conclusions in this paper.
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H. Interactions with Existing Taxes and Revenue Requirements

In this appendix, I cover the interaction between road pricing and existing environmental policies, as well as

the literature on whether governmental revenue requirements impact the optimal Pigouvian tax.

H.1. Accounting for Existing Environmental Taxes

Broadly speaking, in the presence of existing Pigouvian taxes the optimal level for an additional tax covers the

difference between the marginal damages associated with consumption and the existing corrective tax. It is

therefore important to account for existing environmental policies that act as a tax on driving when calculating

optimal Pigouvian road prices.

There are a number of State and Federal policies that regulate vehicle-related local pollution emissions in

California. These policies largely fall into two categories: Tailpipe emissions regulations (e.g., catalytic converter

requirements) and fuel content regulations (e.g., volatile organic compound regulations). Below, I use a simple

model to demonstrate that these two types of policies have different implications for designing an additional

tax to internalize remaining externalities associated with driving. Regulations that impact vehicle costs should

not be taken into account when calculating optimal road prices. The costs of fuel content regulations, however,

should be subtracted from road prices to the extent that these regulations lead to higher per-mile driving prices.

Existing policies that impact vehicle cost:

Consider a representative household with exogenous income I that consumes two goods, driving x and a quasi-

linear numeraire good z. Driving is associated with an externality, φ(a). The per-mile magnitude of this

externality can be abated (a) on the assembly line at cost c(a). I assume that φa and ca are each differentiable,

with c′(a) > 0 and φ‘(a) < 0. The planner’s problem is to choose an abatement level, a and a diving level x to

maximize total welfare:

W = u(x) + z − φ(a) · x− c(a) s.t. I ≥ z − p · x

The Lagrangian associated with this maximization problem is:

L = u(x) + z − φ(a) · x− c(a) + λ(I − z − p · x)

The first-order conditions for an interior solution to this problem are:

λ = 1

u′(x) = φ(a) + p

φ′(a)x = c′(a)

These conditions imply that the planner equates marginal abatement costs and marginal abatement benefits,

and (separately) equates marginal driving costs and marginal driving benefits. The fact that abatement costs

do not enter directly into the first order condition for x implies that if a is set at some exogenous level, the

policymaker would ignore the abatement cost when choosing the optimal level of driving, only weighing the

utility of driving against the externalities that remain after abatement. I therefore ignore the costs of environ-

mental policies that impact vehicle prices (e.g., requirements for catalytic converters) when calculating the level

of “unpriced” externalities for drivers.
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Existing policies that impact fuel cost:

Now consider the same consumer model, but the per-mile magnitude of this externality can be abated by alter-

ing fuel content at cost c(a) · x. That is, the total abatement cost now depends on the amount of driving, x.

Again consider a policymaker who maximizes total social welfare, W :

W = u(x) + z − (φ(a)− c(a)) · x; s.t. I ≥ z − p · x

The Lagrangian associated with this maximization problem is:

L = u(x) + z − (φ(a)− c(a)) · x+ λ(I ≥ z − p · x)

The first-order conditions with respect to x and a are:

λ = 1

u′(x) = φ(a) + c(a) + p

φ′(a) = c′(a)

As above, these first-order conditions imply that the planner equates marginal abatement costs and marginal

abatement benefits, and equates marginal driving costs and marginal driving benefits. The crucial difference in

this case is that the marginal cost of driving now includes abatement costs. As a result, the social planner will

still weight these costs when setting optimal road prices.

The results in the body of this paper are not adjusted for existing environmental policies that impact the

variable cost of driving, namely fuel content regulation. Auffhammer and Kellogg (2011) estimate that fuel

content regulations in California cost roughly 12 cents (in 2020 dollars) per gallon. If an average trip crossing

San Francisco’s cordon boundary travels roughly 10 miles per hour and has a fuel efficiency of 20 miles per

gallon, the second-best optimal prices in this paper adjusted for pre-existing fuel regulation would be roughly

$0.06 lower than the results shown in Section 8.

H.2. Accounting for Government Revenue Requirements

The stylized models above raise the question of whether any policy that increases the per-mile cost of driving

about the competitive equilibrium should be accounted for when calculating optimal road prices. Work by

Kopczuk (2003) and Jacobs and De Mooij (2015) suggests that optimal taxation and Pigouvian taxation are

separable problems: The calculation of optimal road prices should not take into account taxes that exist as a

result of governments balancing the distortions of various revenue sources.

As noted by Jacobs and De Mooij (2015), however, this argument relies on the fact that the marginal cost of

public funds is one in an optimal tax system. If the marginal cost of public funds is not one, then the optimal

second-best Pigouvian tax could be higher or lower than a tax set equal to marginal social damages. Absent

strong evidence that the marginal cost of public funds is above or below one, I assume that the marginal cost

of public funds is one in the San Francisco Bay Area, and therefore do not adjust optimal road prices to reflect

their interactions with the tax system. As anecdotal evidence of this assumption, note that California state and

local ballot initiatives frequently feature direct votes on taxation, bond issuance, and spending decisions. It is

plausible that this low barrier to public finance reform allows California’s tax code to reflect citizen’s preferences

for public goods and redistribution more accurately than do tax codes regions without ballot initiatives.
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I. External Validity

The appropriateness of using of the driving demand model estimated using data from the San Francisco Bay

Area (see Section 7) to cordon pricing in other cities depends on whether trips taken in other cities are similarly

substitutable, and whether similar correlations between trip-level externalities and price responsiveness are

present. In this appendix, is use data from the 2017 National Household Transportation Survey to investigate

these relationships for two other US cities — New York and Los Angeles — that are currently considering

implementing congestion pricing.

Broadly, NHTS data suggest that the relevant relationships in each of these cities are similar to those in San

Francisco. Drivers appear similarly able to shift trips temporally. Figure 23, for example, shows that similar

fractions of drivers report flexible work schedules in each of these cities. Figure 24 shows that likelihood of a

given trip being flexible varies in New York and Los Angeles in a manner similar to the within-day variation in

San Francisco. Figures 25 through 27 provide suggestive evidence that the way that externalities generated by

driving — congestion and pollution — vary with price responsiveness in New York and Los Angeles is similar

to the way that these externalities vary with price responsiveness in San Francisco. In each city, drivers who

“agreed” or “strongly agreed” that gasoline prices impacted their decision to drive were modestly more likely to

drive an older, more polluting vehicle. Similarly, drivers that report being more responsive to gas prices report

driving along more congested routes, measured as the difference in reported commute time with vs. without

traffic.

Figure 23 — Schedule Flexibility by Metro Area

Figure 23: This figure plots the share of drivers who report having a flexible work schedule by metro area, according to the 2017

National Household Transportation Survey.
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Figure 24 — Schedule Flexibility by Time of Day

Figure 24: This figure plots the share of drivers who report having a flexible work schedule by time of day and metro area, according

to the 2017 National Household Transportation Survey.

Figure 25 — Emissions Factors vs. Gas Price Responsiveness

Figure 25: This figure plots estimates emissions factors of vehicles in the 2017 National Household Transportation Survey against

vehicle owners’ self-reported responsiveness of driving demand with respect to gasoline prices. Emissions factors reflect vehicle age

and fuel type.
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Figure 26 — Vehicle Age vs. Gas Price Responsiveness

Figure 26: This figure plots vehicle age against vehicle owners’ self-reported responsiveness of driving demand with respect to

gasoline prices using data from the 2017 National Household Transportation Survey.
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Figure 27 — Congestion vs. Gas Price Responsiveness

Figure 27: This figure plots self-reported gasoline price responsiveness against the amount of time a driver reports loosing to traffic

during their commute for drivers in the 2017 National Household Transportation Survey.
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J. Low-Income Exemptions

While road pricing can increase economic efficiency, concerns about regressivity have prompted planners in many

cities to consider road pricing schemes specifically designed to reduce the incidence on low-income road users.

In San Francisco, for example, a majority of the congestion pricing proposals under consideration include some

level of income-based exemption (San Francisco County Traffic Authority, 2021). Similarly, as of 2021, New

York plans to refund congestion tolls for drivers who make under $60,000 per year (Regional Plan Association,

2021).

Table 16 compares predicted reductions in pollution, congestion, and deadweight loss in San Francisco

under (a) the second-best peak hour cordon prices estimated using equation 10, and (b) the same policy where

drivers from low-income households (those with self-reported household income below $75,000 in the NHTS)

are exempt from cordon fees. This exercise suggests that the efficiency costs of these exemptions are modest:

exempting low-income drivers from cordon pricing in San Francisco would generate reductions in pollution

and congestion externalities that are 1-3 percentage points smaller than under an optimal no-exemption policy.

These efficiency costs are substantially smaller than the efficiency costs that reflect other imperfections in cordon

pricing. For example, I estimate that restricting pricing to peak hours generates reductions congestion, pollution

and deadweight loss that are 10 to 20 percentage points smaller than a pricing scheme where a policymaker can

set a fixed hourly schedule of prices between 6 am and 10 pm (see Table 8).

The relatively small efficiency cost of exemptions reflects the low proportion of low-income drivers in trips

that use the cordon. In the sample of 1,891 trips from the California NHTS with fastest routes that pass

through California’s cordon zone, just 9% are taken by drivers from houses with a total annual income of less

than $75,000.

Table 16 — Second-Best Cordon Pricing with Low-Income Exemptions

Performance Relative to First-Best (%)

Outcome Second-Best Peak Hour Low Income Exemption

Reduction in Total Externalities 30.576 28.173

Reduction in Congestion 31.367 28.782

Reduction in Pollution 23.779 22.939

Welfare Gain 32.304 32.601

Table 16: Column (1) of this table reproduces the results from Table 5, which compares outcomes under second-best optimal peak

hour cordon pricing to outcomes under Pigouvian pricing. The second column in this table compares the first-best policy to cordon

pricing scheme that is identical to the scheme column (1), except that households making less than $75,000 per year are exempt

from cordon fees. Income data reflect self-reported household income from the 2017 National Household Transportation Survey.
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