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Abstract

I estimate an elasticity of irrigation adoption to its gross returns in rural In-
dia. Many approaches to estimating this elasticity fail when agents select into
adopting irrigation on heterogeneous gross returns and costs. I develop a novel
approach to correct for selection using two instrumental variable estimators that
can be implemented with aggregate data on gross revenue and adoption of irri-
gation. I use climate and soil characteristics as an instrument for gross returns
to irrigation, and hydrogeology as an instrument for irrigation to correct for se-
lection. I estimate that a 1% increase in the effect of irrigation on yields causes
a 0.7% increase in adoption of irrigation. I use this elasticity to infer changes in
profits from changes in adoption of irrigation caused by shocks to its profitabil-
ity, and to conduct counterfactuals. First, groundwater depletion from 2000-2010
in northwestern India permanently reduced economic surplus by 1.2% of gross
agricultural revenue. Second, I evaluate a policy that optimally reduces relative
subsidies for groundwater irrigation in districts with large negative pumping ex-
ternalities, while holding total subsidies fixed. Under the policy, depletion caused
by subsidies decreases by 16%, but farmer surplus increases by only 0.07% of
gross agricultural revenue.
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1 Introduction

A common parameter of interest in economics is the elasticity of adoption of a binary

treatment to its treatment effect. In the classic Roy (1951) model, workers’ relative

potential wages across sectors determine their sectoral choice. Similarly, the effect of

the skill premium on high school graduates’ decisions to attend college is an important

input to models of directed technical change (Acemoglu, 1998), as is the effect of firms’

potential profits on entry decisions to many models in industrial organization and trade

(Melitz, 2003). An estimate of this elasticity is useful both for counterfactuals, such as

agents’ responses to a tax, or for welfare analysis, such as inferring lost surplus from

behavioral responses to a shock.

Selection complicates consistent estimation of this elasticity when economic agents

select into treatment on both idiosyncratic treatment effects and perceived costs of

adopting treatment. Existing approaches to estimating this elasticity require assuming

selection on observables (as noted by Heckman (1979)), imposing strong parametric

assumptions (Heckman, 1979), or access to sufficiently high powered instruments to

estimate a control variable nonparametrically (Ahn & Powell, 1993; Das et al., 2003;

Eisenhauer et al., 2015). This contrasts starkly with estimating treatment effects, where

linear instrumental variables estimates a local average treatment effect in the presence of

selection on unobservables and without imposing any parametric assumptions (Imbens

& Angrist, 1994).

In this paper, I focus on the elasticity of irrigation adoption to its gross returns in

India. Irrigation is of first order importance in Indian agriculture. From 1960 to 2010,

during India’s Green Revolution, the irrigated share of agricultural land grew from 18%

to 54%; over 60% of this growth came from the expansion of tubewells for groundwater

extraction. This extraction is not benign; Rodell et al. (2009) find extraction caused

water tables in northwest India to fall 3.3m from 2000-2010, or 0.21 standard deviations

of depth to water table across districts. Falling water tables, by increasing the costs of

groundwater irrigation, have been shown to increase poverty (Sekhri, 2014), decrease

land values (Jacoby, 2017), and cause outmigration and decrease area under irriga-

tion (Fishman et al., 2017). This has important implications for economic efficiency:

groundwater extraction is a classic example of “tragedy of the commons”, as farmers

do not internalize the increase in pumping costs their extraction causes for neighboring

farmers through declining water tables (Jacoby, 2017).

Despite potentially large externalities from groundwater extraction, formulating op-
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timal policy responses to declining water tables in India is difficult for two reasons. First,

the elasticity of irrigation to many counterfactual policies is unknown. Second, empiri-

cal estimates of the impacts per unit decline in water tables on agricultural profits are

not available, as agricultural profits in developing countries are notoriously difficult to

measure reliably.1 An estimate of the elasticity of groundwater irrigation for agricul-

ture to its gross returns would solve both of these challenges. For the first, responses of

irrigation to a policy are proportional to the elasticity of irrigation to its gross returns

times the effect of the policy on relative profits under irrigation. For the second, effects

of declining water tables on adoption of irrigation are proportional to their effects on

farmer profits times the elasticity of irrigation to its gross returns.

I estimate an elasticity of irrigation adoption to its gross returns. To do so, I first

build a generalized Roy model where farmers adopt irrigation if their gross returns to

irrigation are greater than their costs of irrigation; this allows for selection into irrigation

on unobservable heterogeneity in gross returns, and I make no parametric assumptions

about the joint distribution of gross returns and costs. Under this model, I show

that a linear instrumental variable estimator using an instrument for gross revenue

under irrigation estimates the sum of weighted averages of gross returns to irrigation (a

“local average treatment effect”) and inverse semielasticities of demand for irrigation

(a “local average surplus effect”). This builds on formulas for instrumental variables

bias from Angrist et al. (1996); here, the “bias” is the estimand of interest, a local

average surplus effect. Existing results imply the local average treatment effect, and

therefore the local average surplus effect, is identified with a continuous instrument

for irrigation (Heckman & Vytlacil, 2005) or bounded with a discrete instrument for

irrigation (Mogstad et al., 2017).2 Under stronger assumptions, which still allow sorting

on unobserved heterogeneity in both gross returns and costs, I show weighted linear

instrumental variables with an instrument for irrigation is a consistent estimator of this

local average treatment effect; the weights adjust the compliers to the instrument for

1Challenges in the measurement of agricultural profits in developing countries are discussed at
length in Foster & Rosenzweig (2010) and Karlan et al. (2014), among others. To list two, first,
absent administrative data, long household surveys are required to capture the full set of inputs
used in smallholder agriculture. Second, smallholder agriculture intensively uses non-marketed inputs
(primarily household labor) which are difficult to value.

2An extra monotonicity assumption is needed; the marginal farmers induced to adopt irrigation by
the instrument for irrigation and the instrument for gross revenue under irrigation are assumed to be
the same conditional on the propensity score and observables; I discuss this assumption in Section 3.2.
For point identification, conditions on the conditional support of the propensity score are needed as
well.
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irrigation to match the compliers to the instrument for gross revenue under irrigation

on observables.3

The generalized Roy model I use to study selection into irrigation on its gross returns

builds on a long literature surveyed in Heckman & Vytlacil (2007a,b); these models have

been used to study sectoral choice and wage premia (Roy (1951)), education and skill

premia (Willis & Rosen, 1979), and, closest to my setting, hybrid maize seed and its

gross returns (Suri, 2011). I build most closely on Eisenhauer et al. (2015), who establish

nonparametric identification of agents’ willingness to pay for treatment (irrigation) from

an instrument for treatment and an instrument for treatment effects (gross returns to

irrigation). I instead assume the existence of an instrument for potential outcome under

treatment (gross revenue under irrigation), and establish nonparametric identification of

the inverse semielasticity of adoption of treatment to the treatment effect under weaker

conditions. These weaker conditions are the union of the assumptions of the standard

local average treatment effect framework (Imbens & Angrist, 1994) and the assumptions

needed for point identification of economic surplus from a change in costs when potential

outcomes are independent of treatment conditional on observables (Willig, 1978; Small

& Rosen, 1981).

I estimate that a 1% increase in the gross returns to irrigation causes a 0.7% in-

crease in the irrigated share of agricultural land. I estimate this elasticity using climate

and soil characteristics as an instrument for gross revenue under irrigation, and using

hydrogeology as an instrument for irrigation. I use this elasticity to infer changes in

profits from changes in adoption of irrigation caused by shocks to profitability of irriga-

tion. Fishman et al. (2017) estimate the effect of declining water tables on adoption of

irrigation; with their estimate, my estimate of this elasticity implies that that the 3.3m

decline in depth to groundwater observed in northwest India from 2000-2010 decreased

economic surplus by 1.2% of gross revenue per hectare. These losses are large; for com-

parison, Government of India (2018) anticipate losses in India due to climate change of

1.8%/decade over the next century. I compare my estimate to a simple physics based

back-of-the-envelope that considers losses only from farmers’ increased electricity costs;

my estimate is six times as large as that back of the envelope, consistent with farmers’

3This approach generalizes assumptions made in Angrist & Fernandez-Val (2010) under which linear
instrumental variable estimators can be reweighted on observables to recover the same local average
treatment effect. In doing so it contributes to a number of recent papers which enables comparison
of compliers to different instruments under monotonicity by estimating marginal treatment effects
(Kowalski, 2016; Arnold et al., 2018; Mountjoy, 2018)) or bounding local average treatment effects
(Mogstad et al., 2017).
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cost share of electricity in irrigation.

I incorporate my estimate of the economic costs of declining water tables into a

model of optimal taxation of electricity for groundwater irrigation, following Allcott

et al. (2014). A social planner chooses subsidies for electricity use, trading off the

value of subsidies as a transfer to farmers with their deadweight loss and the nega-

tive externalities generated from induced marginal extraction. These externalities vary

across districts, as water tables fall more rapidly in thinner aquifers, and these falls are

experienced by more farmers when a larger share of land is irrigated. I calibrate the

model using data on groundwater extraction and aquifer characteristics for districts in

Rajasthan, the state in northwest India most known for falling water tables. I find the

observed electricity subsidy in Rajasthan is responsible for a 1.5 meter fall in water

tables, 46% of the observed rate of decline in northwest India. However, this subsidy

increases farmer surplus by 5.9% of gross agricultural revenue, and on the margin im-

plies the social planner is paying 1.56 Rs for 1.00 Rs in surplus transferred to farmers,

not far from a similar shadow cost in the US from Hendren (2016). Externalities are

important: of the 1.56 Rs, 0.31 Rs are lost to deadweight loss, while 0.25 Rs are lost to

negative externalities from induced marginal extraction.

I consider a counterfactual where the social planner optimally varies subsidies across

districts, relatively decreasing subsidies in high externality districts, while holding fixed

total subsidy payments. This alternate policy reduces the effect of subsidies on water

table declines by 16%, but it increases farmer surplus by only 0.07% of gross agricul-

tural revenue. This increase in surplus is small in magnitude relative to the reallocation

of surplus from subsidies from farmers in districts with high externalities to farmers in

districts with low externalities, consistent with political economy motives for electricity

subsidies (Dubash, 2007). However, the magnitude of surplus gains, and more gener-

ally the magnitude of externalities, are much larger under smaller calibrations of the

discount rate: while transfers and deadweight loss are static, falls in the water table

are permanent in the districts I consider, implying the social planner must trade off

transfers to farmers today with lost profits for farmers in future decades.

In providing these estimates, I build on a deep literature on the economics of irri-

gation. Most directly, I contribute to existing results of the impacts of surface water

irrigation (Duflo & Pande, 2007) and declining water tables (Sekhri, 2014; Fishman

et al., 2017) on welfare proxies in India, and hedonic estimates of the value of access to

groundwater in India (Jacoby, 2017) and in the US (Schlenker et al., 2007). In contrast, I

estimate sufficient parameters for many optimal policy calculations: the economic losses
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from a 1 meter decline in the water table, and the elasticity of demand for irrigation

to its gross returns. In this sense, I build on estimates of the elasticity of groundwater

extraction to electricity subsidies (Badiani & Jessoe, 2017) and output subsidies for

water intensive crops (Chatterjee et al., 2017). I use this estimated elasticity to build

on the optimal control literature, summarized in Koundouri (2004a); a large body of

work has used complicated, calibrated dynamic models of management of aquifers to

characterize optimal policy.4 Contributing to this literature, I take a sufficient statistics

approach, building a simple public economic model following Chetty (2009) and Allcott

et al. (2014): empirical estimates of elasticities are used where possible, and calibrated

parameters enter transparently into counterfactuals.

The rest of the paper is organized as follows. Section 2 describes the data used

and the context. Section 3 presents the model, including results on identification and

estimation. Section 4 describes the empirical strategy I use. Section 5 presents the main

results, including the impacts of groundwater depletion on rural surplus, and Section

6 discusses their robustness. Section 7 considers optimal subsidies for electricity for

groundwater irrigation, building on results from Section 5. Section 8 concludes.

2 Data and context

2.1 Context

India’s Green Revolution, starting in the 1960’s, was a time of rapid growth in agri-

cultural productivity, driven by increased adoption of new high yielding varieties of

seeds, fertilizers, pesticides, and irrigation (Evenson & Gollin, 2003). Irrigation was a

particularly important component: large investments were made in the expansion of

surface water irrigation, with over 2,400 large dams constructed from 1971-1999 (Duflo

& Pande, 2007), but the majority of growth of irrigation was ground water irrigation

(Gandhi & Bhamoriya, 2011). The irrigated share of agricultural land in India expanded

from 18% to 54% from 1960 to 2008, while the share of agricultural land irrigated using

tubewells grew from 0% to 22%, accounting for 63% of the overall growth in irrigation.

Reduced form evidence suggests that access to groundwater has large impacts on social

welfare (Sekhri, 2014; Fishman et al., 2017; Jacoby, 2017) and is an important driver of

4Results from these models can be sensitive to the calibration: Gisser & Sanchez (1980) famously
find small gains from optimal policy relative to laissez faire, but Koundouri (2004b) argue their findings
are driven by their steep calibrated marginal benefit curves, while Brozović et al. (2010) argue they
are driven by the characteristics of the aquifer they study.
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adoption of modern agricultural technologies (Sekhri, 2014). This evidence suggests a

large share of agricultural productivity growth during the Green Revolution may have

been caused by access to groundwater.

Groundwater is stored in underground aquifers, which are underground layers of

permeable rock or other materials that hold water. The meters below ground level at

which groundwater is available is often referred to as the depth to water table, and

varies both across aquifers and within aquifer. For agriculture in India, as in much

of the world, this groundwater is typically extracted using tubewells. In a tubewell, a

narrow pipe, typically PVC or stainless steel, is bored into the ground, fitted with a

strainer cap, and installed with a pump used to pump the water to the surface. Drilling

tubewells is costly: according to the 2007 Minor Irrigation Census, the fixed cost of

infrastructure for groundwater irrigation in the average district was 26,600 Rs/ha, just

over 1 year of agricultural revenue per hectare. This cost varies substantially across

districts, with a coefficient of variation of 0.55. This variation is partially driven by the

accessibility of groundwater. At greater depths to water table, wells must be drilled

deeper, which is more costly (Jacoby, 2017). Additionally, at these lower depths, more

expensive and more powerful pumps are required (Sekhri, 2014). Moreover, different

types of soils can store different quantities of water, and vary in their permeability.

These hydrogeological characteristics affect the rate at which groundwater resources

can be extracted that balances natural rates of recharge (“potential aquifer yield” or

“safe yield”), the rate at which the water table falls per unit of water extracted (“specific

yield”), and the number of wells required per unit of water extracted (Fishman et al.,

2017).

Although some of this variation in accessibility of groundwater is driven by exoge-

nous hydrogeological characteristics of the districts, human activity can impact this

accessibility. In many districts, ancient groundwater resources are trapped in confined

aquifers; these resources are exhaustible. Rodell et al. (2009) use satellite data to show

declining water tables in northwestern India, while Suhag (2016) show that the Indian

Central Groundwater Board’s calculations based on hydrology models imply overex-

ploitation of groundwater resources in the same region. Appendix Figure A.1 shows

that this overexploitation (high withdrawals of groundwater as a percentage of natural

rates of recharge) is most prevalent in states that experienced the largest increases in

agricultural productivity during the Green Revolution, highlighting the link between

agricultural productivity and groundwater extraction. In many places, declining wa-

ter tables are believed to have significantly increased costs of groundwater extraction
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(Fishman et al., 2017; Jacoby, 2017). On the other hand, rainwater capture and sur-

face water irrigation have the potential to replenish groundwater reserves and reduce

dependency on groundwater (Sekhri, 2013).

This decline has been accelerated by implicit subsidies for groundwater irrigation.

Most significantly, most states in India do not have volumetric pricing of electricity, but

instead charge pump capacity fees. These fees partially substitute for volumetric pric-

ing, since many farmers pump groundwater whenever electricity is available during the

growing seasons. However, the levels of fees correspond to large subsidies for electricity,

ranging from 52% to 100% subsidies (Fishman et al., 2016). Badiani & Jessoe (2017)

use panel variation in these subsidies to estimate an elasticity of water use to the price

of electricity of -0.18, suggesting these subsidies contribute meaningfully to declining

water tables. However, they point out that this inelastic demand for electricity sug-

gests limited deadweight loss from the subsidies. Since a commonly stated motivation

for subsidies is as a transfer to farmers (Dubash, 2007), a social planner who places a

high value on marginal consumption by farmers, potentially due to a lack of availability

of other policy instruments for making such transfers, might find it optimal to trade

off a small deadweight loss to increase transfers to farmers. Moreover, subsidies may

correct for the presence of market power in water markets, which might cause socially

suboptimal rates of groundwater extraction (Gine & Jacoby, 2016).

In addition to traditional concerns of inefficiency due to subsidies or other wedges,

rates of groundwater extraction may be higher than is socially optimal due to negative

externalities in pumping groundwater. As farmers extract groundwater, water is drawn

from nearby parts of the aquifer, decreasing the water table for neighboring farmers

(Theis, 1935), and increasing their costs of extracting groundwater. In the presence of

such externalities, farmers will not internalize the increased costs their pumping causes

to other farmers. Jacoby (2017) suggests externalities may be particularly important

in confined aquifers in India; wells are frequently tightly clustered, and interference

between wells is a concern, especially during the dry season.

An estimate of the magnitude of this externality is necessary to determine an op-

timal tax, or subsidy, for groundwater irrigation. To calculate this externality, one

can decompose it into two terms. First, increased pumping of groundwater causes a

decline in the water table. The impact of increased pumping on the water table varies

significantly across aquifers: pumping one cubic meter of water causes the water table

to decline by as much as 20,000 cubic meters in thin, confined aquifers, and by as little

as 5 cubic meters in thick, unconfined aquifers (Gisser & Sanchez, 1980; Brozović et al.,
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2010).

Second, these declines in the water table cause decreases in the profitability of

irrigated agriculture, as the cost of groundwater extraction increases. These increases in

costs are an externality: they are almost completely experienced by farmers other than

the farmer extracting the unit of water. Estimating this increase in costs is hard: costs

are notoriously hard to observe in agricultural data (Foster & Rosenzweig, 2010; Karlan

et al., 2014), and as a result empirical estimates of the economic costs of declining water

tables are unavailable. In India, past work has estimated impacts of declining water

tables on welfare proxies, including poverty headcount (Sekhri, 2014) and outmigration

(Fishman et al., 2017). However, calculating the externality requires an estimate of

the economic damages from a unit decline in water tables. Existing approaches to

estimating this have focused largely on the United States, and have typically used

hedonic regressions (see Koundouri (2004a) for a review); these approaches may not be

feasible in developing country settings such as India, where the assumption of frictionless

land markets and full information is less likely to hold.5

2.2 Data

I merge data from multiple sources on agriculture in India. Since district boundaries in

India have changed multiple times over the past century, all analysis is done using 1961

state and district boundaries. Descriptive statistics for all variables used in analysis are

presented in Table 1.

Primary agricultural outcomes come from two sources. First, I merge together the

World Bank India Agriculture and Climate Data Set, which contains data from 1956-

1987, with the ICRISAT Village Dynamics in South Asia Macro-Meso Database, which

contains data from 1966-2011. I refer to this merged dataset as “Ag ’56-’11”.6 The

5Many studies have also used contingent valuation approaches, which can be severely biased. A
noteable alternative approach is taken by Hagerty (2018), who studies water markets in the United
States. However, they estimate the willingness to pay for one unit of water, which is different from the
economic costs of a one unit decline in water tables. One notable exception is Jacoby (2017), who ap-
plies a hedonic regression in India to estimate the economic value of having a borewell using exogenous
drilling failures as an instrument. Since the presence of a functioning borewell is easily observable, the
assumptions underpinning a hedonic regression are likely to hold. However, this estimate cannot be
converted into an estimate of the economic costs of a one unit decline in water tables without strong
assumptions.

6The former dataset has been used by many papers analyzing agriculture in India, including Duflo
& Pande (2007) and Sekhri (2014) studying irrigation, while the latter dataset has been used by Allen
& Atkin (2015) among others.
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merged dataset contains annual district level data on crop specific land allocations

(rainfed and irrigated), prices, and yields. I use this to construct an imbalanced panel

of 222 districts in 11 states from 1956-2011 of agricultural revenue per hectare and

irrigated share of agricultural land. While more districts are observed in this data set, I

restrict to districts which appear in all primary data sets used for analysis to maintain

comparability across specifications.7 For much of the analysis, I restrict to the most

recent 5 year cross section in this data set.

I supplement this with the 2012 Agricultural National Sample Survey, which in-

cluded questions on household level land allocations and agricultural production by

crop, crucially both on irrigated and rainfed land; I refer to these observations as plots.

The data also contain household level expenditures on agricultural inputs by category.

I refer to this dataset as “NSS ’12”. 35,200 households were surveyed, and the survey is

intended to be representative at the district level. The sampling of villages from which

surveyed households were selected was stratified on share of village land irrigated; be-

cause this stratification is correlated with treatment (irrigation), I use survey weights

in all analysis with this data. Moreover, to maintain comparability with Ag ’56-’11, I

weight plots by area, I restrict to crops observed in Ag ’56-’11, and I reweight districts

so each district receives the same weight. Both revenue per hectare and input expen-

ditures per hectare are noisily measured at high quantiles; I winsorize them at 100,000

Rs/ha (95th percentile for revenue per hectare, 99th percentile for input expenditures

per hectare).

For data on irrigation technologies, I use the 2007 Minor Irrigation Census. This

survey censuses minor irrigation schemes (culturable command area less than 2000

hectares), which account for 65% of irrigated area and almost all groundwater irri-

gation. I refer to this dataset as “Irr ’07”. In this, I observe district level counts of

minor irrigation schemes by type (dugwell, shallow tubewell, deep tubewell, surface flow

scheme, surface lift scheme), hectares of potential created and used for surface water

and ground water schemes, and counts of ground and surface water schemes by cost.8

I use potential aquifer yield as my instrument for costs of irrigation, a measure of

7Most notably, this restriction drops Chhattisgarh, Jharkhand, and West Bengal.
8I observe 5 categories, corresponding to [0 Rs., 10,000 Rs.), [10,000 Rs., 50,000 Rs.), [50,000 Rs.,

100,000 Rs.), [100,000 Rs., 1,000,000 Rs.), [1,000,000 Rs., ∞). I code each of these as 10,000 Rs.,
50,000 Rs., 100,000 Rs., 300,000 Rs., and 1,000,000 Rs. Alternative codings do not affect significance
of any results nor magnitudes of any results in logs, but magnitudes in levels are sensitive to the coding
of the [100,000 Rs., 1,000,000 Rs.) category. Estimates of the pseudo treatment effect elasticity of
demand are unaffected.
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the sustainable rate of extraction of groundwater from a typical tubewell. I constructed

this measure by georeferencing a hydrogeological map of India from the Central Ground

Water Board (CGWB) which categorizes all land by potential aquifer yield and aquifer

type. The measure ranges from 0 L/s to 40 L/s.9 In all analysis I divide by 40 to

normalize this measure to range from 0 to 1, and I plot variation in this measure across

districts in Panel (a) of Figure 1.

I use a measure of log relative potential irrigated crop yield as my instrument for

potential gross revenue under irrigation. For data on potential crop yield, I use the FAO

GAEZ database; this source is discussed at length in Costinot et al. (2016). Among

other products, it includes constructed measures of potential yields under 5 input sce-

narios (low rainfed, intermediate rainfed/irrigated, high rainfed/irrigated) based on

climate and soil characteristics. I construct potential rainfed crop yield as the weighted

average of potential crop yields under the intermediate rainfed scenario. I construct

relative potential irrigated crop yield as the ratio of the weighted average of potential

crop yields under the intermediate irrigated scenario to potential rainfed crop yield.10

I plot variation in log relative potential irrigated crop yield across districts in Panel

(b) of Figure 1.11 This measure is likely to be correlated with gross revenue under

rainfed agriculture; I therefore control for log potential rainfed crop yield in all primary

specifications. I discuss the construction of relative potential irrigated crop yield and

potential rainfed crop yield in more detail in Appendix A.

I make use of some supplementary datasets. I use data from the Indian Central

Groundwater Board’s network of monitoring tubewells on seasonal depth to water table

from 1995 to 2017; I refer to this dataset as “Well ’95-’17”. Data on the groundwater

9All land is cateogorized as unconsolidated formations (>40 L/s, 25-40 L/s, 10-25 L/s, <10 L/s),
consolidated/semi-consolidated formations (1-25 L/s, 1-10 L/s, 1-5 L/s), and hilly areas (1 L/s), which
I code as 40, 25, 10, 1, 25, 10, 1, and 1 L/s, respectively. This measure is strongly correlated with the
measure of aquifer depth used by Sekhri (2014), and the measure of whether groundwater formations
are unconsolidated or consolidated used by D’Agostino (2017).

10The weights used are state-by-state shares of land allocated to different crops. To identify effects
from variation in potential crop yield, and not variation in weights, I control for state fixed effects in
all analysis. Other work has used the difference in yields under different scenarios as an instrument
for returns to technology adoption (Bustos et al., 2016).

11The measure is almost identical if I use the high input scenarios; in India, for almost all crops,
potential yields under the high input scenario are closely approximated by a crop specific multiple of
potential yields under the intermediate and low input scenarios. Regressing potential yields from the
rainfed high input scenario on the rainfed intermediate input scenario yields R2 ranging from 0.87
to 1, while regressing potential yields from the irrigated intermediate input scenario on the rainfed
intermediate input scenario yields R2 ranging from 0.04 and 0.06 on the low end (for water intensive
sugarcane and rice) to 0.90 and 1 on the high end (for drought resilient sorghum and pearl millet).
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share of irrigation by district in 2001 is from the FAO Global Map of Irrigation Areas.

Data sources of all calibrated parameters for counterfactual exercises in Section 5.4 and

Section 7 are cited in Table 7.

3 Model

I consider a model of profit maximizing farmers deciding whether to irrigate their land.

Following Suri (2011), I use a generalized Roy model to model the selection decision:

although only farmers’ gross revenue conditional on their adoption decision is observed,

farmers decide to irrigate if their gross revenue under irrigation minus gross revenue

under rainfed agriculture (gross returns to irrigation) is greater than their relative costs

of irrigating. Past work has established nonparametric identification of parameters of

these models from panel data (Suri, 2011), instruments for costs (Heckman & Vytlacil,

2005), instruments for treatment effects (Adão (2016); in this context, treatment effects

are the gross returns to irrigation), and instruments for both costs and treatment effects

(Das et al., 2003; Eisenhauer et al., 2015).

In Section 3.1, I consider a simple econometric model to motivate the more general

framework. In Section 3.2, I setup a generalized Roy model building on the work cited

above. I assume the presence of a conventional cost instrument, but I also impose a

novel exclusion restriction on an outcome instrument: I assume the outcome instru-

ment does not affect gross revenue under rainfed agriculture (potential outcome under

control). In Section 3.3, I define the marginal treatment effect (following Heckman &

Vytlacil (2005)), and two novel parameters, the marginal surplus effect and the treat-

ment effect elasticity of demand. The marginal surplus effect builds on Willig (1978)

and Small & Rosen (1981): it is the inverse semielasticity of demand for irrigation,

which equals the effect on profits caused by shifts to profitability of irrigation, as in-

ferred by changes in adoption of irrigation. The treatment effect elasticity of demand

captures the percentage increase in adoption of irrigation caused by a 1% increase in

treatment on the treated (the effect of irrigation on gross revenue for inframarginal ir-

rigators); it is inversely proportional to the marginal surplus effect and unitless, which

facilitates interpretation and comparison across studies. In Section 3.4, I establish non-

parametric identification of the marginal surplus effect. I show that the treatment effect

elasticity of demand is not nonparametrically identified without strong assumptions on

the instruments, but a pseudo treatment effect elasticity of demand, that serves as a
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reasonable approximation in many contexts, is. In Section 3.5, I discuss estimation of

the marginal surplus effect. I show that linear instrumental variables using the outcome

instrument estimates the sum of a local average treatment effect (a weighted average

of marginal treatment effects) and a local average surplus effect (a weighted average

of marginal surplus effects), and that these weights are nonparametrically identified.

I compare the linear instrumental variables approach to a control function approach,

and show that with the novel exclusion restriction the control function approach is

overidentified.

3.1 A simple econometric model

Consider the following econometric model

Yi = β0 + β1Di + β2DiWi + εi

Di = γ0 + γ1Zi + γ2Wi + ηi

where Yi is an observed outcome for agent i and Di is the agent’s endogenous adoption

of a binary treatment. I make the independence assumption that (Zi,Wi) ⊥ (εi, ηi). Zi

shifts agents decisions to adopt treatment. Wi shifts agents decisions to adopt treatment

through its effect on treatment effects; β1+β2Wi is the treatment effect for agents with

Wi. The estimand of interest is γ2
β2
, or the effect of a unit increase in treatment effects

on adoption of treatment. An implicit exclusion restriction has been made here, that

Wi does not affect outcomes for agents who do not adopt treatment.

I consider estimation of β by linear instrumental variables, using Zi and Wi as

instruments for Di and DiWi. This yields the following IV estimator of β2, the effect

of an increase in Wi on treatment effects.

β̂2 =

Cov(Yi,Wi)
Cov(Di,Wi)

− Cov(Yi,Zi)
Cov(Di,Zi)

Cov(DiWi,Wi)
Cov(Di,Wi)

− Cov(DiWi,Zi)
Cov(Di,Zi)

This estimator is the ratio of two terms. The denominator is nonzero when there is

a first stage for the IV estimator (Wi and Zi are correlated with DiWi relative to Di

differentially). The numerator is the difference between two linear IV estimators. The

first of these estimators, but not the second, violates the exclusion restriction in the

local average treatment effect framework (Imbens & Angrist, 1994) in the more general
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correlated random coefficients model Yi = β0 + β1iDi + εi.
12

What is this difference between IV estimators under this model? In the service of

parsimony, I (for now) assume Cov(Zi,Wi) = 0, yielding the expression below.

Cov(Yi,Wi)

Cov(Di,Wi)
− Cov(Yi, Zi)

Cov(Di, Zi)
=

β2E[Di]

γ2
+ β2E[(Wi − E[Wi])

2]1/2
E[(Wi − E[Wi])

3]

E[(Wi − E[Wi])2]3/2

The second term is proportional to the skewness of the distribution of Wi, and in my

empirical application it is small. Ignoring it (for now),

Cov(Yi,Wi)

Cov(Di,Wi)
− Cov(Yi, Zi)

Cov(Di, Zi)
=

β2E[Di]

γ2

The difference between the two linear IV estimators is β2, the change in treatment

effects, times E[Di], average adoption, divided by γ2, the change in adoption. This is

an inverse semielasticity of adoption to the treatment effect. The first IV estimator,
Cov(Yi,Wi)
Cov(Di,Wi)

, is the sum of two terms: β1 + β2E[Wi], the local average treatment effect for

agents induced to adopt treatment by Wi or Zi, and an inverse semielasticity β2E[Di]
γ2

,

the direct effect of Wi on outcomes per unit change in adoption of treatment.

The result is that the difference between two linear IV estimators, the first using an

“instrument” for potential outcome under treatment, and the second using an instru-

ment for treatment, estimates an inverse semielasticity of adoption of treatment to the

treatment effect when the distribution of the “instrument” for potential outcome under

treatment has no skew. However, it is not clear what this approach estimates when non-

linearities or more flexible patterns of selection are permitted. With this motivation, I

now ask if a similar approach can be used to estimate an inverse semielasticity of adop-

tion in a generalized Roy model, where agents select into treatment on heterogeneous

treatment effects and costs of adoption.13

12Note that this estimator I propose of β2 is different from the natural estimator in the interacted
model Yi = β0 + β1Di + β2DiWi + β3Wi + εi, using Zi and ZiWi as instruments for Di and DiWi.

When Wi is binary, one can show this β̂2 = Cov(Yi,Zi|Wi=1)
Cov(Di,Zi|Wi=1) −

Cov(Yi,Zi|Wi=0)
Cov(Di,Zi|Wi=0) (Hull, 2018). Under the

more general econometric model presented in Section 3.2, even local versions of this estimator, and
the one I propose under the exclusion restriction β3 = 0, estimate different parameters.

13Wooldridge (2015) proposes control function approaches that allow for selection on unobservable
treatment effect heterogeneity. The simplest approach they developed which applies to this model
allows for a single endogenous regressor Di interacted with a control Wi. When Wi is binary, this is
equivalent to estimating Yi = β0 + β1Di + β2DiWi + β3Wi + εi using (Zi, ZiWi) as instruments for
(Di, DiWi); this is underpowered in my empirical context. Alternatively, they consider approaches that
allow for multiple endogenous regressors. However, what linear estimators with multiple endogenous
regressors estimate when the structural model is misspecified may not be useful (Kirkeboen et al.,
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3.2 Environment

Farmers (“agents”) decide whether to adopt irrigation (“treatment”) to maximize their

profits (“surplus”), which is their gross revenue (“outcome”) net of any costs, broadly

defined. Let Y1i be the gross revenue farmer i receives when they irrigate (“potential

outcome under treatment”), and Y0i be the gross revenue farmer i receives when they

engage in rainfed agriculture (“potential outcome under control”). Let C1i be farmer

i’s relative costs of adopting irrigation (“costs of adoption”). Let Di be an indicator

for farmer i’s decision to irrigate (“treatment indicator”). Farmers maximize profits,

πi = Di(Y1i − C1i) + (1 − Di)Y0i (“surplus”). I assume the researcher observes Yi =

DiY1i + (1 −Di)Y0i, farmer i’s gross revenue (“outcome”), and Di, farmer i’s decision

to irrigate (“adoption decision”), but does not observe profits, costs, or counterfactual

revenue.

The surplus maximization assumption implies

Assumption 1.

Di = 1{Y1i − C1i − Y0i > 0}

Assumption 1 is equivalent to the generalized Roy modeling framework discussed

in Heckman & Vytlacil (2007a,b). Agents adopt treatment if their treatment effect

(Y1i − Y0i) is greater than their costs of adoption (C1i).

Next, I assume the presence of instruments z and w. z is a conventional instrument,

in that it shifts agents’ costs of adoption, C1i, without affecting their potential outcomes,

Y1i and Y0i. I refer to it as the “cost instrument”. However, w is a nonstandard

instrument: it shifts agents’ potential outcome under treatment, Y1i, without shifting

their costs of adoption, C1i, or their potential outcome under control, Y0i. I refer to it

as the “outcome instrument”. Additional assumptions are explained below.

Assumption 2.

Y1i(w) = VγiγW (w) + V1i

C1i(z) = VγiγZ(z) + VCi

Y0i = V0i

2016; Mountjoy, 2018), while linear instrumental variables with a single endogenous regressor retains
a LATE interpretation without any assumptions on functional forms (Heckman & Vytlacil, 2005). I
ask if this robustness can be extended to linear instrumental variables with Wi.
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Assumption 3. γW and γZ are each monotonic in their arguments, and Vγi > 0

∀i. The distribution of Vi ≡ −V1i+VCi+V0i

Vγi
is continuous and has a strictly increasing

cumulative distribution function FV and smooth density fV .

Assumption 2 implicitly makes a number of assumptions. First, w and z each

satisfy exclusion restrictions. Only Y1i is structurally a function of w, and only C1i is

structurally a function of z. These exclusion restrictions are strong assumptions, and

I discuss possible violations in my empirical context in Section 6. That only Y1i is

structurally a function of w is a novel exclusion restriction in generalized Roy models.14

It is most similar to Eisenhauer et al. (2015), who assume there is a regressor excluded

from just C1i, while I assume w is excluded from C1i and Y0i. That z is excluded

from Y1i and Y0i is the standard exclusion restriction made to estimate a local average

treatment effect.

Second, (z, w) are weakly separable from unobserved heterogeneity, through the

index (γW (w)− γZ(z)). Combined with Assumption 3, this implies monotonicity in an

index of (z, w). It also implies the more general weak separability assumption made

in Willig (1978), Small & Rosen (1981), and Bhattacharya (2017), who assume weak

separability of price and product quality to estimate welfare impacts of changes to

product quality on consumers. Crucially, this assumption guarantees that z and w

enter choices and surplus symmetrically, so impacts on choices are strictly increasing

in impacts on surplus conditional on adoption. However, although weak separability

only requires that (z, w) enter jointly through a flexible index, the more restrictive

functional form I use is the most general that satisfies weak separability, the exclusion

restrictions, and the additive generalized Roy structure.15 Despite the restrictiveness of

these assumptions, variability in Vγi flexibly captures, for example, that more productive

farmers might be more responsive to shifts in the instruments, something that similar

work does not allow.16

Assumption 3 makes all remaining technical assumptions. The assumptions on

monotonicity of γZ and γW are standard for instrumental variables, and reasonable

14It is not novel in one-sided selection models, such as studying labor market participation, which
two-sided models nest with a normalization of Y0i = 0 (no earnings for non-participants). In these
models, w is a wage shifter, Di is the labor market participation decision, and z is an instrument for
participation.

15The proof is in Appendix B.1.
16Specifically, Eisenhauer et al. (2015) and Adão (2016) require their instruments (z, w) are additively

separable from unobserved heterogeneity, which implies that their instrument w has a homogeneous ef-
fect across agents conditional on observables. However, approaches in Das et al. (2003) and Eisenhauer
et al. (2015) are straightforward to generalize to this environment.
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in my context. That the distribution of Vi is continuous and strictly increasing is a

standard technical assumption.

Additionally, define

Ui = FV (Vi)

Ui is distributed Uniform[0,1], and orders agents from highest to lowest propensity

to adopt treatment. Note that Assumption 1, combined with Assumption 2 and the

definition of Vi in Assumption 3, can now be rewritten as Di = 1{Ui < FV (γW (w) −
γZ(z))}. Therefore, the share of agents who adopt treatment E[Di(z, w)] = FV (γW (w)−
γZ(z)).

Lastly, let Zi and Wi be agent i’s realized value of the instruments z and w. I make

an independence assumption that will be necessary for identification.

Assumption 4.

(Zi,Wi) ⊥ (V0i, VCi, V1i, Vγi)

3.3 Marginal surplus effects and marginal treatment effects

Within this structure, it is now possible to define the marginal treatment effect and the

marginal surplus effect.

MTE(u;w) = E[Y1i(w)− Y0i|Ui = u] (1)

MSE(u) =
u

fV (F
−1
V (u))

E[Vγi|Ui < u] (2)

The definition of the marginal treatment effect in Equation 1 is standard and follows

Heckman & Vytlacil (2005). The definition of the marginal surplus effect in Equation

2 is novel. To interpret this, note that the ratio u
fV (F−1

V (u))
is just a Mills ratio for the

random variable Vi, evaluated at v = F−1
V (u). The numerator, u, is the share of agents

adopting treatment. The denominator, fV (F
−1
V (u)), is the density of agents on the

margin, which is similar to an elasticity: when the density of marginal agents is large,

small increases in potential surplus under treatment cause large movements of agents

into treatment. The third term reflects the extent to which inframarginal adopters of

treatment are relatively more affected by shifts to z and w than compliers.
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Following this intuition, we can arrive at a key result.

dE[Yi(z, w)]/dz

dE[Di(z, w)]/dz
= MTE(E[Di(z, w)];w) (3)

dE[πi(z, w)]/dz

dE[Di(z, w)]/dz
=

dE[πi(z, w)]/dw

dE[Di(z, w)]/dw
= MSE(E[Di(z, w)]) (4)

Equation 3 gives the standard result on marginal treatment effects: the marginal treat-

ment effect is the change in average outcomes per unit change in adoption of treatment

caused by a shift to z. Equation 4 gives a new result on the marginal surplus effect:

the marginal surplus effect is the change in average surplus per unit change in adoption

of treatment caused by a shift to z or w.17

Additionally, following Heckman & Vytlacil (2007a,b), it follows from Equation 3

that one can define impacts on outcomes of policies that shift z in terms of MTE and

E[Di] alone. Similarly, it follows from Equation 4 that one can define impacts on surplus

of policies that shift z or w in terms of MSE and E[Di] alone.

E[Yi(z
′, w)]− E[Yi(z, w)]

E[Di(z′, w)]− E[Di(z, w)]
=

∫ E[Di(z
′,w)]

E[Di(z,w)]
MTE(u;w)du

E[Di(z′, w)]− E[Di(z, w)]︸ ︷︷ ︸
policy relevant treatment effect

(5)

E[πi(z
′, w′)]− E[πi(z, w)]

E[Di(z′, w′)]− E[Di(z, w)]
=

∫ E[Di(z
′,w′)]

E[Di(z,w)]
MSE(u)du

E[Di(z′, w′)]− E[Di(z, w)]︸ ︷︷ ︸
policy relevant surplus effect

(6)

Equation 5 is the standard result from Heckman & Vytlacil (2007a,b) that the impact

of a broad class of policies on average outcomes is equal to the product of a policy

relevant treatment effect and the impact of the policy on adoption of treatment, where

the policy relevant treatment effect is a weighted average of marginal treatment effects.

Equation 6 is a new result that shows that the impact of a broad class of policies

on average surplus is equal to the product of a policy relevant surplus effect and the

impact of the policy on adoption of treatment, where the policy relevant surplus effect

is a weighted average of marginal surplus effects.

Lastly, to interpret Equation 4, it is helpful to draw a comparison to consumer

theory. There, a classic result is that the marginal surplus effect is price divided by

the price elasticity of demand (Willig, 1978; Small & Rosen, 1981). Alternatively, one

17The derivations of Equation 3 and Equation 4 is in Appendix B.1.
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could phrase this as the price elasticity of demand is equal to the price divided by the

marginal surplus effect. An equivalent result holds here. I define

TOT(u;w) = E[Y1i(w)− Y0i|Ui < u] (7)

ε∗(u;w) =
TOT(u;w)

MSE(u)
(8)

Equation 7 gives the standard definition of treatment on the treated. Note that it has

the standard interpretation, that TOT(E[Di(z, w)];w) = E[Y1i(w)− Y0i|Di(z, w) = 1].

Given the analogy in consumer theory, one might hope that ε∗(u;w), as defined in

Equation 8, is the treatment effect elasticity of demand. Equation 9 shows this result

below.

TOT(E[Di(z, w)];w)

E[Di(z, w)]

dE[Di(z, w)]/dw

∂TOT(E[Di(z, w)];w)/∂w
= ε∗(E[Di(z, w)];w) (9)

Equation 9, combined with Equation 8, shows that the marginal surplus effect can be

interpreted as the ratio of treatment on the treated to the treatment effect elasticity of

demand for treatment.18

3.4 Identification

The identification of marginal surplus effects and marginal treatment effects follows from

classic results on local instrumental variables from Heckman & Vytlacil (1999, 2005).

I now assume that (Zi,Wi) have a smooth density that is strictly positive at (z, w).

Independence of the instruments and standard results on nonparametric identification

imply the expectations E[Yi(z, w)] and E[Di(z, w)] and their derivatives with respect to

z and w are identified (Matzkin, 2007).19 As in Heckman & Vytlacil (2005), Equation 3

therefore establishes identification of marginal treatment effects from local instrumental

variables using the cost instrument.

For identification of marginal surplus effects, the key result is what local instrumen-

tal variables using the outcome instrument estimates.

dE[Yi(z, w)]/dw

dE[Di(z, w)]/dw
= MTE(E[Di(z, w)];w) + MSE(E[Di(z, w)]) (10)

18The derivation of Equation 9 is in Appendix B.1.
19Formally, E[Yi(z, w)] = E[Yi|Zi = z,Wi = w] and E[Di(z, w)] = E[Di|Zi = z,Wi = w].
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Local instrumental variables using the outcome instrument estimates the marginal

treatment effect plus the marginal surplus effect.20 This is the local version of the

result for the linear model in Section 3.1.

Identification of marginal surplus effects follows simply from subtracting Equation

3 from Equation 10.

MSE(E[Di(z, w)]) =
dE[Yi(z, w)]/dw

dE[Di(z, w)]/dw
− dE[Yi(z, w)]/dz

dE[Di(z, w)]/dz
(11)

The intuition for this result is visible in Figure 2. Both the cost instrument z and the

outcome instrument w affect agent adoption decisions and surplus through a common

index, because of the weak separability assumption. Whether surplus under treatment

increases from Y1i−C1i to Y
∗
1i−C1i (shock to w, as in Panel (a)) or to Y1i−C∗

1i (shock to

z, as in Panel (b)), the effect on choices is a sufficient statistic for the effect on surplus;

the marginal surplus effect is well defined. However, their effects on outcomes differ. In

Panel (b), we can see that the cost instrument increases outcomes proportional to the

marginal treatment effect: potential outcomes are unaffected by the cost instrument,

but the induced increase in adoption E[Di] causes agents’ outcomes to increase by their

treatment effect. However, in Panel (a), we can see that the outcome instrument has

two effects on outcomes. The first effect is proportional to the marginal treatment effect:

adoption E[Di] increases because surplus under treatment increases, and this increase in

adoption E[Di] causes agents’ outcomes to increase by their treatment effect. However,

the second effect is proportional to the marginal surplus effect. This is the direct effect

on outcomes caused by the increase in Y1i; the increase in Y1i and the increase in Y1i−C1i

are the same (because of the exclusion restriction), so this increase is exactly the same

as the effect of the outcome instrument on surplus.

Note, however, that unlike marginal surplus effects and marginal treatment effects,

treatment on the treated and the treatment effect elasticity of demand are not identified

without either parametric assumptions or an identification at infinity argument. This

contrasts with the standard consumer theory setting, where typically a price elasticity

of demand is estimated, and marginal surplus effects can be calculated using that price

elasticity. To allow comparison of results with price elasticities, I instead define the

20The derivation of Equation 10 is in Appendix B.1.
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pseudo treatment effect elasticity of demand to be

ε(u;w) =
MTE(u;w)

MSE(u)
(12)

which, following the results above, is also identified. It is biased relative to the treatment

effect elasticity of demand: ε∗(u;w) = TOT(u;w)
MTE(u;w)

ε(u;w), so the pseudo treatment effect

elasticity of demand, which requires less restrictive assumptions for identification, will

be too small (large) when treatment on the treated is large (small) relative to the

marginal treatment effect.21

3.5 Estimation

For purposes of estimation, I now assume that a set of observable characteristics of

each agent, Xi, are also observed. All assumptions above are now made conditional

on Xi = x, and all results above now hold conditional on Xi = x. No additional

assumptions are made except where explicitly stated.

3.5.1 Instrumental variables

The nonparametric identification results suggest the application of local instrumental

variable estimators. In practice, as discussed in Carneiro et al. (2011) and Eisenhauer

et al. (2015), local instrumental variable estimators are difficult to implement in practice

while conditioning on (Zi,Wi, Xi) jointly. Frequently, their implementation relies on

strong restrictions on how (Wi, Xi) can enter outcome equations. However, as Imbens

& Angrist (1994) and Heckman & Vytlacil (2005) show, linear instrumental variables

using a conventional instrument, such as Zi, makes no such assumptions: instead, it

only requires the researcher to estimate the expectation of Zi conditional on all variables

which are not excluded from outcome equations (in this case, (Wi, Xi)). Then, linear

instrumental variables estimates a local average treatment effect, or a weighted average

of marginal treatment effects. Flexibly controlling for observables in linear instrumental

21Despite this, the pseudo treatment effect elasticity of demand is still useful. In some cases, instead
of observing the outcome Yi, the researcher might observe the outcome Yi times an unknown constant
(in agriculture, this could be yields measured using satellite data, as in Burke & Lobell (2017)) or costs
DiC1i times an unknown constant (in my context, this is fixed infrastructure costs for irrigation). In
both cases, the pseudo treatment effect elasticity of demand can still be consistently estimated. In
my context, this permits an overidentification test. In other cases, one might estimate the pseudo
treatment effect elasticity of demand in one context, and extrapolate to another where the marginal
treatment effect is known but an instrument to estimate the marginal surplus effect is unavailable.
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variables is well understood (for example, see Chernozhukov et al. (2016)), and does not

require any assumptions on how non-excluded observables enter outcome equations, in

contrast to how local instrumental variable methods are often implemented (Carneiro

et al., 2011).

Just as linear instrumental variables with Zi estimates a local average treatment

effect, linear instrumental variables with Wi estimates the sum of a local average treat-

ment effect and a local average surplus effect, where a local average surplus effect is a

weighted average of marginal surplus effects. Formally,

βIV
Z ≡ Cov(Yi, Zi − E[Zi|Wi, Xi])

Cov(Di, Zi − E[Zi|Wi, Xi])
= LATEZ (13)

LATEZ =

∫
MTE(u;w, x)ωZ(u;w, x)dudwdx (14)

βIV
W ≡ Cov(Yi,Wi − E[Wi|Zi, Xi])

Cov(Di,Wi − E[Wi|Zi, Xi])
= LATEW + LASEW (15)

LATEW =

∫
MTE(u;w, x)ωW (u;w, x)dudwdx (16)

LASEW =

∫
MSE(u;x)ωW (u;w, x)dudwdx (17)

Equation 13 and Equation 14 are the result from Heckman & Vytlacil (2005): linear

instrumental variables using the cost instrument estimates a local average treatment ef-

fect, which is a weighted average of marginal treatment effects. As Heckman & Vytlacil

(2005) show, these weights ωZ are nonparametrically identified, positive, and integrate

to 1. The new result is Equation 15: linear instrumental variables using the outcome

instrument estimates a local average treatment effect plus a local average surplus ef-

fect. The local average surplus effect is a weighted average of marginal surplus effects.

I show in Appendix B.2.1 that the LATEW and LASEW weights, ωW , are nonpara-

metrically identified, positive, and integrate to 1. This extends the result on the linear

model from Section 3.1 to a generalized Roy model with nonlinearities and selection on

heterogeneous treatment effects.

3.5.2 InterpoLATE-ing

There are multiple approaches in the literature to estimation of LATEW . First, non-

parametric bounds on LATEW using LATEZ are derived in Mogstad et al. (2017), by

considering the largest and smallest possible values of LATEW consistent with marginal
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treatment effects that would result in estimating LATEZ . Second, if variation in treat-

ment effects is explained by observables, Angrist & Fernandez-Val (2010) show weighted

linear instrumental variables with the cost instrument can estimate LATEW . Third, one

could instead estimate marginal treatment effects directly using the cost instrument,

and recover an estimate of LATEW from the marginal treatment effects and an estimate

of the LATEW weights. Alternatively, Brinch et al. (2017) propose an approach to re-

covering marginal treatment effects from estimates of local average treatment effects,

by imposings restrictions on outcome equations and flexibly modeling the distribution

of unobservable heterogeneity.

I propose an alternative approach which builds on Angrist & Fernandez-Val (2010),

deriving conditions under which weighted linear instrumental variables with the cost

instrument can estimate LATEW . Unlike Angrist & Fernandez-Val (2010), I continue

to allow for selection into treatment on unobserved heterogeneity in treatment effects,

but I do impose strong parametric assumptions.

Assumption 5a. Partition Xi = (X̃i, Si). MTE(u;w, x̃, s) is linear in (u,w, x̃) con-

ditional on Si = s, E[Di(w, z; x̃, s)] is linear in (w, z, x̃) conditional on Si = s, and

(Wi, Zi, X̃i) are jointly normally distributed conditional on Si = s.

These assumptions linearize marginal treatment effects and the propensity score

E[Di] conditional on Si = s, and assume all other regressors are jointly normally dis-

tributed.

Let ω(·)(s) ≡
∫
ω(·)(u;w, x̃, s)dudwdx̃. Then, from Assumption 5a,22

βIV
W − βWIV

Z = LASEW (18)

βWIV
Z ≡ Cov ((ωW (Si)/ωZ(Si))Yi, Zi − E[Zi|Wi, Xi])

Cov ((ωW (Si)/ωZ(Si))Di, Zi − E[Zi|Wi, Xi])
(19)

LASEW is identified from the difference between weighted linear instrumental variable

estimators. Intuitively, the weights make the z compliers resemble the w compliers on

the observable Si. This approach works because under linearity of marginal treatment

effects and the propensity score, the average marginal treatment effect that receives

weight conditional on Si = s is the marginal treatment effect evaluated at the average

(z, w, x) conditional on Si = s. Combined with the symmetry of the normal distribution,

this implies the local average treatment effects conditional on Si = s estimated using z

and w are the same.
22The proof of Equation 18 is in Appendix B.1.
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Additionally, the ratio of the local average treatment effect to the local average

surplus effect estimated using weighted instrumental variables estimates a weighted

average of pseudo treatment effect elasticities of demand.

βWIV
Z

βIV
W − βWIV

Z

=

∫
ε(u;w, x)

(
ωW (u;w, x)MSE(u;x)∫

ωW (u;w, x)MSE(u;x)dudwdx

)
dudwdx (20)

This result follows straightforwardly from βWIV
Z = LATEW , and substituting the defini-

tion ε(u;w, x) = MTE(u;w,x)
MSE(u;x)

. The weights ωW (u;w,x)MSE(u;x)∫
ωW (u;w,x)MSE(u;x)dudwdx

are nonparametrically

identified, positive, and integrate to 1.

This estimator of a local average surplus effect may be underpowered, if there are

many w compliers but very few z compliers for some Si, but there is balance for other

Si. In Appendix B.2.2, I propose feasible reweighted instrumental variable estimators

using both z and w to minimize the variance of the resulting estimator of a local average

surplus effect; I refer to these estimators as βWIV
W and βWIV

Z . Additionally, estimating

ω(·), even under Assumption 5a, requires estimating the effect of w and z on adoption

conditional on Si = s, something I am underpowered for in my setting. Given this

constraint, I calculate these weights under the assumption that the first stages for w

and z (the derivatives of the propensity score conditional on Si = s with respect to w

and z) are constant across Si = s. However, the estimator is still consistent (although

no longer efficient) if the first stage for w is a constant multiple of the first stage for z

across Si = s.

3.5.3 ExtrapoLASE-ing

Just as with a local average treatment effect, a single estimate of a local average surplus

effect need not be policy relevant. I propose an approach similar to Brinch et al.

(2017), who use estimates of outcomes for always takers, compliers, and never takers

to recover the marginal treatment effect with a discrete instrument under parametric

assumptions. Instead, I recover the marginal surplus effect from estimates of local

average surplus effects. Recall that the local average surplus effect is a weighted average

of marginal surplus effects, and the weights ωW are identified. Furthermore, recall

that MSE(u;x) = u
fV (F−1

V (u;x);x)
E[Vγi|Ui < u,Xi = x]. Given this, with parametric

restrictions on MSE(u;x), implied by restrictions on the joint distribution of (Vγi , Vi)

conditional on Xi = x, one can identify MSE(u;x) from local average surplus effects

and the weights they place on different marginal surplus effects.
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I implement the simplest case, where the researcher has a single estimate of a local

average surplus effect. I assume

Assumption 5b. Vi ∼ Uniform[a, a+ k]|Xi = x, and Vγi = 1 ∀i.

Assumption 5b yields a linear marginal surplus effect, with MSE(u) = ku. This

assumption is neither necessary nor sufficient for linear marginal treatment effects con-

ditional on Xi = x, and allows for flexible nonlinearities in the effects of the cost and

outcome instruments on costs and potential outcome under treatment, respectively,

conditional on Xi = x. Under this assumption, estimation of the marginal surplus

effect from an estimate of the local average surplus effect is straightforward.

MSE(u) = ku (21)

k =
LASEW∫

uωW (u;w, x)dudwdx
(22)

For implementation, in general estimation of ωW (u;w, x) can be hard, even though

it is nonparametrically identified. I simplify the problem by estimating ωW (u;w, x)

under the assumption that E[Di(z, w;x)] is linear.

3.5.4 Control function

Past work has developed control function approaches that could be used to estimate a

marginal surplus effect, including parametric (Heckman, 1979), semiparametric (Ahn

& Powell, 1993), and nonparametric approaches (Das et al., 2003). In fact, the natural

estimator of the marginal surplus effect building on the estimator of Das et al. (2003)

is asymptotically equivalent to a local instrumental variables estimator suggested by

Equation 11. However, the control function estimator is overidentified; this is because

it requires observations of E[Yi|Di,Wi, Zi, Xi] and E[Di|Wi, Zi, Xi], while the instru-

mental variable approach I propose only requires observations of E[Yi|Wi, Zi, Xi] and

E[Di|Wi, Zi, Xi]. Specifically, the exclusion restriction that Y0i is not a function of w is

more easily testable with more disaggregated data.

As an alternative to the instrumental variable approach to estimating a marginal

surplus effect presented previously, I consider a two step parametric control function

approach. As in Björklund & Moffitt (1987) and Eisenhauer et al. (2015), I assume

idiosyncratic variation in (Y1i, C1i, Y0i) is jointly normally distributed. Although the

normality assumption appears restrictive, Kline & Walters (2017) show that in many
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cases, parametric control function approaches exactly or closely match the same mo-

ments as linear IV estimators, and thus produce identical or similar estimates of local

average treatment effects.

Assumption 5c. Y1i

C1i

Y0i

 ∼ N


 (gW + c0)Wi +X ′

iµ1

gZZi +X ′
iµC

c0Wi +X ′
iµ0


,

 Σ11 Σ1c Σ10

Σ1c Σcc Σc0

Σ10 Σc0 Σcc




Details of the estimation of this model are in Appendix Section B.3. From the

estimated model, it is straightforward to calculate the marginal surplus effect; this

calculation under normality is similar to the expression for the treatment effect elasticity

of demand under normality in French & Taber (2011).

MSE(u;x) =
σV u

φ(Φ−1(u))
(23)

where σV = Var(Vi), φ is the normal density function, and Φ is the normal cumulative

distribution function.

The control function approach enables two tests of the instrumental variable ap-

proach I propose. First, it allows me to test the exclusion restriction that Y0i is not

a function of w. Second, it allows me to test the performance of the weighted instru-

mental variable estimator. Specifically, I follow Andrews et al. (2018) and calculate

the informativeness of the weighted (and unweighted) instrumental variable estimators

of LASEW and LATEZ for the control function estimators of LASEW and LATEZ ,

respectively.

4 Empirical strategy

4.1 Notation and context specific concerns

Following Section 3.5 and the end of Section 3.5.2, but adapting to my empirical context,

I consider observations of (Yins, Dins, Zns,Wns, (Xns, Ss)) for each plot i, located in

district n in state s. Yins is plot i’s realized gross revenue. Dins is an indicator for

whether plot i is irrigated. Zns is plot i’s value of the cost instrument, its potential

aquifer yield. Wns is plot i’s value of the outcome instrument, its log relative potential
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irrigated crop yield. Xns is a vector of controls for plot i, which in my main specifications

is log potential rainfed crop yield. Ss is a vector of state dummies.

The instruments, (Zns,Wns), and controls (Xns, Ss), are constant within district.

All analysis reports robust standard errors clustered at the district level.

In regressions using district level data, I observe area weighted average outcomes for

the district. I use Yns for average gross revenue per hectare, and Dns for share of land

irrigated at the district level. That Yns and Dns might vary across districts with the

same values of the instruments, even though we can treat Yns and Dns as population

averages within district, is consistent with the distribution of unobservables varying

across districts. The independence assumption therefore implies that instruments are

assigned across districts independent of this distribution.

In analysis using data from NSS ’12, I observe plot level data.23 Yins is now gross

revenue per hectare for plot i, and Dins is a dummy for irrigated. The sampling in the

Agricultural NSS was stratified on village level irrigation status, which is endogenous; as

a result, I use survey weights to recover unbiased estimates. To maintain comparability

with regressions using district level data, I also weight by plot size, and normalize

weights such that the sum of weights in each district is 1.

In analysis using Irr ’07, I use the negative of average fixed costs of irrigation in-

frastructure per agricultural hectare as an outcome. This provides a useful check on

results from other datasets, as I discuss in Section 4.2.

4.2 Instrumental variables

My objective is to construct 2SLS estimators of the form in Equation 13 and 15. With

a large number of clusters, one could estimate the conditional expectations of Zns and

Wns nonparametrically. With the 222 districts I observe, I instead take a parametric

approach and assume E[Zns|Wns, Xns, Ss] and E[Wns|Zns, Xns, Ss] are linear conditional

23To be more precise, observations are at the level of household-by-crop-by-irrigation adoption, which
one can think of as aggregated across plots, proportional to area, on which households grow the same
crop and make the same irrigation adoption decision.
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on Ss. With this, I estimate by OLS

Yins = βRF
Z Zns + δ1sWns + δ2sXns + α1s + ε1,ins (24)

Dins = βFS
Z Zns + δ3sWns + δ4sXns + α2s + ε2,ins (25)

Yins = βRF
W Wns + δ5sZns + δ6sXns + α3s + ε3,ins (26)

Dins = βFS
W Wns + δ7sZns + δ8sXns + α4s + ε4,ins (27)

Note that coefficients on controls are allowed to vary by state s in all specifications.

Let βIV
Z = βRF

Z /βFS
Z , and βIV

W = βRF
W /βFS

W . I use βIV
W − βIV

Z as an estimate of a local

average surplus effect, and βIV
Z /(βIV

W −βIV
Z ) as an estimate of a pseudo treatment effect

elasticity of demand.

These estimators may be inconsistent if LATEW 6= LATEZ . I therefore also imple-

ment the weighted instrumental variable estimator constructed in 3.5.2; this estimator

will be consistent for a local average surplus effect and a pseudo treatment effect elas-

ticity of demand under Assumption 5a.

To validate the approach, I also use the negative of average fixed costs of irrigation

infrastructure per agricultural hectare as an outcome. This is consistent with the mod-

eling framework; as Björklund & Moffitt (1987) and Eisenhauer et al. (2015) note, there

is a duality between costs and benefits in the generalized Roy model; the difference is

only which is treated as observable. To expand briefly, we are using −qDiC1i as the

outcome instead of Yi, and Y1i − (1− q)C1i − Y0i as costs instead of C1i, where q is the

share of fixed costs in costs of irrigation times the discount rate (to convert infrastruc-

ture costs, which is a stock, into a flow); I assume q is constant. Instruments are now

switched: Wi becomes the cost instrument, and Zi becomes the outcome instrument.

Estimated marginal treatment effects are −q times marginal treatment effects, since

Y1i − Y0i = C1i for marginal agents. Estimated marginal surplus effects are q times

marginal surplus effects, since responses to increased surplus from decreased costs of

irrigation and increased surplus from increased gross revenue under irrigation are the

same. Therefore, the estimated pseudo treatment effect elasticity of demand (the ratio

of the local average treatment effect to the local average surplus effect) when using

negative fixed costs as an outcome should be the negative of the estimate using gross

revenue as an outcome.24

24Note that imposing C0i = 0 is no longer a normalization in order for these interpretations of results
using fixed costs as an outcome to be valid. This creates two problems. First, it creates the potential for
exclusion restriction violations due to Zi affecting costs of rainfed agriculture. This is not a concern in
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4.3 Control function

To estimate the control function approach, I use NSS ’12, in which I observe plot level

data. This is crucial because this approach relies on observing average outcomes condi-

tional both on the values of the instruments and on adoption of treatment, something

the instrumental variables approach does not need. To separate differences in results

coming from different methods and different data sets, I first estimate a local average

surplus effect using linear instrumental variables in NSS ’12. I follow Section 3.5.4 in

estimating the control function approach. Controls include state fixed effects and their

interaction with log potential rainfed crop yield, but the cost instrument z and out-

come instrument w are not interacted with state fixed effects. Additional details of the

approach are in Appendix B.3.

5 Results

5.1 Instrumental variables

Table 2 presents unweighted instrumental variable regressions in Ag ‘07-’11. Columns

1 and 2 show a strong first stage with the cost instrument and the outcome instrument,

with t-statistics of 5.0 and 4.2, respectively. The instrumental variable coefficient in

Column 6, which uses the cost instrument, is a local average treatment effect. Marginal

irrigators increase their agricultural revenue by 22,600 Rs/ha when they adopt irriga-

tion. For ease of interpretation, the same specification with log revenue per hectare

as the outcome gives a coefficient of 0.95. This is similar to Duflo & Pande (2007),

who estimate an elasticity of production with respect to dam induced irrigation of 0.61,

which they note is in the lower range of existing estimates. The instrumental vari-

able coefficient in Column 7, which uses the outcome instrument, is the sum of a local

average treatment effect and a local average surplus effect.

Table 3 presents instrumental variable and weighted instrumental variable estimates

used to recover a local average surplus effect and pseudo treatment effect elasticity of

demand; for compactness, each cell corresponds to a single regression. Columns cor-

respond to a single set of estimates, while rows correspond to estimators. Column 1

my context, since Zi affects the costs of extracting groundwater. Second, it affects the interpretation of
q. Assumptions that would imply q is constant are very strong, and likely require all costs of irrigation
to involve drilling for and pumping groundwater, ruling out irrigation reducing growing season labor
costs for rice cultivation, for example. I therefore interpret these results as suggestive robustness.
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presents the same results as are in Table 2. Row 5 of Column 1 is the difference between

the IV estimator using the outcome instrument and the IV estimator using the cost

instrument, which estimates a local average surplus effect if the two local average treat-

ment effects (for cost instrument compliers and outcome instrument compliers) are the

same. The estimated local average surplus effect is 31,700 Rs/ha. To facilitate inter-

pretation, an estimate of the pseudo treatment effect elasticity of demand is presented

in row 6: the resulting point estimate is 0.72, although it is imprecisely estimated.

Column 2 presents results with the weighted instrumental variable estimator, which

corrects for potential bias from differences in shares of cost instrument and outcome

instrument compliers in different states. The estimated local average surplus effect with

this estimator, 49,800 Rs/ha, is larger (although not statistically significantly so), and

the estimated pseudo treatment effect elasticity of demand is similar.

Columns 3 and 4 present results with negative infrastructure costs as the outcome

using unweighted and weighted instrumental variables, respectively; as described in

Section 4.2, the roles of the instruments are now switched. The local average treatment

effect estimates imply marginal irrigation infrastructure costs of 59,100-86,900 Rs/ha.

Unlike estimates with agricultural productivity as an outcome, these instrumental vari-

able estimates are economically significantly different from OLS estimates, consistent

with unobservable heterogeneity in costs of irrigation driving selection.25 Although in-

terpreting the local average surplus effect estimates is difficult, following the reasoning

in Section 4.2, pseudo treatment effect elasticity of demand estimates should be the

negative of estimates using agricultural productivity as an outcome. Estimates of this

elasticity using infrastructure costs are statistically and economically indistinguishable

from estimates using agricultural productivity, but are much more precisely estimated.

The estimates imply a 1% increase in the gross returns to irrigation causes a 0.7%

increase in adoption of irrigation, times a bias term equal to the ratio of gross returns

for average irrigators to gross returns for marginal irrigators.

5.2 Control function

Before estimating key model parameters using a two step control function approach,

I first compare instrumental variable estimates of the local average surplus effect in

25The difference is not statistically significant (for the Hausman test, p = 0.12 for unweighted IV
and p = 0.13 for weighted IV), so I interpret this difference as potentially suggestive of selection on
unobservable heterogeneity in costs of irrigation.
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NSS ’12, on which the control function approach is implemented, to the estimates

from Ag ’07-’11. The estimate of the local average surplus effect in Column 1 on

Table 4 is similar, but noisier; I interpret this to mean direct comparisons of control

function estimates using NSS ’12 to instrumental variable estimates using Ag ’07-’11

are reasonable, although they should still be made with caution.

I present the estimated coefficients from the control function approach in Table 5.

A few things to note. First, the estimated effect of the outcome instrument on po-

tential revenue under rainfed agriculture, c0, is not significantly different from 0, so

the overidentification test fails to reject. Second, the estimated standard deviation of

idiosyncratic profitability of irrigation of 25,800 Rs/ha, σV , is large: as reference, the ob-

served standard deviation of agricultural revenue per hectare is 26,100 Rs/ha, although

these two measures need not be similar. Third, the selection terms are imprecisely esti-

mated, although there is potentially suggestive evidence that there is selection on costs,

consistent with the differences between instrumental variables and OLS estimators with

fixed costs as the outcome in Section 5.1.

To compare the control function approach to the instrumental variable approach,

Column 3 of Table 4 shows estimates of LATEZ , LATEW , and LASEW from the con-

trol function approach, along with bias from violations of the exclusion restriction.26

The local average surplus effect, 54,300 Rs/ha, is larger than estimates from either in-

strumental variable method and is more precisely estimated. The estimated bias from

differences between local average treatment effects is small, at -3,300 Rs/ha. The es-

timated bias from violations of the exclusion restriction is also small, at 4,600 Rs/ha.

These biases happen to offset, and the total bias in the instrumental variable estimator

of the local average surplus effect is just 1,200 Rs/ha.

However, just because the control function estimates imply the linear IV estimator

has a small bias in this case does not mean it is a good estimator of a local average

surplus effect. To judge this, I follow Andrews et al. (2018) and calculate the informa-

tiveness of the IV and WIV estimators of LATEZ and LASEW for the equivalent control

function estimates. This does not capture bias, which is small in this context but need

not be in others, but does capture the extent to which structural estimates of LATEZ

and LASEW are explained by IV estimators. Kline & Walters (2017) note that in many

cases, IV and structural estimates of LATEZ are numerically equivalent, which would

yield an informativeness of 1; I therefore use the informativeness of IV estimates of

26I discuss the construction of these in Section B.3.
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LATEZ for structural estimates of LATEZ as a benchmark. Table 6 shows these mea-

sures. The IV and weighted IV estimators of LATEZ both have high informativeness

of structural estimates (0.51 and 0.46, respectively). The IV estimator of LASEW has

a low informativeness of the structural estimator (0.12). However, the WIV estimator

of LASEW has an informativeness of the structural estimate that is similar to that of

IV estimates of LATEZ for structural estimates of LATEZ (0.50). I interpret this as

evidence that the instrumental variable approach is, at the least, a useful complement

to traditional structural approaches one could use to estimate marginal surplus effects,

as the two approaches should yield similar results.

5.3 MSE

Estimated marginal surplus effects and local average surplus effects for the instrumental

variable estimator (in Ag ’07-’11), the weighted instrumental variable estimator (in Ag

’07-’11), and the control function estimator (in NSS ’12) are presented in Figure 3.

The instrumental variable estimates of marginal surplus effects are constructed from

the local average surplus effect estimates as described in Section 3.5.3. The control

function estimate of the local average surplus effect is constructed from the marginal

surplus effect estimate as described in Section 3.5.4. First, note that although the

weighted IV local average surplus effect is 57% larger than the IV estimate, the weighted

IV marginal surplus effect is only 30% larger. This is because the weighted IV local

average surplus effect places more weight on larger margins of adoption, where marginal

surplus effects will typically be larger (and are by assumption with the functional forms

I use). Second, the control function estimate of the marginal surplus effect is larger than

the IV estimate, but it is close to the WIV estimate over empirically relevant margins

of adoption. As a result, for counterfactual exercises, I pick the “median” of the three

estimates and use the WIV estimate of the marginal surplus effect. Third, note that

distributional assumptions can have a large impact on estimates of the marginal surplus

effect when extrapolating outside of frequently observed margins of adoption.

5.4 Groundwater depletion and rural surplus

With an estimate of the marginal surplus effect, we can calculate the effects of declining

water tables on surplus. To do so, with the marginal surplus effect it is sufficient to

have an estimate of the impact of declining water tables on adoption of irrigation. Let
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b be the depth to water table in meters. I calibrate dE[Di]/db = −.0024/m based on

estimates from Fishman et al. (2017), which I assume to be constant.27 This yields

dE[πi]

db
= MSE(E[Di])

dE[Di]

db

I use this approach to calculate the impact of declining water tables on economic

surplus, and report estimates in Table 8. Column 1 reports estimates of the impact of

a 1m decline in water tables on economic surplus in Rs/ha. The WIV marginal surplus

effect implies a 1m decline in water tables reduces surplus per irrigated hectare by 172

Rs, or 0.7% of agricultural productivity per hectare in India in 2009. Across monitoring

wells in India, one standard deviation of depth to water table is 15.4m, implying a one

standard deviation increase in depth to water table would cause a loss of surplus per

irrigated hectare equal to 10.8% of 2009 Indian agricultural productivity per hectare.

To assess the plausibility of this estimate, I do an alternative calculation. Instead, I

ask how much farmers’ private electricity costs of pumping groundwater would increase

if depth to water table fell by 1m; an appeal to the envelope theorem suggests this is a

direct loss of surplus for farmers. I then scale this up by the inverse share of electricity

costs in costs of declining water tables; I consider values of 3 and 6 for this.28 The IV

and weighted IV estimates of the marginal surplus effect are 4.3 and 5.5 times larger

than the increase in farmers’ private electricity costs of pumping groundwater from a

1m decline in water tables, respectively. I interpret this as validation of that these

estimates are reasonable to use for the remaining counterfactuals.

Next, I use the estimated marginal surplus effects, or local average surplus effects,

to calculate the lost surplus from declining water tables in Haryana, Punjab, and Ra-

jasthan, from 2000-2010, as estimated by Rodell et al. (2009). My preferred estimate,

using the WIV marginal surplus effect, finds lost surplus of 365 Rs/ha, or 1.16% of

27This, and all other calibrated parameters used in counterfactual exercises, are in Table 7.
28I calculate this share in two ways. For the first approach, I begin by noting that, on the margin,

costs of adopting irrigation should equal benefits. I therefore use the IV LATE for the cost instrument
on agricultural productivity as a measure of the costs of adopting irrigation. Next, I assume that the
share of electricity costs in costs of declining water tables equals one minus the share of irrigation
infrastructure in costs of adopting irrigation. Lastly, I use the IV LATE on fixed costs as a measure
of fixed costs of adopting irrigation. To convert this to a flow, I multiply by 0.2, a common interest
rate on credit in India (Hussam et al., 2017). This calculation yields an electricity cost share of 0.5.
Alternatively, I assume that only fixed costs and electricity costs increase when water tables decline,
and I assume they do so in proportion to their aggregate shares. I calculate the share of fixed costs
using the approach above, and I calibrate electricity expenditures per irrigated hectare at 1,470 Rs/ha.
This calculation yields an electricity cost share of 0.12. These yield a range of 2 to 8.
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agricultural productivity per hectare in northwest India. Other estimates range from

251 to 430 Rs/ha, while back of the envelope calculations scaling increased electricity

costs are 197 and 395 Rs/ha.

6 Robustness

I present an analysis of robustness of the estimated local average surplus effect here.

Sections 6.1, 6.2, and 6.3 discuss the exclusion restrictions that the outcome instrument

does not affect costs, that the outcome instrument does not affect potential revenue un-

der rainfed agriculture, and that the cost instrument does not affect potential revenue,

respectively. Section 6.4 discusses potential violations of the weak separability assump-

tion. Section 6.5 discusses endogenous attrition, or that the instruments may increase

gross cultivated area.

6.1 Wn 6⇒ C1i

The outcome instrument Wn might affect costs of agriculture if farmers reoptimize in

response to increases in potential revenue under irrigation, and increase expenditures

on inputs conditional on irrigating. If this is the case, direct effects on potential revenue

driven by Wn may be the sum of increases in surplus and increases in costs; any such

increases in costs are an exclusion restriction violation. To test this, in Column 4 of

Table 4, I use household level data on agricultural input expenditures from NSS ’12 as

the outcome, and I compare instrumental variable estimates using the cost instrument

Zn and the outcome instrument Wn of the effect of irrigation Dn. Additionally, the cost

instrument Zn should have a direct effect on input expenditures related to pumping

groundwater, so I exclude these.29 This is a standard overidentification test: both Zn

and Wn should be valid instruments for the effect of irrigation on agricultural inputs

excluding direct expenditures on irrigation if farmers do not reoptimize. Row 5 shows

I fail to reject this overidentification test, and the estimate is a precise 0.

Alternatively, the outcome instrument may affect direct costs of irrigating through

falling water tables. The outcome instrument should cause increases in extraction of

groundwater, which would cause water tables to fall, which in turn will increase costs

29Specifically, I drop the categories ”Diesel”, ”Electricity”, and ”Irrigation”. While one might be
tempted to use these categories to construct a measure of agricultural profits, they crucially do not
include depreciation of irrigation infrastructure.
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of irrigation. I test for this in Table 9. In Columns 6 and 7 of the first subtable, I fail to

reject the null of no depletion caused by increases in irrigation caused by Wn. However,

the coefficients are not small: they suggest a fully irrigated district has water tables

that are 18m deeper than a district with no irrigation (1.2 standard deviations of depth

to water table across monitoring wells), and depletion is 2m/year faster. However,

this will not meaningfully bias my estimates: multiplying 18m by the 172 Rs/ha cost

increase caused by a 1m fall in water tables, this implies that costs increased by 3,110

Rs/ha, which is less than 10% of my estimates of the local average surplus effect.

6.2 Wn 6⇒ Y0i

The outcome instrument Wn might affect potential revenue under rainfed agriculture;

it is constructed using FAO GAEZ data on predicted relative yields under irrigated

agriculture. This is negatively correlated with predicted yields under rainfed agricul-

ture, as places with high returns to irrigation typically have low yields under rainfed

agriculture. I address this in two ways. First, I consider including more or less flexible

controls for FAO GAEZ potential rainfed crop yield. All primary specifications include

controls for state fixed effects interacted with potential rainfed crop yield, I compare

this baseline specification to specifications with alternative controls in Table 10. First,

Column 2 shows a specification with no controls. The estimated local average surplus

effect is biased downward, as relative potential irrigated yields are negatively correlated

with rainfed yields. Columns 3, 4, 5, and 6 include progressively more flexible controls,

with controls in my preferred specification (in Column 1) falling between Column 4

and Column 5. Estimates of the local average surplus effect range from 39,600 Rs/ha

to 56,900 Rs/ha, compared to 31,700 Rs/ha with unweighted instrumental variables,

although the precision begins to decrease as more controls are added.

Alternatively, the effect of the outcome instrument on rainfed yields is identified.

Flexible models which allow for this in Ag ’07-’11 are underpowered, but the control

function approach I implement in NSS ’12 is sufficiently powered to test this under

more parametric restrictions. I implement this overidentification test in Row 2 of Table

5; I fail to reject the outcome instrument has no effect on rainfed yields, and the 0 is

small and precise. I assess the magnitude of bias from exclusion restriction violations in

Table 4, Column 3: the bias in instrumental variables from violations of the exclusion

restriction is estimated to be 4,600 Rs/ha, less than 10% of the control function estimate

of the local average surplus effect.
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6.3 Zn 6⇒ (Y0i, Y1i)

The cost instrument Zn decreases costs of groundwater irrigation by enabling lower

cost tubewell irrigation. In India, prior to the Green Revolution, almost no agricultural

land was irrigated using tubewells, so the cost instrument should have no effect on

irrigation or agricultural revenue before the start of the Green Revolution. I estimate

a difference in difference specification in Table 11, comparing coefficients on the cost

instrument Zn, the outcome instrument Wn, and the rainfed yield control log RF yieldn,

along with their interactions with a post Green Revolution start dummy.30 To facilitate

comparison across years, I use log agricultural productivity instead of its level. The cost

instrument has no significant effects on irrigation or agricultural productivity before the

Green Revolution, when tubewells are not available as a technology. In contrast, the

outcome instrument increases revenue even before the Green Revolution, as other forms

of irrigation were already available as a technology. However, the outcome instrument

has limited effects on adoption of irrigation: increases in the returns to irrigation have

a small effect on adoption of irrigation when there is large variation in the costs of

irrigation, as was the case before the expansion of tubewell irrigation.

Alternatively, the cost instrument Zn might affect potential revenue directly if farm-

ers reoptimize in response to decreases in costs of irrigation, and increase expenditures

on inputs conditional on irrigating. To some extent, Column 4 of Table 4 should alle-

viate those concerns, as effects of the cost instrument on input expenditures are small.

However, I explicitly excluded any expenditures specific to irrigation, as the cost instru-

ment should have direct negative effects on these. Additionally, that the magnitudes of

the LATE estimates in Columns 1 and 2 of Table 3 are reasonable should alleviate con-

cerns of large bias, but given the limited precision with which they are estimated, this

is also insufficient. To construct a test for reoptimization, I argue that if falling costs

of irrigation cause farmers to reoptimize, we should see shifting of crop choice under

irrigation towards water intensive crops; this appears as a violation of monotonicity,

where the instrument decreases area irrigated under crops with low water intensity. I

test for this in Table 12. Because I test for effects on every crop in the data, I adjust

inference for multiple hypothesis testing; after this adjustment, no monotonicity viola-

tions are detected. Decreases in costs of irrigation cause shifts away from rainfed rice,

maize, and wheat, and into irrigated rice.

30I follow Sekhri (2014) and define 1966 to be the start of the Green Revolution.
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6.4 Weak separability

In general, monotonicity with multiple instruments is a much stronger assumption than

monotonicity with a single instrument. This is equally true here: through the lens of

the model, it requires farmers can only differ in their responsiveness to the instruments

through Vγi. This is violated if some farmers’ surplus under irrigation is relatively more

responsive to the cost instrument. I consider likely violations of this in this section.

The clearest violation of monotonicity is the presence of surface water. Farmers

with access to surface water will not have their costs of irrigation respond to the cost

instrument, since they will irrigate using surface water even if their costs of pumping

groundwater fall. However, these farmers will still respond to the outcome instrument,

since their revenue under irrigation will still shift up. Let Surfacei be a dummy for

access to surface water. To see how this violates monotonicity, one can write this

modified model as

Y1i(w) = VγiγW (w) + V1i

C1i(z) = (1− Surfacei)VγiγZ(z) + VCi

Y0i = V0i

I take two approaches to handling this. First, I drop states where more than one third

of irrigation is surface water, and present results in Column 2 of Table 13. States with

large shares of surface water may bias up estimation of a local average surplus effect, if

the outcome instrument increases revenues in those states but does not affect adoption

of irrigation. The estimated local average surplus effect restricted to states with low

shares of surface water is in fact slightly larger, suggesting such bias is not large in this

context.

Second, I take a more model driven approach. I make the additional assumption that

Surfacei ⊥ (Wi, Zi, V1i, VCi, V0i, Vγi)|Xi, or that access to surface water for irrigation is

exogenous conditional on the controls Xi. Additionally, I assume that everyone with

access to surface water irrigates. This latter assumption I test: I show in Columns 1 and

2 of Table 9 that the outcome instrument (in the first subtable) and the cost instrument

(in the second subtable) cause significant increases in groundwater irrigation, but not

surface water irrigation. Under these assumptions, all results on estimation still hold,

but when conducting counterfactuals using the local average surplus effect that affect

only groundwater, it must be scaled down by the share of groundwater in irrigation.
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When I applied the local average surplus effect to estimation of the welfare losses from

falling water tables in Section 5.4, the estimate of the effect of falling water tables on

groundwater irrigation I use was from communities without access to surface water

irrigation. On the other hand, when I use the local average surplus effect to recover

an estimate of the elasticity of irrigation to the price of electricity, I must account for

having estimated the local average surplus effect nationally, where the groundwater

share of irrigation is 0.66.

6.5 Attrition

An addition concern is attrition: when costs of irrigation fall, some farmers will shift

from rainfed agriculture to irrigated agriculture, but land that was fallow will also

become irrigated, and farmers may begin to multiple crop. This constitutes endogenous

selection into the sample. To account for this, I allow land to shift from either rainfed

agriculture or fallow into irrigated agriculture in response to the instruments. Instead

of looking at the share of agricultural land that is irrigated, I look at the share of

district land that is irrigated. However, I do not observe the reservation rent on fallow

land, or the gross revenue under rainfed agriculture that land would need to yield in

order to be cultivated. However, an extended model implies that selection out of fallow

should be the same in response to the outcome instrument and the cost instrument,

so I test robustness of the results to imputation of a range of reservation rents; I use

both 0 Rs/ha and 20,000 Rs/ha (just under the average revenue per hectare on rainfed

plots in NSS ’12). The results of this exercise are in Columns 3 and 4 of Table 13.

The estimated local average surplus effect is smaller, but not significantly different, and

does not depend on the choice of reservation rent.

7 Optimal policy

In Section 5.4, I calculated the lost surplus per hectare from a one meter decline in the

water table. I now apply this estimate to optimal policy for groundwater subsidies. As

discussed in Section 2.1, irrigation is implicitly subsidized in India through subsidies

for electricity for pumping groundwater. Although there is not volumetric electricity

pricing, pump capacity fees implicitly price electricity at an average of one third of

marginal cost (Fishman et al., 2016; Badiani & Jessoe, 2017). Following Allcott et al.

(2014), I consider a policy maker maximizing social surplus in choosing how to set
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pump capacity fees. Despite deadweight loss, subsidies may be optimal because the

policy maker has a preference for redistribution, and is willing to spend λ > 1 Rs to

transfer 1 Rs to farmers, a stated motive behind electricity subsidies (Dubash, 2007).31

However, the impacts of marginal pumping induced by the subsidy on depth to water

table of other farmers are not internalized by farmers increasing their pumping. This

negative externality, and the deadweight loss from the subsidies, must be traded off by

the social planner against the value of the subsidies as a transfer.

In Section 7.1, I model the planner’s problem, and in Section 7.2, I discuss calibration

of key parameters, including the marginal surplus effect. In Section 7.3, I use the

model to calculate the gains from decentralizing the setting of pump capacity fees in

Rajasthan. Rajasthan is in northwestern India, where I estimated the lost surplus

from declining water tables in Section 5.4, and relative to other states in the region

has greater heterogeneity of aquifer characteristics, and therefore in the magnitude of

the negative externality. I quantify potential gains from reducing relative subsidies in

districts with large negative pumping externalities.

7.1 Planner’s problem

I model groundwater irrigation closely following Shah et al. (1995). In period t, farm-

ers have access to an available stock of groundwater, St, from which they can pump

groundwater for irrigation. If farmer i irrigates (Dit = 1), they receive revenue Y1i(ait)

and incur costs C1i(ait;St), where ait is quantity of water farmer i would extract to

maximize surplus conditional on irrigating in period t. If farmer i does not irrigate,

they receive revenue Y0i. Costs C1i(ait;St) include fixed costs ki(St), linear electricity

costs mi(St)ptait, where pt is the price per kWh in period t, and other linear variable

costs ci(St)ait. Farmers are atomistic, in that farmers do not internalize any impact

their extraction ait has on the available stock of groundwater St. Farmers maximize

surplus πi by solving

πi =

∫ T

0

e−rt max
ait,Dit

DitY1i(ait)−Dit ((ci(St) +mi(St)pt)ait + ki(St))︸ ︷︷ ︸
C1i(ait;St)

+(1−Dit)Y0i

 dt (28)

31Whether the policy maker is justified in acting as if λ > 1 is a question beyond the scope of this
paper, but for electricity subsidies λ > 1 may be efficient if other transfers to farmers create greater
deadweight loss (Hendren, 2014).
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I make a few additional realistic assumptions on electricity use and groundwater

extraction. I model the evolution of the stock of groundwater simply; it falls by one unit

per unit of extraction, so Ṡt = At ≡
∫
Ditaitdi. To extract a unit of water, the electricity

required mi(St) = (hi+b(St))m, where hi+b(St) is the depth to groundwater for farmer

i. The electricity requirement per unit of water per meter of depth to groundwater,

m, is simply the energy required to lift one unit of water by one meter divided by

the pump efficiency. The global component of depth to groundwater, b(St) = St/αL,

where α is the specific yield of the aquifer (the fall in the water table per unit of

groundwater extracted), and L is the area of the aquifer in hectares; as a result, when

one meter hectare of groundwater is extracted, farmers experience an increase in depth

to groundwater of 1/αL meters.

The social planner chooses pt, the price of electricity charged to farmers, to maximize

social surplus. Social surplus is total farmer surplus times λ plus profits from the

electricity sector. Total agricultural electricity use in period t is Mt ≡
∫
Ditmi(St)aitdi,

and the cost of producing a unit of electricity is ct. The social planner solves

max
p

V (p) ≡ λ

∫
πidi+

∫
e−rt(pt − ct)Mtdt (29)

I make three additional simplifications. First, I ignore rebound effects, where in-

creases in the price of electricity today, by reducing extraction of groundwater, increase

the available stock of groundwater, which reduces future costs of extraction and in turn

increases future extraction. I further assume that current extraction is a good approx-

imation of future extraction. In fact, extraction is growing (Rodell et al., 2018). These

two simplifications have offsetting effects: rebound implies externalities are smaller than

I estimate, while growing extraction implies externalities are larger than I estimate. I

anticipate that these biases are small, as my calibrated elasticity is low (which reduces

the bias from ignoring rebound) and my calibrated discount rate is high (which reduces

the bias from ignoring rebound and growth in extraction). Third, I assume that cur-

rent costs of electricity generation and electricity subsidies are a good approximation of

future costs and subsidies. This is difficult to know, but I consider it a natural starting

point for analysis.

I consider the social planner’s first order condition for social surplus maximization

with respect to the period 0 price of electricity. When writing the social planner’s

first order condition, I normalize by total electricity use M0, and multiply by -1; this

normalized first order condition can be interpreted as changes in social welfare per rupee
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of surplus transferred to farmers. I follow the public economics literature and express

this first order condition in terms of reduced form sufficient statistics (Chetty, 2009). I

define εM,p to be the elasticity of electricity use to the price of electricity, and εA,p to

be the elasticity of groundwater extraction to the price of electricity.

− 1

M0

dV (p)

dp0
= λ− 1︸ ︷︷ ︸

Transfer value

− εM,p
p0 − c0

p0︸ ︷︷ ︸
DWL

− λ

1− r
εA,p

(L/αL)

Farmer cost of 1m fall in water table/ha︷ ︸︸ ︷
(∂E[Di0]/∂b0)MSE(E[Di0])

p0M0/A0︸ ︷︷ ︸
Pumping externality (farmer)

− 1

1− r
εA,p

(L/αL)

Utility cost of 1m fall in water table/ha︷ ︸︸ ︷
(p0 − c0)(mA0/L)

p0M0/A0︸ ︷︷ ︸
Pumping externality (utility)

(30)

I consider each term in Equation 30. The first term, λ − 1, is the value the social

planner places on shifting one rupee from public funds to farmers. As a reference for

plausible values of λ, Hendren (2014) estimates that λ = 1.14 in the United States

for beneficiaries of the earned income tax credit. The second term, −εM,p
p0−c0
p0

, is the

standard deadweight loss term. It is the elasticity of electricity use to the price of

electricity times a term that captures the distortion from subsidies.

The third term, λ
1−r

εA,p
(L/αL)(∂E[Di0]/∂b0)MSE(E[Di0])

p0M0/A0
, is the pumping externality expe-

rienced by farmers per Rs of transfer. It is scaled by λ, because changes in farmer sur-

plus, whether from transfers or increased pumping costs from externalities, are valued

the same by the social planner. It is scaled by 1
1−r

, because while transfers are experi-

enced immediately, and deadweight loss is based on the farmer’s static optimization, the

externality from a unit fall in the water table is experienced indefinitely by all farmers.

It is scaled by εA,p because the externality caused per rupee of transfer is proportional

to the extraction caused per rupee of transfer. The remainder
(L/αL)

∂E[Di0]

∂b0
MSE(E[Di0])

p0M0/A0

captures the distortion. The numerator is the externality per unit of water extracted,

and equals the fall in water table experienced by farmers per unit of water extracted

L/αL times the lost farmer surplus per unit fall in the water table ∂E[Di0]
∂b0

MSE(E[Di0]).

The denominator is the electricity cost per unit of water extracted, p0M0/A0. The

full term 1
1−r

εA,p

(L/αL)
∂E[Di0]

∂b0
MSE(E[Di0])

p0M0/A0
, is the externality ratio, or the Rs of externality

created per Rs of surplus transferred to farmers.

The fourth term, 1
1−r

εA,p
(L/αL)(p0−c0)(mA0/L)

p0M0/A0
, is the pumping externality experienced
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by the utility per Rs of transfer. The utility experiences the externality because

of the wedge between the price farmers pay for electricity and the marginal cost of

generation. It is scaled by 1
1−r

, εA,p, and inversely proportional to p0M0/A0 for the

same reasons the pumping externality experienced by farmers is. The numerator,

(L/αL)(p0 − c0)(mA0/L), is lost profits experienced by the utility per unit of water

extracted caused by the increase in electricity required to pump groundwater caused by

falls in the water table. The wedge p0 − c0 is the future difference between the price of

electricity and the marginal cost of generation, as the increased electricity use caused

by the externality occurs indefinitely.

7.2 Calibration

I discuss a few key aspects of the calibration. Note that all parameters used in the

calibration are in Table 7.

First, I take two approaches to calibrating εA,p and εM,p. In both cases, I assume

electricity use for extracting groundwater is a constant proportion of extraction, so

εA,p = εM,p. This need not hold in the model above, in the presence of heterogeneity in

responsiveness to the price of electricity that is correlated with idiosyncratic depth to

groundwater hi. For the first approach, I use an estimate from Badiani & Jessoe (2017),

εA,p = −0.18. For the second approach, I use my preferred estimate of a local average

surplus effect to calculate this elasticity; the inverse of a local average surplus effect

is a semielasticity of irrigation to its gross returns. I calculate εA,p = −0.045.32 This

estimate is likely to be biased downwards, since it ignores intensive margin responses

of extraction to changes in the subsidy. I therefore interpret it as a lower bound, and I

show estimates using both εA,p = −0.18 and εA,p = −0.045.

Second, the numerator of the externality ratio, (L/αL)(∂E[Di0]/∂b0)MSE(E[Di0])

can be decomposed into the product of three terms. The first, 1/α, is the inverse specific

yield of the aquifer, or the total fall in the water table per unit of water extracted.

The second, LE[Di0]/L is the share of the aquifer that is irrigated; this captures the

fraction of a fall in the water table experienced by farmers. These first two terms

will vary across aquifers, which may fall within district or cross district boundaries.

For this exercise I assume each district is a single, contiguous aquifer; however, with

32Specifically, I approximate εA,p ≈ p0M0/E[Di0]L
0.66LASE , where 0.66 is the groundwater share of irrigated

land. I use LASE = 49,800 Rs/ha, and electricity expenditures per irrigated hectare by farmers of
p0M0/E[Di0]L = 1,470 Rs/ha.
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more granular data, this exercise is straightforward at the aquifer level. The third,

(∂E[Di0]/∂b0)(MSE(E[Di0])/E[Di0]), is the lost surplus per irrigated hectare per unit

fall in the depth to groundwater. My preferred estimate of this is 172 Rs/ha/m in Table

8, which I use for this exercise.

Third, calculating m, the electricity needed to pump one unit of groundwater one

meter, is a simple physics problem which depends only on the depth to water table and

the efficiency of extraction. Shah (2009) suggests 40% is a reasonable efficiency in the

Indian context. Further, I assume thatM0 = A0b0m, or that electricity use for irrigation

is groundwater extraction times depth to groundwater times the electricity needed to

pump one unit of groundwater one meter.33 This calculation yields total agricultural

electricity use that is 36% of reported electricity use. I assume this difference is driven

by depth to water table in farmers’ wells being significantly deeper than the depths to

water table in India’s monitoring wells. I scale up my estimates of electricity use M0

by a constant proportion across districts to match this total.

Fourth, a key decision is which parameters I allow to vary across districts. In this

exercise, I focus on heterogeneity in optimal subsidies that stems from variation in

the magnitude of the pumping externality. I therefore allow the key parameters which

determine the pumping externality to vary: the average specific yield, the depth to water

table, and the irrigated share of land. The externality ratio is inversely proportional,

inversely proportional, and proportional to each of these parameters, respectively. I

do a variance decomposition of the log externality ratio across districts: 11% of the

variation is attributed to specific yield, 52% is attributed to irrigated share of land, and

37% is attributed to depth to water table.34

Fifth, for counterfactuals, a necessary decision is to determine which parameters

are permitted to respond endogenously to changes in the policy, and which are not.

The only parameters I allow to vary in response to changes in p are A0, the total

extraction of groundwater in the current period, and E[Di], the irrigated share of the

aquifer. For both, I use εA,p as the relevant elasticity. As mentioned previously, I

ignore rebound; equivalently stated, I do not allow farmers to respond to changes in

depth to water table bt, but I do calculate the changes in rates of depletion implied by

the changes in A0. Additionally, I undertake the analysis as if the policy change were

33Depth to groundwater is measured using the median depth to groundwater by district across
monitoring tubewells in Well ’95-’17

34The externality experienced by the utility varies with the extraction of groundwater per irrigated
hectare by district, which I also allow to vary. Setting this to the average extraction across districts
does not meaningfully change any results, so I do not emphasize it.
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permanent; future decreases in E[Di] caused by increases in electricity prices reduce

negative externalities, and future increases in pt − ct caused by increases in electricity

prices reduce the negative externality on the utility. Both of these effects reduce the

magnitude of optimal variation in subsidies relative to ignoring these responses. In

sum, this represents a compromise between a full numerical simulation of the model, as

would be standard in the optimal control literature, and the simpler sufficient statistics

approach I undertake, and I leave I comparison of my approach to a full numerical

simulation to future work.

Sixth, for aggregating across districts, it is necessary to know district specific levels

of extraction A0 at baseline subsidy levels; I collect this data from district ground-

water brochures from the Central Ground Water Board, which estimate groundwater

withdrawals in each district in an idiosyncratic year ranging from 2004 to 2011, with a

modal year of 2008.

Seventh, I make two sample restrictions for districts for the counterfactual exercise.

First, I only use districts for which depth to water table, district irrigated land share,

and average aquifer specific yield are available; this brings me from 24 districts in

the main analysis to 22. Second, I drop districts where more than 7% of irrigation

uses surface water. In districts with high levels of surface water irrigation, optimal

policy requires a different set of considerations: surface water irrigation has positive

externalities, as it causes recharge of groundwater, and surface water and groundwater

irrigation may be substitutes. This reduces the set of districts from 22 to 14.

7.3 Results

Figure 4 presents the optimal district specific electricity taxes in Rajasthan. To calcu-

late optimal taxes, I calibrate the social planners willingness to pay to increase farmer

surplus by 1 unit, λ, under the assumption current policy is optimal subject to the

constraint that there is a single subsidy at the state level, which yields λ = 1.56. Panel

(a) presents the optimal tax by district. The optimal tax is relatively low in districts in

northwestern Rajasthan, which tend to have lower land shares of irrigation, cultivating

bajra instead of more water intensive wheat and maize, lower depths to water table,

and higher specific yields, and therefore relatively small pumping externalities. Panel

(b) presents the externality ratio and deadweight loss in each district as a function of

the electricity tax. First, note that negative externalities are almost triple deadweight

loss in the highest externality district, but close to 0 in other districts. Second, cur-
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rent subsidy levels reduce farmer surplus on the margin in the district with the largest

pumping externalities, as the marginal pumping induced by current levels of subsidies

in that district reduces farmer surplus by more than their value as a transfer.

Table 14 presents results for total subsidies, deadweight loss, farmer surplus, and

groundwater depletion, all relative to a no subsidy policy, under three scenarios. Col-

umn 1 presents the status quo. Total subsidies equal 6.6% of agricultural production,

but deadweight loss from the subsidies is 0.65% of agricultural production, despite the

high subsidy level. This follows from the low estimate of the price elasticity of electricity

demand in agriculture I use from Badiani & Jessoe (2017). Externalities experienced

by the utility are small relative to externalities experienced by farmers, as despite the

high subsidies, electricity for pumping groundwater is a low share of costs of falling

water tables. Negative pumping externalities induced by subsidies are meaningful, at

0.45% of agricultural production, but smaller than deadweight loss; however, this masks

substantial heterogeneity. Additionally, subsidies were responsible for declines in water

tables of 1.51m from 2000-2010, 46% of the observed decline in northwestern India.

Column 2 of Table 14 presents a scenario where the social planner chooses district

specific subsidies to maximize social welfare under the same λ that implies the policy

in Column 1 is the optimal state level policy, while holding total subsidies fixed. This

policy involves increasing subsidies in districts with small pumping externalities, while

decreasing subsidies in districts with large pumping externalities. First, note that this

policy increases deadweight loss: this follows from the constant elasticity assumption,

which implies a constant subsidy across locations minimizes deadweight loss holding

fixed total subsidy payments. However, the increased deadweight loss is smaller than

the decrease in negative pumping externalities. Negative externalities relative to the

no subsidy policy fall by 25%, the total distortion relative to no subsidy falls by 7%,

and the effect of subsidies on depth to groundwater decreases by 16%. However, total

farmer surplus increases by only 0.07% of agricultural production.

Columns 4 and 6 present equivalent exercises, but using a lower calibrated elasticity

(0.045) and a lower calibrated discount rate (0.08), respectively. Focusing on Column 4,

the lower elasticity implies the inefficiency from subsidies is small: the λ which implies

current policy is the optimal state level policy is 1.12, lower than the estimate from

Hendren (2014) of the implied λ for beneficiaries of the earned income tax credit. As

a result, potential gains from spatially explicit policy are small. This highlights the

importance of having a more precise estimate of this elasticity. Focusing on Column

6, the lower discount rate magnifies externalities, which in turn increases the potential
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gains from spatially explicit policy from 0.07% of agricultural production to 0.29% of

agricultural production. It also implies that subsidies are very inefficient as transfers

due to large negative externalities.

In this exercise, although “optimal” district specific subsidies increase total surplus,

for high calibrations of the discount rate they do reduce farmer surplus in high external-

ity districts, as relatively inefficient subsidies are reduced in those districts. As a result,

this “optimal” policy may not be politically feasible. However, alternative more feasible

policies can replicate the proposed optimal electricity tariff, while generating potentially

larger gains. First, Badiani & Jessoe (2017) and Fishman et al. (2017) find that re-

sponses to changes in the cost of groundwater extraction tend to be on the extensive

margin (in reduced area under irrigation) and not intensive margin (through reduced

pumping). As a result, impacts of changing electricity tariffs can be replicated through

other policies that change incentives to irrigate.35 Additionally, Chatterjee et al. (2017)

document that output subsidies for water intensive crops create incentives to increase

groundwater extraction. Therefore, policies which reduce input subsidies complemen-

tary to irrigation or output subsidies for water intensive crops while increasing subsidies

for inputs complementary to rainfed agriculture could increase the efficiency of farmer

subsidies, especially in districts with large pumping externalities.

8 Conclusion

This analysis suggests that groundwater depletion in India from 2000-2010 permanently

reduced economic surplus by 1.2% of gross agricultural revenue. This is similar to an-

ticipated losses in India due to climate change of 1.8%/decade under the 4◦C warming

scenario (Government of India (2018)), and is especially concerning given accelerating

rates of depletion (Jacoby (2017)). Policy solutions without economic tradeoffs may

not be easy to come by: without reducing total electricity subsidies, the spatially ex-

plicit subsides I study can only increase surplus by a magnitude equal to losses from

less than 1 year of groundwater depletion. Moreover, this policy reduces farmer surplus

in districts with large externalities, and therefore may be politically infeasible. How-

ever, understanding the magnitudes of these externalities and the losses from depletion

enables quantifying the potential efficiency gains from investments in surface water

35Note that implementation of volumetric pricing could have a very different set of impacts on elec-
tricity use, especially with respect to efficiency, than the changes to electricity pricing as implemented
through pump capacity fees that I consider.
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irrigation, or subsidies for inputs complementary to rainfed agriculture.

To undertake this analysis, I have expanded on tools from the program evalua-

tion literature and microeconomic theory to define the marginal surplus effect. While

marginal treatment effects capture the impact of policies or shocks which increase adop-

tion of some treatment (such as college attendance) on observable outcomes, marginal

surplus effects capture the direct impact of these policies or shocks on the economic

surplus of inframarginal adopters. This is an important metric for policy across a range

of contexts, such as health and safety regulations for workers, environmental regulations

for firms, or, in this study, groundwater depletion in agriculture.
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Figure 1: Cost and benefit shifters

(a) Potential aquifer yield Zn (b) log rel. potential irrigated crop yield Wn

Notes: Variation in the cost instrument Zn (potential aquifer yield, Panel (a)) and the outcome instru-
ment Wn (log relative potential irrigated crop yield, Panel (b)) across districts in India is presented
here. Colors correspond to quintiles of their respective distributions. District boundaries are in black,
and state boundaries are in white.
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Figure 2: Model comparative statics
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(b) Decreased costs of treatment

Notes: Panel (a) shows the effects of shifting w, the instrument for potential outcome under treatment
(which shifts potential outcome under treatment Y1i to Y

∗
1i), while Panel (b) shows the effects of shifting

z, the instrument for costs of adopting treatment (which shifts costs C1i to C∗
1i). Changes in the share

of agents adopting treatment, from E[Di] to E[D∗
i ], are displayed. Changes in average surplus E[πi]

or changes in average outcomes E[Yi] are shaded. Marginal treatment effects are in purple, and are
equal to the change in average outcomes per unit change in adoption of treatment caused by shifts to
z. Marginal surplus effects are in pink, and are equal to the change in average surplus per unit change
in adoption of treatment caused by shifts to either z or w. The change in average surplus caused by
both z and w is proportional to the marginal surplus effect. However, the change in average outcomes
caused by z is proportional to the marginal treatment effect, while the change in average outcomes
caused by w is proportional to the marginal surplus effect plus the marginal treatment effect.
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Figure 3: Marginal surplus effect estimates

Notes: Solid lines present estimates of marginal surplus effects (the change in average surplus per
unit change in adoption caused by shifts to either costs or outcomes under treatment), while dashed
lines present estimates of local average surplus effects (a weighted average of marginal surplus effects).
Dashed lines for IV and Weighted IV estimators are the estimates of local average surplus effects used
to construct marginal surplus effects, following Section 3.5.3. The control function estimate of the local
average surplus effect is constructed by replacing outcomes and treatment in the IV regression using
w with control function estimates of predicted changes in surplus and changes in propensity scores.
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Figure 4: Optimal electricity taxes in Rajasthan

(a) Optimal tax, by district (b) Externality ratios and DWL, by district

Notes: This figure presents the results of the optimal policy exercise. In Panel (a), I plot the optimal
electricity tax by district in Rajasthan, dropping districts with missing data or high levels of surface
water irrigation. In Panel (b) I plot farmer externality ratios (the negative externality on farmers
created by induced marginal groundwater extraction per unit of transfer to farmers, which varies across
districts) and deadweight loss (DWL) as a function of the electricity tax. The optimal electricity tax
solves

λ− 1 = (DWL) + λ(Farmer externality ratio) + (Utility externality ratio)

λ is the willingness to pay of the social planner to increase farmer surplus by 1 unit. I use λ = 1.56 for
values reported in this figure, which implies current subsidies are optimal if the planner is constrained
to a single state level subsidy. I assume a constant elasticity of demand for electricity and water to the
price of electricity. Both deadweight loss and externality ratios vary with the tax as electricity use and
groundwater extraction respond. Farmer externality ratios by district are plotted in Panel (b). These
externality ratios drive variation across districts in the optimal tax, and are the product of the inverse
specific yield, inverse depth to water table, and the share of aquifer irrigated. The vertical dotted line
in Panel (b) is the observed tax in Rajasthan (Fishman et al., 2016), while the horizontal dotted line
is at 1: as discussed in Section 7.1, when the farmer externality ratio is above 1, any subsidy decreases
farmer surplus, while when the farmer externality ratio is below 1, any subsidy increases farmer surplus
(although subsidies are still costly to the social planner, due to increased net fiscal outlays, deadweight
loss, and negative externalities on utilities). A tick is added to the bottom of the graph for the optimal
tax in each district.
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Table 1: Descriptive statistics

Mean SD Min Max # of obs. # of clu.

Ag ’07-’11

Yn Agricultural productivity (’000 Rs/ha) 24.9 15.1 1.3 125.0 884 222
Dn Share irrigated 0.550 0.273 0.017 1.000 884 222
Zn Potential aquifer yield (40 L/s) 0.336 0.349 0.025 1.000 884 222
Wn log relative potential irrigated crop yield 0.533 0.254 0.098 2.050 884 222
Xn log potential rainfed crop yield (log t/ha) 0.690 0.503 -2.234 1.285 884 222
Share rice 0.268 0.265 0.000 0.977 884 222
Share wheat 0.211 0.190 0.000 0.631 884 222

NSS ’12

Yi Agricultural productivity (’000 Rs/ha) 36.6 26.1 0.0 100.0 33,778 222
Yi|Di = 1 Irrigated plots 44.9 26.3 0.0 100.0 23,957 220
Yi|Di = 0 Rainfed plots 22.0 18.3 0.0 100.0 9,821 189

Area (ha) 1.778 2.540 0.001 40.823 33,778 222
Di Irrigated 0.637 0.000 1.000 33,778 222
Agricultural inputs net irrigation (’000 Rs/ha) 15.4 15.5 0.0 100.0 26,280 222
Any bank loan 0.310 0.000 1.000 26,280 222

Irr ’07

Infrastructure costs/irrigated ha (’000 Rs/ha) 26.6 14.5 3.4 85.1 222 222
Groundwater share of irrigation 0.658 0.257 0.022 1.000 222 222
Deep tubewells/irrigated ha 0.025 0.057 0.000 0.616 222 222
Shallow tubewells/irrigated ha 0.130 0.213 0.000 1.821 222 222
Dugwells/irrigated ha 0.251 0.401 0.000 2.961 222 222

Well ’95-’17

Depth to water table (mbgl) 14.3 15.4 -1.1 534.0 123,199 203

Notes: Descriptive statistics on the primary datasets are presented here. Units are in parentheses,
and standard deviations are omitted for binary variables. Observations in Ag ’07-’11 are district-
year, observations in NSS ’12 are household-plot (for agricultural productivity, area, and irrigated)
or household (for agricultural inputs and any bank loan), observations in Irr ’07 are district, and
observations in Well ’95-’17 are well-season. Clusters are districts. To maintain comparability to Ag
’07-’11 and Irr ’07, statistics for the NSS ’12 are calculated weighting using sampling weights times
plot area, with weights scaled so each district receives identical weight. Similarly, statistics for Well
’95-’17 are weighted so each district-year receives identical weight. All subsequent analysis maintains
these weights.
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Table 2: Instrumental variables estimates

Share irrigated Agricultural productivity (’000 Rs/ha)

First stage
(
βFS
(·)

)
Reduced form

(
βRF
(·)

)
OLS IV

(
βIV
(·) =

βRF
(·)

βFS
(·)

)
(1) (2) (3) (4) (5) (6) (7)

Zn (cost instrument) 0.278*** 6.3
(0.056) (4.1)

Wn (outcome instrument) 0.791*** 42.9***
(0.188) (10.2)

Dn (share irrigated) 23.9*** 22.6* 54.3***
(2.8) (13.1) (14.5)

Instrument (IV only) - - - - - Zn Wn

State FE X X X X X X X
State FE × Xn X X X X X X X
State FE × Zn - X - X - - X
State FE × Wn X - X - - X -
# of observations 884 884 884 884 884 884 884
# of clusters 222 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in
parentheses. Regression table contains instrumental variable estimates from Ag ’07-’11 using potential
aquifer flow Zn and log relative potential irrigated crop yield Wn as instruments. In each case, the
effect of share irrigated on agricultural productivity per hectare is instrumented for. Controls in all
specifications include state fixed effects and state fixed effects interacted with log potential rainfed crop
yield Xn. The estimated local average surplus effect is the coefficient on share irrigated in Column
7 minus the coefficient on share irrigated in Column 6; estimates of local average surplus effects and
pseudo treatment effect elasticities of demand are presented in Table 3.
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Table 3: Local average surplus effect estimates

Agricultural productivity (−) Infrastructure costs

Ag ’07-’11 Irr ’07

IV WIV IV WIV
(1) (2) (3) (4)

Zn

βFS
Z (first stage) 0.278*** 0.245*** 0.574*** 0.575***

(0.056) (0.073) (0.217) (0.221)

βIV
Z =

βRF
Z

βFS
Z

= LATEZ 22.6* 32.9** -59.1** -86.9*

(13.1) (15.7) (25.5) (47.4)

State FE × Wn X X X X
Wn

βFS
W (first stage) 0.791*** 0.654*** 0.275*** 0.258***

(0.188) (0.216) (0.068) (0.095)

βIV
W =

βRF
W

βFS
W

= LASEW + LATEW 54.3*** 82.7*** 28.3 32.6

(14.5) (28.5) (18.2) (24.3)

State FE × Zn X X X X
Surplus effects

βIV
W − βIV

Z ≈ LASEW 31.7* 49.8 87.4*** 119.6**
(17.9) (30.8) (33.7) (55.9)

βIV
Z

βIV
W −βIV

Z
≈ Treatment effect

elasticity of demand 0.715 0.660 -0.676*** -0.727***

(0.733) (0.607) (0.156) (0.172)

State FE X X X X
State FE × Xn X X X X
LASE: p-value [pairs bootstrap-c p-value] 0.077 [0.136] 0.106 [0.144] 0.010 [0.052] 0.033 [0.072]
(Zn,Wn) = (Aquifer yieldn, Irr. crop yieldn) X X - -
(Zn,Wn) = (Irr. crop yieldn,Aquifer yieldn) - - X X
# of observations 884 884 222 222
# of clusters 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level
are in parentheses, and each cell reports a coefficient from a separate regression. Estimates from
Columns 1 and 2 are directly comparable, while the relative interpretation of estimates from Columns
3 and 4 is discussed in Section 4.2 and 5.1. Rows 1 and 3 report first stage coefficients with irrigated
share of agricultural land Dn as the dependent variable. Rows 2 and 4 report instrumental variable
estimates with gross revenue (for Columns 1 and 2) or negative fixed costs of irrigation infrastructure
(for Columns 3 and 4) as the dependent variable (’000 Rs/ha). Row 5 reports estimates of the local
average surplus effect, and Row 6 reports estimates of a pseudo treatment effect elasticity of demand.
Estimators in Columns 2 and 4 are weighted to balance the share of compliers in each state across βIV

Z

and βIV
W as discussed in Section 3.5.2. All specifications include as controls state fixed effects and state

fixed effects interacted with log potential rainfed crop yield Xn. The instrument Zn is potential aquifer
yield in Columns 1 and 2 and log relative potential irrigated crop yield in Columns 3 and 4, and the
instrument Wn is log relative potential irrigated crop yield in Columns 1 and 2 and potential aquifer
yield in Column 3 and 4. Pairs bootstrap-c p-values for estimates of local average surplus effects are
calculated following Young (2018).
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Table 4: LASE robustness, NSS

Agricultural productivity Agricultural inputs

Ag ’07-’11 NSS ’12

IV IV IV (CF predictions) IV
(1) (2) (3) (4)

Zn

βFS
Z 0.278*** 0.289*** 0.257 0.375***

(0.056) (0.073) (0.056) (0.078)
βIV
Z 22.6* 37.5*** 13.4 12.0*

(13.1) (13.9) (13.5) ( 6.6)

State FE × Wn X X X X
Wn

βFS
W 0.791*** 0.834*** 0.881 0.852***

(0.188) (0.226) (0.218) (0.214)
βIV
W 54.3*** 67.9*** 10.1 + 54.3 + 4.6 8.6

(14.5) (23.9) (10.7)︸ ︷︷ ︸
LATEW

+ (20.0)︸ ︷︷ ︸
LASEW

+(19.3)︸ ︷︷ ︸
biasW

( 7.3)

State FE × Zn X X X X
Surplus effects

βIV
W − βIV

Z 31.7* 30.4 55.5 -3.3
(17.9) (26.3) (19.7) ( 9.7)

State FE X X X X
State FE × Xn X X X X
# of observations 884 33,778 33,778 26,280
# of clusters 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue (for columns 1, 2, and 3) or expenditures
on agricultural inputs net of irrigation (for column 4) as the dependent variable (’000 Rs/ha). Row 5
reports estimates of the local average surplus effect. Estimators in Columns 2, 3, and 4 are weighted
using sample weights times plot area, with weights scaled so each district receives identical weight.
Column 3 uses control function predicted outcomes and propensity scores as outcomes in the reduced
form and first stage, respectively. This allows decomposition of βIV

W into a LATE, a LASE, and bias
from violations of the exclusion restriction Wn 6⇒ Y0i, which is identified using the control function
approach. All specifications include as controls state fixed effects and state fixed effects interacted with
log potential rainfed crop yield Xn. The instrument Zn is potential aquifer yield, and the instrument
Wn is log relative potential irrigated crop yield.
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Table 5: Control function estimates

gC -34.1 (13.6)**
c0 4.0 (17.0)
gY 78.6 (27.5)***
σV 25.8 ( 9.5)***

Cov(−V1i,Vi−E[Vi|Xi])

σ2
V

0.21 (0.44)
Cov(V0i,Vi−E[Vi|Xi])

σ2
V

0.11 (0.24)
Cov(VCi,Vi−E[Vi|Xi])

σ2
V

0.68 (0.46)

# of observations 33778
# of clusters 222

Notes: Robust standard errors clustered at the district level are used to construct 95% confidence
intervals in square brackets. Parameters are estimated by a two step control function approach as
detailed in Section 3.5.4 and B.3, and standard errors are adjusted for the two step procedure. gC is
the effect of the cost instrument ZCn (potential aquifer yield) on cost per hectare of irrigation, gY and
c0 are the effects of the outcome instrument ZY n (log relative potential irrigated crop yield) on relative
revenue per hectare from irrigation and revenue per hectare from rainfed agriculture, respectively. σV

is the standard deviation of idiosyncratic relative profitability of irrigated agriculture. The three
covariance terms decompose the variance of idiosyncratic relative profitability of irrigated agriculture
into components from idiosyncratic revenue from irrigated agriculture, idiosyncratic revenue from
rainfed agriculture, and idiosyncratic costs of irrigated agriculture, respectively.
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Table 6: Informativeness of IV estimators for CF predicted LATE and LASE

Descriptive Statistic Estimate of interest Informativeness
(IV estimator) (CF prediction)
βIV
Z LATEZ 0.506

βIV
W − βIV

Z LASEW 0.118
βWIV
Z LATEWIV

Z 0.455
βWIV
W − βWIV

Z LASEWIV
W 0.504

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The informativeness of 4 IV estimators for their
target parameters estimated using a control function approach are presented here. Informativeness
is calculated following Andrews et al. (2018), who note that it can be interpreted as the R2 from
the population regression of the target parameter on the corresponding IV estimator in their joint
asymptotic distribution. IV estimators βIV

Z and βIV
W use Z (potential aquifer flow) and W (log relative

potential irrigated crop yield) as instruments, respectively, for the effect of D (irrigation) on Y (gross
revenue per hectare). CF predictions replace Y and D with their predictions using a two step control
function approach following Kline & Walters (2017). LATE comparisons control for state FE, W (Z),

and state FE interacted with X for β
(·)
Z (β

(·)
W ), and LASE comparisons control for state FE, state FE

interacted with W (Z), and state FE interacted with X for β
(·)
Z (β

(·)
W ). WIV estimators use weights to

balance compliers on state FE, with weights constructed as described in Section 3.5.2. Cluster robust
variance covariance matrices are estimated clustered at the district level.
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Table 7: Calibrated parameters

Value [Low, High] Source
Calibrated parameters

εA,p, εM,p -0.18 Badiani & Jessoe (2017)
1 - r, upper bound (rural credit interest rate) 0.20 Hussam et al. (2017)
1 - r, lower bound (India 30 year bond yield) 0.08
m (energy/m3 of water/m) 6.8 Wh/m3/m Shah (2009)
dE[Di]/db -.0024/m Fishman et al. (2017)

Calibrated parameters (Rajasthan)

p 1.21 Rs/kWh Fishman et al. (2016)
c 3.30 Rs/kWh Fishman et al. (2016)
b (depth to water table) [5m, 66m] Well ’95-’17
α (specific yield) [0.015, 0.068] Narain et al. (2006)
E[Di]L/L (aquifer share irrigated) [0.015, 0.492] Ag ’07-’11
A/E[Di]L (groundwater use/irrigated ha) [0.065, 0.650] m ha/ha Ag ’07-’11
Rajasthan 2008 agricultural electricity use 9,791 GWh Rajasthan DES (2011)

India statistics

E[Di]L (irrigated ha) 60 million ha Ag ’07-’11
A/E[Di]L (avg. groundwater use/irrigated ha) 0.43 m ha/ha Shah (2009), Ag ’07-’11
p 1.05 Rs/kWh Fishman et al. (2016)
pM/E[Di]L (avg. elec. exp./irrigated ha) 1,470 Rs/ha Fishman et al. (2016), Ag ’07-’11

Estimates

MSE(u) 71,500u Rs/ha Section 5.3
εA,p, εM,p (lower bound) -0.045 Section 7.2

Notes: This table contains the calibrated parameters for the counterfactual exercises in Section 5.4 and Section 7. Values are provided as points
when a single estimate is used, and as a range when the value used is allowed to vary across districts. Ranges for specific yield, depth to water
table, aquifer share irrigated, and groundwater use/irrigated ha are specific to Rajasthan. Depth to water table is estimated as the median post
monsoon Kharif reading from the network of monitoring tube wells, bottom winsorized at 5m.
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Table 8: Lost surplus from groundwater depletion

1m decline 3.3m decline, NW India
Rs/irrigated ha Rs/ha [% of productivity/ha]

(1) (2)
IV

LASE 251 [0.80%]
MSE 132 282 [0.90%]

Weighted IV

LASE 394 [1.26%]
MSE 172 365 [1.16%]

Control Function

LASE 430 [1.37%]

Back of envelope

3x Electricity costs 93 197 [0.63%]
6x Electricity costs 186 395 [1.26%]

Notes: This table presents estimates of the lost surplus from groundwater depletion using estimates
of local average surplus effects and marginal surplus effects from Section 5.1 and 5.3, and calibrated
parameters from Table 7. Column 1 presents the impact of a 1m decline in the water table on costs
per irrigated hectare. Column 1 IV and WIV estimates are calculated using the estimated marginal
surplus effect, and the calibrated effect of a 1m decline in water tables on adoption of irrigation.
Column 1 back of the envelope approaches calculate the increased electricity costs farmers would have
to pay to pump groundwater one additional meter, exclusively using calibrated parameters from Table
7. Column 2 presents the impact of a 3.3m decline in water tables in Northwestern India (Haryana,
Punjab, and Rajasthan), the estimate of 2000’s water table declines from Rodell et al. (2009).
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Table 9: Irrigation technology

Irr ’07 Well ’95-’17 Well ’07-’11

Groundwater ha/ha Surface water ha/ha Deep tubwell/ha Shallow tubewell/ha Dugwell/ha Depletion (mbgl/year) Depth to water table (mbgl)

(1) (2) (3) (4) (5) (6) (7)
Dn (share irrigated) 0.718*** 0.282 0.091* 0.067 -0.019 2.14 18.1

(0.222) (0.222) (0.053) (0.078) (0.127) (1.39) (19.1)
Instrument Wn Wn Wn Wn Wn Wn Wn

State FE X X X X X X X
State FE ×Xn X X X X X X X
State FE ×Zn X X X X X X X
# of observations 222 222 222 222 222 85,804 28,169
# of clusters 222 222 222 222 222 198 176

Irr ’07 Well ’95-’17 Well ’07-’11

Groundwater ha/ha Surface water ha/ha Deep tubwell/ha Shallow tubewell/ha Dugwell/ha Depletion (mbgl/year) Depth to water table (mbgl)

(1) (2) (3) (4) (5) (6) (7)
Dn (share irrigated) 1.000*** 0.000 -0.002 0.325*** -0.395** 3.75 67.5

(0.207) (0.207) (0.031) (0.096) (0.155) (2.59) (41.4)
Instrument Zn Zn Zn Zn Zn Zn Zn

State FE X X X X X X X
State FE ×Xn X X X X X X X
State FE ×Wn X X X X X X X
# of observations 222 222 222 222 222 85,804 28,169
# of clusters 222 222 222 222 222 198 176

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in parentheses. In the first subtable,
coefficients on share irrigated are estimated using Wn, log relative potential irrigated crop yield, as an instrument. In the second subtable,
coefficients on share irrigated are estimated using Zn, potential aquifer flow, as an instrument. Controls Xn are log potential rainfed crop yield.
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Table 10: LASE robustness, controls

Agricultural productivity (Yn)

Ag ’07-’11

IV IV IV IV IV IV
(1) (2) (3) (4) (5) (6)

Zn

βFS
Z 0.278*** 0.465*** 0.229*** 0.239*** 0.310*** 0.394***

(0.056) (0.035) (0.053) (0.058) (0.060) (0.072)
βIV
Z 22.6* 22.3*** 26.3** 17.7 34.8*** 36.1***

(13.1) ( 4.6) (12.4) (15.1) (11.3) (10.0)

Wn X - X X X X
State FE × Wn X - - - X X
State FE × XnWn - - - - - X
State FE × W 2

n - - - - - X
Wn

βFS
W 0.791*** 0.302*** 0.522*** 0.756*** 0.502** 0.400*

(0.188) (0.101) (0.187) (0.187) (0.220) (0.222)
βIV
W 54.3*** 26.3*** 83.2*** 57.4*** 76.6** 84.3*

(14.5) ( 8.6) (27.1) (15.5) (33.7) (45.4)

Zn X - X X X X
State FE × Zn X - - - X X
State FE × XnZn - - - - - X
State FE × Z2

n - - - - - X

Surplus effects

βIV
W − βIV

Z 31.7* 4.0 56.9** 39.6* 41.9 48.2
(17.9) ( 9.6) (28.3) (20.6) (35.1) (47.0)

Xn X - X X X X
State FE X - X X X X
State FE × Xn X - - X X X
State FE × X2

n - - - - X X
# of observations 884 884 884 884 884 884
# of clusters 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue as the dependent variable (’000 Rs/ha).
The control Xn is log potential rainfed crop yield, the instrument Zn is potential aquifer yield, and
the instrument Wn is log relative potential irrigated crop yield.
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Table 11: Placebo before Green Revolution

Dnt (share irrigated) log Ynt (log agricultural productivity)

(1) (2)
Zn 0.050 0.028

(0.063) (0.103)
1{t > 1966}Zn 0.116*** 0.120*

(0.042) (0.067)
Wn 0.182 0.755*

(0.144) (0.411)
1{t > 1966}Wn 0.335*** 0.781***

(0.114) (0.240)
log RF yieldn 0.144* 1.150***

(0.085) (0.260)
1{t > 1966} log RF yieldn 0.193*** 0.200

(0.074) (0.154)
State-by-year FE X X
# of observations 11,799 11,799
# of clusters 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level
are in parentheses. Zn is potential aquifer yield, Wn is log relative potential irrigated crop yield, and
RF yieldn is log potential rainfed crop yield. Outcomes are from Ag ’56-’11.
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Table 12: Irrigation and crop choice

Di1{Cropi = (.)}
Di (irrigated) Wheat Rice Cotton Soya Bajra Gram Maize Jowar Sugar RM Tur Groundnut Potato

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Zn 0.289***

(0.073)
Di (irrigated) 0.314 0.983*** -0.160 0.094 0.001 -0.249** 0.039 0.012 -0.060 0.028 0.009 -0.028 0.016

(0.219) (0.297) (0.108) (0.083) (0.143) (0.119) (0.116) (0.030) (0.107) (0.070) (0.012) (0.024) (0.045)
Instrument (IV only) - Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn

BH q-value - 0.495 0.012 0.495 0.558 0.996 0.236 0.796 0.796 0.796 0.796 0.796 0.558 0.796
State FE X X X X X X X X X X X X X X
State FE ×Xn X X X X X X X X X X X X X X
State FE ×Wn X X X X X X X X X X X X X X
# of observations 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778
# of clusters 222 222 222 222 222 222 222 222 222 222 222 222 222 222

(1−Di)1{Cropi = (.)}
Di (irrigated) Wheat Rice Cotton Soya Bajra Gram Maize Jowar Sugar RM Tur Groundnut Potato

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Zn 0.289***

(0.073)
Di (irrigated) -0.087** -0.513*** -0.053 -0.220** 0.158 -0.081 -0.187*** -0.027 0.000 -0.021 0.058 -0.027 0.000

(0.038) (0.148) (0.096) (0.107) (0.097) (0.057) (0.072) (0.045) (0.000) (0.027) (0.083) (0.054) (0.000)
Instrument (IV only) - Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn

BH q-value - 0.096 0.007 0.674 0.127 0.269 0.347 0.060 0.674 0.871 0.674 0.674 0.674 0.419
State FE X X X X X X X X X X X X X X
State FE ×Xn X X X X X X X X X X X X X X
State FE ×Wn X X X X X X X X X X X X X X
# of observations 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778 33,778
# of clusters 222 222 222 222 222 222 222 222 222 222 222 222 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are in parentheses. Coefficients on share
irrigated are estimated using Zn, potential aquifer yield, as an instrument. Di is an irrigation indicator for plot i, and Cropi is the crop
cultivated on plot i. Controls Xn are log potential rainfed crop yield, and Wn is log relative potential irrigated crop yield. Di and Cropi are
from NSS ’12. Following Benjamini & Hochberg (1995) and Anderson (2008), BH p-value are multiple inference adjusted p-values (adjusted
within table).
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Table 13: LASE robustness, surface water and endogenous cultivation

Agricultural productivity (Yn) YnLn/Ln (YnLn + 20(Ln − Ln))/Ln

Ag ’07-’11

IV IV IV IV
(1) (2) (3) (4)

Zn

βFS
Z 0.278*** 0.279*** 0.456*** 0.456***

(0.056) (0.054) (0.075) (0.075)
βIV
Z 22.6* 15.1 34.5*** 17.2***

(13.1) (12.9) ( 5.6) ( 5.7)

State FE × Wn X X X X
Wn

βFS
W 0.791*** 0.777*** 0.559** 0.559**

(0.188) (0.227) (0.241) (0.241)
βIV
W 54.3*** 64.3*** 55.9*** 39.5**

(14.5) (19.3) (17.5) (18.4)

State FE × Zn X X X X

Surplus effects

βIV
W − βIV

Z 31.7* 49.2** 21.4 22.4
(17.9) (20.7) (17.4) (18.0)

State FE X X X X
State FE × Xn X X X X
GJ, HA+PJ, MH, RJ, UP - X - -
Endog. DnLn/Ln - - X X
# of observations 884 447 884 884
# of clusters 222 133 222 222

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the district level are
in parentheses, and each cell reports a coefficient from a separate regression. Rows 1 and 3 report first
stage coefficients with irrigated share of agricultural land Dn as the dependent variable. Rows 2 and
4 report instrumental variable estimates with gross revenue as the dependent variable (’000 Rs/ha).
The control Xn is log potential rainfed crop yield, the instrument Zn is potential aquifer yield, and
the instrument Wn is log relative potential irrigated crop yield. Column 2 restricts observations to
districts in the five 1961 states with the smallest shares of surface water irrigation. Columns 3 and 4
use share of district land irrigated, instead of share of district agricultural land irrigated, as treatment
Dn. Columns 3 and 4 use agricultural production plus a reservation rent for uncultivated land (0
in Column 7 and 20,000 Rs/ha in Column 8) per hectare of district land as the outcome, instead of
agricultural revenue per cultivated hectare.
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Table 14: Optimal electricity taxes in Rajasthan

ε = 0.18, r = 0.2 ε = 0.045, r = 0.2 ε = 0.18, r = 0.08

Status quo Optimal Status quo Optimal Status quo Optimal
(1) (2) (3) (4) (5) (6)

λ (implied by status quo) 1.56 1.56 1.12 1.12 2.13 2.13

Billion Rs [% of agricultural production]

Total subsidy 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%] 10.32 [6.59%]
Deadweight loss 1.02 [0.65%] 1.09 [0.69%] 0.27 [0.17%] 0.29 [0.18%] 1.02 [0.65%] 1.20 [0.76%]
Externality (utility) 0.10 [0.06%] 0.07 [0.05%] 0.03 [0.02%] 0.02 [0.01%] 0.25 [0.16%] 0.17 [0.11%]
Farmer surplus

Subsidy 9.31 [5.94%] 9.24 [5.90%] 10.06 [6.42%] 10.04 [6.41%] 9.31 [5.94%] 9.13 [5.83%]
Externality (farmer) 0.70 [0.45%] 0.52 [0.33%] 0.20 [0.13%] 0.16 [0.10%] 1.75 [1.12%] 1.12 [0.71%]
Total 8.61 [5.50%] 8.72 [5.57%] 9.86 [6.30%] 9.88 [6.31%] 7.56 [4.83%] 8.01 [5.12%]

m/decade [% of 2000-2010 decline]

Water table decline 1.51 [45.7%] 1.26 [38.3%] 0.40 [12.2%] 0.34 [10.4%] 1.51 [45.7%] 1.19 [36.1%]

Notes: This table presents the results of the optimal policy exercise. Columns 1, 3, and 5 present results from maintaining the status quo (p =
1.21 Rs/ha in all districts, with marginal cost c = 3.30 Rs/ha). Columns 2, 4, and 6 present results from optimal subsidies holding fixed total
subsidies. ε is the calibrated elasticity of groundwater extraction/electricity use to the price of electricity, and 1 − r is the calibrated discount
rate. λ is the inverse marginal value of public funds for a marginal change to state level subsidies under the status quo. All cells report impacts
of the policy relative to no subsidies.
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A Data appendix

A.1 Construction of Wns

I construct two variables using potential crop yield: log relative potential irrigated crop

yield, and log potential rainfed crop yield. Define AI
nsc and AR

nsc to be the FAO GAEZ

potential crop yield in district n in state s for crop c under the intermediate irrigated

and rainfed scenarios, respectively, which I calculate by averaging the values across

FAO GAEZ 5 arc-minute cells to the district level. Let Lnsct be the land allocated to

crop c in district n in state s in year t, observed in Ag ’56-’11. Let Lsc =
∑

n,t Lnsct be

the total area, across all years in Ag ’56-’11, allocated to crop c in state s. I define

Wns ≡ log

∑
c Lscmin{AI

nsc, 10A
R
nsc}∑

c LscAR
nsc

log RF yieldns ≡ log

∑
c LscA

R
nsc∑

c Lsc

where Wns is the log relative potential irrigated crop yield, and RF yieldns is the log

potential rainfed crop yield. A few notes on the construction. First, the weights Lsc are

constant within state; this ensures that variation in Wn is caused by variation across

districts in the potential yield increase from irrigation, and not variation across dis-

tricts in weights. Since these weights vary across states, I control flexibly for state in

all analysis. It is important to allow the weights to vary across states; there is large

variation across states in crop choice. Second, applying min{AI
nsc, 10A

R
nsc} is similar to

winsorizing Wns at log 10 for each crop. This is almost exclusively necessary for a few

desert districts in Rajasthan and Gujarat; dropping these districts does not meaning-

fully change results, and the weighted instrumental variables estimator already places

very little weight on these districts. However, not implementing this winsorization puts

very high weight on these districts in estimation of the coefficient on Wns, since these

districts’ predicted rainfed yield is close to 0. Since these districts are very dependent

on irrigation and have relatively high yields, this increases the first stage and reduced

form coefficients on Wns. Third, controlling for log RF yieldns and a state fixed effect,

the coefficient on Wns would be the same if instead Wns = log
∑

c Lsc min{AI
nsc,10A

R
nsc}∑

c Lsc
, or

log potential irrigated crop yield.
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B Model appendix

B.1 Proofs and derivations appendix

Proof of generality of functional form. Under weak separability of unobserved hetero-

geneity, and imposing the exclusion restrictions, agent surplus under treatment Y1i(w)−
C1i(z) = U(h(w, z), Ṽi), following Bhattacharya (2017) in definiting weak separability.

Taking derivatives with respect to w and z yields

∂Y1i

∂w
=

∂U(h(w, z); Ṽi)

∂h

∂h(w, z)

∂w
∂C1i

∂z
=

∂U(h(w, z); Ṽi)

∂h

∂h(w, z)

∂z
∂2Y1i

∂w∂z
=

∂2U(h(w, z); Ṽi)

∂h2

∂h(w, z)

∂w

∂h(w, z)

∂z
+

∂U(h(w, z); Ṽi)

∂h

∂2h(w, z)

∂w∂z

A few restrictions appear here. First, ∂2Y1i

∂w∂z
= 0 (exclusion restriction). Second, ∂h(w,z)

∂z
>

0 and ∂h(w,z)
∂w

> 0 (monotonicity). Third, ∂U(h(w,z);Ṽi)
∂h

> 0 (monotonicity). Therefore,

excluding edge cases, ∂2U(h(w,z);Ṽi)
∂h2 = 0 and ∂2h(w,z)

∂w∂z
= 0. The latter implies h(w, z) =

hW (w) + hZ(z) + Vhi. The former implies ∂U(h(w,z);Ṽi)
∂h

= Vγi for some constant which is

a function of Ṽi. Making these substitutions implies

Y1i(w)− C1i(z) = Vγi(hW (w) + hZ(z) + Vhi) + ṽi

which is equivalent to

Y1i(w) = VγiγW (w) + V1i

C1i(z) = VγiγZ(z) + VCi
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Derivation of Equation 3 and 4. Calculating each derivative,

dE[Yi(z, w)]

dz
= fV (F

−1
V (E[Di(z, w)]))

dγZ(z)

dz
E[Y1i(w)− Y0i|Ui = E[Di(z, w)]]

dE[πi(z, w)]

dz
= −E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]

dγZ(z)

dz
dE[πi(z, w)]

dw
= −E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]

dγW (w)

dw
dE[Di(z, w)]

dz
= fV (F

−1
V (E[Di(z, w)]))

dγZ(z)

dz
dE[Di(z, w)]

dw
= fV (F

−1
V (E[Di(z, w)]))

dγW (w)

dw

Some algebra then yields the desired result.

Derivation of Equation 9. Calculating the derivative of TOT(u;w) yields

dTOT(u;w)

dw
= E[Vγi|Ui < u]

dγW (w)

dw

Some algebra, and results from the proof of Equation 3 and 4, yields the desired result.

Derivation of Equation 10. Calculating each derivative,

dE[Yi(z, w)]

dw
= fV (F

−1
V (E[Di(z, w)]))

dγW (w)

dw
E[Y1i(w)− Y0i|Ui = E[Di(z, w)]]+

E[Di(z, w)]E[Vγi|Ui < E[Di(z, w)]]
dγW (w)

dw

Some algebra, and results from the proof of Equation 3 and 4, yields the desired result.

Proof of Equation 18. It suffices to show that βWIV
Z = βIV

W . Let Z⊥
i ≡ Zi−E[Zi|Wi, Xi],

and W⊥
i ≡ Wi − E[Wi|Zi, Xi]. Note that

βWIV
Z =

∑
s

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

E[1{Si = s}(ωW (Si)/ωZ(Si))DiZ
⊥
i ]

E[(ωW (Si)/ωZ(Si))DiZ⊥
i ]

I then proceed in two steps. First, I show that

E[1{Si = s}(ωW (Si)/ωZ(Si))DiZ
⊥
i ]

E[(ωW (Si)/ωZ(Si))DiZ⊥
i ]

=
E[1{Si = s}DiW

⊥
i ]

E[DiW⊥
i ]
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Second, I show that
E[YiZ

⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[YiW

⊥
i |Si = s]

E[DiW⊥
i |Si = s]

Substituting each of these expressions into the original equation yields

βWIV
Z =

∑
s

E[YiW
⊥
i |Si = s]

E[DiW⊥
i |Si = s]

E[1{Si = s}DiW
⊥
i ]

E[DiW⊥
i ]

= βIV
W

which completes the proof.

For the first step, I use the result that ωW (s) =
E[1{Si=s}DiW

⊥
i ]

E[DiW⊥
i ]

and ωZ(s) =

E[1{Si=s}DiZ
⊥
i ]

E[DiZ⊥
i ]

, which can be shown by rewriting the IV estimator as a weighted average

of IV estimators conditional on Si = s. Substituting these expressions in immediately

completes the first step.

For the second step, I use

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[(E[Yi|Z⊥

i ,Wi, Xi]− E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z
⊥
i |Si = s]

E[(E[Di|Z⊥
i ,Wi, Xi]− E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥

i |Si = s]

This requires a few steps. I focus on the numerator; the approach is the same for the de-

nominator. First, I project Yi onto Z
⊥
i , yieldingE[YiZ

⊥
i |Si = s] = E[E[Yi|Z⊥

i , Si]Z
⊥
i |Si =

s]. Second, I apply the law of iterated expectations. Since (Zi,Wi, X̃i) are jointly

normal conditional on Si = s, Z⊥
i ⊥ (Wi, X̃i) conditional on Si = s. Therefore,

E[E[Yi|Z⊥
i , Si]Z

⊥
i |Si = s] = E[E[Yi|Z⊥

i ,Wi, Xi]Z
⊥
i |Si = s]. Lastly, using Z⊥

i ⊥ (Wi, X̃i),

and E[Z⊥
i |Si = s] = 0, we complete the equality.

Next, I substitute these differences with integrals over marginal treatment effects

and the propensity score. Here, I use the linearization of both. Let MTE(u;w, x̃, s) =

m1su+m2sw + x̃′m3s and E[Di(z, w; x̃, s)] = d1sz + d2sw + x̃′d3s. Then, some calculus

yields

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

=
E[d1s(Z

⊥
i )

2(m1sE[Di|Wi, Xi] +m2sWi + X̃ ′
im3s) +

1
2
d1sm1s(Z

⊥
i )

3|Si = s]

E[d1s(Z⊥
i )

2|Si = s]

Two simplifications can be made here. First, E[(Z⊥
i )

3|Si = s] = 0, since the normal

distribution has no skew. Second, I use Z⊥
i ⊥ (Wi, X̃i). Together, these yield

E[YiZ
⊥
i |Si = s]

E[DiZ⊥
i |Si = s]

= m1sE[Di|Si = s] +m2sE[Wi|Si = s] + E[X̃ ′
i|Si = s]m3s
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A symmetric proof shows the same result holds for
E[YiW

⊥
i |Si=s]

E[DiW⊥
i |Si=s]

, which completes the

proof.

B.2 Weights

B.2.1 LATE and LASE weights

I start with the result from Heckman & Vytlacil (2005) on OLS.

Cov(Q, T − E[T |X])

Var(T − E[T |X])
=

∫ ∫
∂E[Q|T = t,X = x]

∂t
ω(t, x)dtdx

ω(t, x) =
Pr[T > t,X = x]E[T − E[T |X]|T > t,X = x]∫ ∫

Pr[T > t′, X = x′]E[T − E[T |X]|T > t′, X = x]dt′dx′

The first expression shows that the coefficient on T , controlling for X, estimates a

weighted average of derivatives of the conditional expectation function of Q given T = t

and X = x with respect to t. The second expression shows that the weights ω(t, x) are

the partial expectation, conditional on X = x, of T − E[T |X] given T > t, times the

probability that X = x. Note this partial expectation approaches 0 at the edges of the

conditional support of T conditional on X = x, which is consistent with our intuition

that OLS estimates should not depend on derivatives of the conditional expectation

function outside the support of the covariates. Additionally, it is helpful to note that∫
ω(t, x)dt =

Pr[X = x]Var(T |X = x)∫
Pr[X = x′]Var(T |X = x′)dx′

The weights placed on each x depend on the probability X = x and the conditional

variance of T given X = x.

Still following Heckman & Vytlacil (2005), we can now apply this to the IV estimator

βIV
Z = Cov(Yi,Zi−E[Zi|Wi,Xi])

Cov(Di,Zi−E[Zi|Wi,Xi])
= LATEZ . For the definition of these weights, it will be

useful to define the propensity score P (z, w;x) = E[Di|Zi = z,Wi = w,Xi = x]. Note

that just identified linear instrumental variables is just a ratio of OLS estimators, so

we can simply apply the formula above. Additionally, we make the substitution that
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∂E[Yi(z,w;x)]
∂z

= ∂P (z,w;x)
∂z

MTE(P (z, w;x);w, x). Applying these results yields

LATEZ =

∫
MTE(u;w, x)ωZ(u;w, x)dudwdx

ωZ(u;w, x) = (Pr[P (Zi,Wi;Xi) > u,Wi = w,Xi = x]·

E[Zi − E[Zi|Wi, Xi]|P (Zi,Wi;Xi) > u,Wi = w,Xi = x]) /(∫ ∫ ∫
Pr[P (Zi,Wi;Xi) > u′,Wi = w′, Xi = x′]·

E[Zi − E[Zi|Wi, Xi]|P (Zi,Wi;Xi) > u′,Wi = w′, Xi = x′]du′dw′dx′
)

Once again, the weights on MTE are in terms of partial expectation functions; weight

is placed on latent propensities to adopt u within the support of the propensity score

P (Zi,Wi;Xi). Again, for interpretation it is helpful to integrate over u to estimate the

weight placed on observations with (Wi, Xi) = (w, x). When the propensity score is

linear in z conditional on (Wi, Xi), one can show∫
ωZ(u;w, x)du =

Var(P (Zi,Wi;Xi)|Wi = w,Xi = x)Pr[Wi = w,Xi = x]∫ ∫
Var(P (Zi,Wi;Xi)|Wi = w′, Xi = x′)Pr[Wi = w′, Xi = x′]dw′dx′

The most weight is placed on values of (Wi, Xi) which have the highest conditional

variance of the propensity score and which are observed the most frequently.

Finally, we can apply this to instrumental variables using Wi as an instrument,

βIV
W = Cov(Yi,Wi−E[Wi|Zi,Xi])

Cov(Di,Wi−E[Wi|Zi,Xi])
= LASEW + LATEW . Once again, we represent this as the

ratio of OLS estimators, and we apply the result above for OLS. Here, we make use

of the fact that ∂E[Yi(z,w;x)]
∂w

= ∂P (z,w;x)
∂w

(MSE(P (z, w;x);x) + MTE(P (z, w;x);w, x)). It

will also be necessary to define implicitly define Ž(u;w, x) by u = P (Ž(u;w, x), w;x); Ž

inverts the propensity score to recover the value of z that will set the propensity score
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equal to u given (Wi, Xi) = (w, x). Then,

LATEW =

∫
MTE(u;w, x)ωW (u;w, x)dudwdx

LASEW =

∫
MSE(u;x)ωW (u;w, x)dudwdx

ωW (u;w, x) =

(
∂P (Ž(u;w, x), w;x)/∂w

∂P (Ž(u;w, x), w;x)/∂z
·

Pr[Wi > w,P (Zi,Wi;Xi) = u,Xi = x]·

E[Wi − E[Wi|Zi, Xi]|Wi > w,P (Zi,Wi;Xi) = u,Xi = x]

)
/(∫ ∫ ∫

∂P (Ž(u′;w′, x′), w′;x′)/∂w

∂P (Ž(u′;w′, x′), w′;x′)/∂z
·

Pr[Wi > w′, P (Zi,Wi;Xi) = u′, Xi = x′]·

E[Wi − E[Wi|Zi, Xi]|Wi > w′, P (Zi,Wi;Xi) = u′, Xi = x′]du′dw′dx′
)

Although these expressions appear more complicated, integrating over u and w, once

again we can interpret them roughly as variances of the propensity score conditional

on the controls Zi and Xi; this is exact when the propensity score is linear in z and w

conditional on Xi = x.

Finally, these expressions are all functions of P (z, w;x) and the joint distribution

of (Zi,Wi, Xi), all of which are nonparametrically identified, so the weights are non-

parametrically identified. In practice, estimation of the weights may involve placing

parametric restrictions on P (z, w;x).

B.2.2 Efficient reweighting

Define

βWIV
Z (wZ) =

Cov(wZ(Si)Yi, Zi − E[Zi|Wi, (Xi, Si)])

Cov(wZ(Si)Di, Zi − E[Zi|Wi, (Xi, Si)])

and βWIV
W (wW ) analagously. Let ωW (s) =

∫
ωW (u;w, (x, s))dudwdx and ωZ(s) =∫

ωZ(u;w, (x, s))dudwdx. Given this, for βWIV
W (wW ) and βWIV

Z (wZ) to place the same

weight on compliers with Si = s, it must be the case that

wZ(s)ωZ(s) = wW (s)ωW (s)
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Efficient weights solve

w = argmin
m

Var
[
β̂WIV
W (wW )− β̂WIV

Z (wZ)
]

s.t. wZ(s)ωZ(s) = wW (s)ωW (s)

I assume the propensity score is linear in (z, w). Under this assumption, ωW and

ωZ simplify to

ωW (s) =
Var(Wi − E[Wi|Zi, (Xi, Si)]|Si = s)Pr[Si = s]

Var(Wi − E[Wi|Zi, (Xi, Si)])

ωZ(s) =
Var(Zi − E[Zi|Wi, (Xi, Si)]|Si = s)Pr[Si = s]

Var(Zi − E[Zi|Wi, (Xi, Si)])

Define gZ ≡ Cov(Di,Zi−E[Zi|Wi,Xi])
Var(Zi−E[Zi|Wi,Xi])

and gW ≡ Cov(Di,Wi−E[Wi|Zi,Xi])
Var(Wi−E[Wi|Zi,Xi])

; that gZ and gW

are constants follows from the assumption that the propensity score is linear in (z, w).

Suppose further that the structural errors in the outcome equation are homoskedastic.

Then the optimal weights satisfy

wZ(s) =
g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s) + g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

wW (s) =
g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s)

g2ZVar(Zi − E[Zi|Wi, (Xi, Si)])ωZ(s) + g2WVar(Wi − E[Wi|Zi, (Xi, Si)])ωW (s)

To interpret this expression, note that the realized equivalent of
g2ZVar(Zi|Wi,(Xi,Si))

g2WVar(Wi|Zi,(Xi,Si))
is

just the ratio of the first stage F-stats. As one F-stat grows arbitrarily large relative

to the other, the weights essentially reweight observations in the regression with the

larger F-stat so that the weights on observables in that regression are the same as the

weights on observables in the unweighted regression with the smaller F-stat.

B.3 Control function

The control function approach is predicated on the normality assumption Y1i

C1i

Y0i

 ∼ N


 (gW + c0)Wi +X ′

iµ1

gZZi +X ′
iµC

c0Wi +X ′
iµ0


,

 Σ11 Σ1c Σ10

Σ1c Σcc Σc0

Σ10 Σc0 Σcc
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Under this model,

E[Di(z, w;x)] = Φ

(
−x′µV + gWw − gZz

σV

)
where Φ is the normal CDF, µV = −µ1+µC+µ0,

36 and σ2
V = Var[Vi|Xi]. I estimate this

with a first step probit; conventionally, σV would not be identified. However, as noted

by Björklund & Moffitt (1987), the generalized Roy structure allows it to be identified

here, since we can estimate the direct effect of w on treatment effects. I do this in the

second step, using the identity

E [Ydi|Di = d, Zi = z,Wi = w,Xi = x] = X ′
iµd + cdw + bdλd(E[Di(z, w;x)])

where c0 = 0, c1 − c0 = gW , b0 = Cov(V0i,Vi|Xi)
σV

, b1 = −Cov(V1i,Vi|Xi)
σV

, λ0(u) = φ(Φ−1(u))
1−u

,

and λ1(u) =
φ(Φ−1(u))

u
. I estimate this conditional expectation function by OLS. Note

the exclusion restriction that Zi does not directly enter the conditional expectation

function for Ydi. Although this is not required to estimate the model under normality,

without this exclusion restriction identification depends strongly on functional form

assumptions.

In Table 4 and Table 6, I construct control function estimates of local average

treatment effects and local average surplus effects. Let Z⊥
i = Zi − E[Zi|Wi, Xi] For a

local average treatment effect, I use

E[YiZ
⊥
i ]

E[DiZ⊥
i ]

=
E[(Yi − E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z

⊥
i ]

E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥
i ]

=
E[(E[Yi|Zi,Wi, Xi]− E[Yi|Zi = E[Zi|Wi, Xi],Wi, Xi])Z

⊥
i ]

E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥
i ]

=
E
[∫ E[Di|Zi,Wi,Xi]

E[Di|Zi=E[Zi|Wi,Xi],Wi,Xi]
MTE(u;Wi, Xi)duZ

⊥
i

]
E[(Di − E[Di|Zi = E[Zi|Wi, Xi],Wi, Xi])Z⊥

i ]

Focusing on the numerator in each expression. The first step follows from E[E[Yi|Zi =

E[Zi|Wi, Xi],Wi, Xi]Z
⊥
i ] = 0, which follows from an application of the law of iter-

ated expectations conditioning on (Wi, Xi). The second step follows from E[YiZ
⊥
i ] =

E[E[Yi|Zi,Wi, Xi]Z
⊥
i ]. This again follows from an application of the law of iterated ex-

pectations conditioning on (Zi,Wi, Xi). The third step is just the fundamental theorem

36This implies E[Vi|Xi] = X ′
iµV .
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of calculus, and that the marginal treatment effect equals the derivative of the condi-

tional expectation of Yi with respect to z. I therefore use the plug-in estimator of this

as my control function estimate of the local average treatment effect. Nearly identical

calculations hold for the local average surplus effect, and bias from exclusion restriction

violations. Standard errors are calculated using the delta method, and derivatives with

respect to control function parameters are estimated numerically.

C Figures
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Figure A.1: Productivity growth and groundwater withdrawals

Notes: This figure plots, for each state, the lower bound estimate of its groundwater withdrawals as a
share of recharge rate, as reported in Rodell et al. (2009), against its normalized decadal agricultural
productivity growth, calculated in a regression of log agricultural productivity on state fixed effects
interacted with year dummies, relative to Andhra Pradesh (AP). The purple line is the line of best fit,
with a slope of 2.5 and R2 = 0.63.
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