Chapter 9

Modelling stochastic technological change in economy and environment using the Kalman Filter

David I. Stern

This chapter reports on empirical work (Perrings and Stern 2000; Stern 1994) that uses the Kalman filter to estimate stochastic trends in the context of resource use models. This modelling approach treats changes in the environment and changes in the production possibilities of the economy as similar processes, which in both cases can be seen as changes in either capital stocks or changes in technology. The two case studies are a model of production and technological change in the US macroeconomy in the post-war period, and a model of rangeland utilisation and degradation in Botswana in the thirty years to the mid 1990s.

Perrings (1987) presents a vision of a dynamic, evolving economy that receives inputs from its environment and returns surplus outputs to its environment. These surplus outputs substantively change the nature of the resource base on which the economy depends and the changing nature of the resource structure precipitates technological change within the controlled economy itself. Technological change and controlled capital accumulation within the economy forces uncontrolled capital accumulation and technological change in the environment (O'Connor 1993). Perrings modelled this system using a von Neumann type technology and the mass balance principle as key features. This vision was extended and refined by O'Connor (1991) to include energy flows and thermodynamic considerations regarding energy.

The framework presented in this chapter is nowhere near as complete or encompassing. However, it does incorporate some aspects of such a system. Its primary advantage is that it is an empirical approach utilising advanced econometric techniques to describe the state and evolution of technology. Unlike the Perrings and O'Connor models, the models in this chapter utilise neoclassical principles of optimisation. Additionally, the US model embodies a neoclassical production function that allows continuous substitution of factor inputs within a given state of technology. The technology in the rangeland model consists of a group of logistic growth functions.

Conventional econometric modelling of agricultural and industrial production technologies (eg. Capalbo 1988; Berndt and Khaled 1979) has assumed that such systems can be approximated by deterministic production technologies that are inherently linear in the parameters. The stochastic components of these models are stationary random variables due to optimisation errors by producers.
There are two reasons why this approach is inappropriate as a model of joint economy-environment systems. The first is that they are probably inappropriate as a model of industrial systems. Technological change is now widely seen as a non-stationary stochastic process (Slade 1989; Solow 1994). Secondly, the natural environment is an additional source of stochastic variation, uncertainty, unpredictability, and evolutionary and sometimes 'surprising' behaviour (Perrings 1987; O'Connor 1993).

Cointegration modelling and Kalman filtering are two approaches to the econometric modelling of non-stationary systems that have been rapidly introduced to all areas of applied econometrics (Cuthbertson et al 1992). Cointegration modelling (Engle and Granger 1987) assumes that a linear combination of random variables is stationary.\(^1\) Kalman filtering (Kalman 1960; Kalman and Bucy 1961) can be used to model explicitly non-stationary random variables. It has been used in this context to model technological change as a stochastic trend (Slade 1989; Harvey and Marshall 1991; Stern 1994). Extremely complex and non-linear models may be amenable to econometric estimation using the Kalman filter. Both studies in this chapter use Kalman filter techniques. Cointegration modelling only enters explicitly to the extent that the equations in the Botswana model incorporate a form of error correction mechanism. Implicitly, I test all equations for stationary residuals and hence for the presence of cointegration.\(^2\)

Changes in the quality of environmental resources such as rangelands in Sub-Saharan Africa can be visualised as a process of uncontrolled technological change in the environment. As such they can be modelled in a similar way to technological change in controlled economic systems. In this chapter, I use the Kalman filter to model factor-augmenting technological change trends in the US macroeconomy in the post-war period. Standard linear regression techniques are of no use in estimating this type of model where the trend variables are stochastic rather than simple deterministic trends. This model is a fairly standard econometric model of technological change in the economy though I know of no other study that actually estimates multiple stochastic technical change trends. The main substantive point of interest for ecological economists and environmental management scholars is the estimated trend in autonomous energy efficiency.\(^3\)

1 A stationary variable has constant mean and variance. Classical regression methods and inference are only applicable to stationary variables. If the variables are non-stationary, standard regression results may indicate that there is a significant relation between the variables when in fact non-exists – a so-called spurious regression (Granger and Newbold 1974). But in some cases the non-stationary components of a number of time series are shared so that a linear combination of the series is stationary. This phenomenon is called cointegration. When the variables cointegrate, valid inference is possible in regression models.

2 Stern (2000) examines the US macro data using cointegration modeling. The implication of the latter results is that a linear combination of the stochastic trends estimated in the model in this chapter cointegrate – in other words the linear aggregate is a stationary variable.

3 Simple measures of energy efficiency divide GDP by energy used and hence require no econometric estimation. Autonomous energy efficiency refers to changes in the effectiveness with which energy is used
I also use the Kalman filter to model the current and climax state of rangeland in Botswana in a 30-year period up to the mid-1990’s within an optimal control model of pastoralists’ behaviour. Both state variables are unobserved by the econometrician and represent the state of natural technology in livestock production or dually the level of natural capital present. Of particular interest is the distinction between short-run, reversible rangeland degradation, represented by declines in the current state of the rangeland, and long run and irreversible rangeland degradation, represented by declines in the climax state of the rangeland. I interpret the latter to be the result of the loss of resilience in the agroecosystem.

The advantage of this modelling approach is that we do not need to be able to directly measure the availability of natural capital stocks in order to integrate a simple model of the ecology of the system into a behavioural model of the economic system. This generalised technological change approach may have many other integrative applications in ecological economics.

The remainder of the chapter is divided into three main parts. The next part covers the theory of generalised technological change and state space models and the Kalman filter. The third part presents the empirical examples and the fourth provides some conclusions.

Theory

Generalised technological change

Let us examine in more detail the relationship between the conventional definition of technology and the broader definition proposed here. In a general production system any aggregate indicator of the state of technology is a composite of the state of the natural resource base and the state of technology in the usual sense (Cleveland and Stern 1993, Stern 1999a). More specifically, assume that technology is given by the following transformation frontier:

\[
Q = f(A_1X_1, ..., A_nX_n, B_1R_1, ..., B_mR_m, N)
\]

Where the R are resource inputs (for example the area of agricultural land, stock of petroleum in a reservoir) and N is a vector of additional environmental variables such as rainfall and temperature. The X_i are other factors of production controlled by the extractor (such as capital, labour, energy, and materials), and the A_i and B_i are augmentation factors associated with the respective factors of production. Factor augmentation is a (fairly weak) restriction on the possible nature of technological change. It specifies that technical change increases or decreases the effective quantity of each factor holding the effective units of the other inputs constant. Only econometrics can provide estimates of this trend at
of production available per crude unit of the input used. Taking the derivative of lnQ with respect to time yields:

\[\dot{Q} = \sum_i \sigma_i \dot{A}_i + \sum_j \rho_j \dot{B}_j + \sum_i \sigma_i \dot{X}_i + \sum_j \rho_j \dot{R}_j + \nu \dot{N} \]

(2)

where the \(\sigma_i, \rho_i, \) and \(\nu \) are the output elasticities of the various inputs. A dot on a variable indicates the derivative of the logarithm with respect to time. Four measures of resource productivity or resource scarcity in a cost of production sense (Cleveland and Stern, 1993; Stern, 1999a) can be derived from (2).

The crudest indicator is resource productivity (Q/R):

\[\dot{Q} - \dot{R} = \sum_i \sigma_i \dot{A}_i + \sum_j \rho_j \dot{B}_j + \sum_i \sigma_i \dot{X}_i + \nu \dot{N} \]

(3)

where R is an aggregate of the resource inputs. Examples of this indicator are energy intensity (E/GDP) and crop yields. This indicator is not very informative about likely long-run developments in resource availability because it is likely to be dominated in the short run at least by changes in the quantities of other inputs X.

Multifactor productivity (MFP) is a measure of the quantity of produced inputs required to extract a unit of resource commodity and is thus an indirect measure of the combined state of technology and state of nature and the availability of resources (see Stern, 1999a). This measure is a generalisation of the unit cost indicator of resource scarcity introduced by Barnett and Morse (1963). An advantage of this indicator is that we do not need any data about the state of the resource stock, R. The change in lnMFP is given by:

\[\dot{MFP} = \dot{Q} - \sum_i \sigma_i \dot{A}_i = \sum_i \sigma_i \dot{X}_i + \sum_j \rho_j \dot{B}_j + \sum_j \rho_j \dot{R}_j + \nu \dot{N} \]

(4)

the macroeconomic level. At the micro-level engineering based studies can also be used.

4 Equation (1) can be obviously generalised to multiple outputs. A useful simplifying assumption is that the production function exhibits constant returns to scale in all inputs including the resource inputs. This implies there are decreasing returns when more inputs are applied to a given resource stock R. Again, generalisations can be made. If N is measured in terms of rainfall, temperature etc., rather than water, heat etc., the relevant constant returns relates to the expansion of X and R but not N.
Thus moves in this indicator are the sum of the four terms on the RHS of (4) respectively:

1. Technical change
2. Resource depletion or augmentation
3. Change in the dimension of the resource stock e.g. area farmed.
4. Change in environmental variables such as rainfall and temperature in agriculture

The sum of terms 1, 2, and 4 are what energy analysts call resource quality (Gever et al 1986). This definition of resource quality allows changes in the state of technology to compensate for a decline in the physical quality of the resource. MFP is not affected by the prices and availability of those other inputs that can obscure the long-term trends in resource quality and availability.5

When we have data available on the extent of the resource base we can compute total factor productivity (TFP), which expresses the productivity of the joint system:

\[TFP = \sum_i \sigma_i X_i - \sum_j \rho_j R_j = \sum_i \sigma_i X_i + \sum_j \rho_j B_j + vN \]

(5)

This indicator is identical with the resource quality concept mentioned above. We can obtain even more information by breaking the right hand side of (5) into its components - the factor augmentation trends. The augmentation trends tell us about the contribution of the relevant inputs to productivity holding the quantities and effectivities of all the other inputs constant. In the US growth model example one of the augmentation trends estimated is the autonomous energy efficiency. In the Botswana case study the main indicator is the carrying capacity of the rangeland or the ‘state of the rangeland’. The former trend is mainly due to changes in technology that allow consumers to use energy more or less effectively. The latter trend is more in the nature of a change in the natural capital stock, but it can be treated as if it was a change in technology.

Recent research on technological change has emphasised that to a large extent technological change is endogenous – rather than changes arriving as exogenous ‘manna from heaven’ they may occur as a result of the economic process and agents may invest in research and development. In the U.S. example I assume that technological change is exogenous. This does not mean that technological change occurs at a constant rate or that it is unaffected by economic factors. Quite to the contrary, I

5 Stern (1999b), in an empirical study of US agriculture, shows how non-comprehensive measures of MFP – that is the traditional Barnett and Morse unit cost and energy cost are strongly affected by changes in the prices of other inputs in a way that obscures the long run trend in resource quality and availability. See also Cleveland and Stern (1993) for a discussion of alternative indicators in US forestry. Mattey (1990) shows that stumpage prices are an ineffective indicator of resource scarcity in forestry.
assume that the rate of technological change varies over time as it follows a stochastic time path. Economic events and variables may indeed affect the course of this path; however, the econometric model does not specify the ways in which this happens. Technology is exogenous in the sense that economic agents are not free to choose the technology with which they produce. However, following standard neoclassical assumptions they are free to choose the technique that they use from among those afforded by the technology. Therefore, optimisation processes are constructed for the purposes of econometric estimation assuming that [at least some] prices, technology, and uncontrolled inputs are given, but agents are free to choose quantities of controlled inputs.

On the other hand, in the Botswana case study changes in the state of the rangeland are partly endogenous – grazing by cattle affects the state of the rangeland - and partly exogenous – the effects of rainfall and random shocks. However, I assume that pastoralists do not take the state of the rangeland into account in their decision making. Their impact on the rangeland is treated as an external cost.

State space models and Kalman filter

The Kalman filter is an algorithm for estimating unobserved time-varying variables and has numerous applications in modern time series econometrics. In our application we use the filter to estimate unobserved stochastic trends. The first step in applying the Kalman filter to an estimation problem is to reformulate the model in question in terms of a state space model. A non-linear generalisation of the linear state-space model is given by (Harvey, 1989; De Jong, 1991a, 1991b):

\[
y_t = z(a_t) + E(a_t) u_t \quad t = 1,...,T \tag{6}
\]

\[
a_{t+1} = r(a_t) + H(a_t) u_t \quad t = 1,...,T \tag{7}
\]

where equations (6) are the measurement equations and equations (7) are the transition equations; \(y_t\) is the vector of ‘dependent’ variables, the observations; \(a_t\) is a vector of unobserved stochastic state variables; \(u_t\) is a vector of normally distributed disturbances with zero mean and covariance \(\sigma_u^2 I\).

6 The simplest type of stochastic trend is a random walk. The current value of a random walk is equal to the previous value plus a random shock and perhaps a constant or drift term. This means that the stochastic trend has a different value in every time period. If we attempted to estimate this model using classical linear regression we would have more parameters to estimate than observations to estimate them with. Therefore, the model cannot be estimated using regression methods. But using the Kalman filter only the variance of the shocks and the value of the drift constant – two parameters - need to be estimated using maximum likelihood methods. Given these estimated hyperparameters the Kalman filter algorithm computes the value of the stochastic trend in each period given the observed data. In the U.S. model the stochastic trends are modelled...
(and is assumed to be serially uncorrelated and uncorrelated with a_0; $z()$, $r()$, $E()$, and $H()$ are possibly nonlinear functions of the state vector. In the Botswana case study $E()$ and $H()$ are constant matrices. Additionally in the US study, $r()$ is a linear function.

As the state variables are unobserved and the current state depends on previous unobserved states, the Kalman filter must be used to estimate the current state vector. The filter is also used to compute the prediction error decomposition of the likelihood function. We use the Davidon-Fletcher-Powell quasi-Newton algorithm (Greene 1990) to maximise this likelihood function with respect to the fixed hyperparameters that define the functions in (6) and (7). The derivatives are calculated by the finite difference method. Given maximum likelihood estimates of the hyperparameters, the Kalman filter produces maximum likelihood estimates of the state variables using only data for previous periods. Given these estimates, a smoother algorithm (De Jong, 1991a, 1991b) is used to calculate values for the unobserved state variables utilising the entire dataset. We use the extended Kalman filter suitable for such non-linear state space models. Details of the use of the Kalman filter in this context are given by Harvey (1989), De Jong (1991a, 1991b), Slade (1989), Harvey and Marshall (1991), and Stern (1994).

Applications

Energy and growth

There has been extensive debate concerning the trend in energy efficiency in the developed economies, especially since the two oil price shocks of the 1970s. Taking the example of the US economy, energy consumption hardly changed in the period 1973 to 1990 (Figure 1). This was despite a significant increase in GDP. These facts are indisputable. What has been the subject of argument is what were the reasons for the break in the trend. It is commonly asserted that there has been a decoupling of economic output and resources, which implies that the limits to growth are no longer as restricting as in the past (e.g. IBRD 1992; Bohi 1989). There are four main explanations of decoupling:

1. Decoupling may be due to shifts from lower quality fuels such as coal to higher quality fuels such as electricity, which are more productive (Kaufmann 1992; US Congress 1990). Figure 2 shows that when we adjust energy use for shifts in energy quality, much less decoupling is evident.

2. Decoupling could be due to substitution of other inputs for energy.

using a local linear trend model, which is a random walk where the drift term is itself a random walk. The Botswana model has more complex nonlinear stochastic trends.
3. Shifts in the output mix might result in decoupling if economies dematerialise as the share of the service sector in economic activity grows over the course of economic development.

4. Finally, a fourth possible cause of decoupling is growing autonomous energy efficiency.

Figure 1

Figure 2

Jorgensen and Wilcoxen (1993) estimated that autonomous energy efficiency is declining. Berndt et al (1993) use a model in which this index is assumed to change at a constant rate. They estimate that in US manufacturing industry between 1965 and 1987 the energy augmentation index was increasing at between 1.75% and 13.09% per annum depending on the assumptions made.

Perhaps these rather inconsistent and wide ranging estimates are due to the inappropriate assumption that the trend is a deterministic. We can use the Kalman filter to estimate an autonomous energy efficiency trend that is stochastic rather than deterministic. The trend is estimated as a factor augmenting technical change trend alongside those for capital in labour by using a group of equations derived from a macroeconomic production function.

I use a similar method to Harvey and Marshall (1991) with the following modifications. Like Slade (1989) and Darby and Wren-Lewis (1992), I assume that the trends follow a local linear trend (Harvey 1989), rather than a random walk with drift. I do not assume constant returns to scale (but do assume homotheticity) and use a production function rather than a cost function. Also, I estimate the model in the time domain rather than the frequency domain and do not make the assumption of statistical homogeneity.

Similarly to Harvey and Marshall (1991), I assume that factor markets are competitive. It is not assumed that output markets are competitive. I also assume that a translog function can provide a reasonable approximation to the underlying production technology. I assume that there is weak separability between the two groups capital-labour-energy (KLE), and materials, which allows me to omit materials from models of the marginal product of the other factors (Lakshmanan et al 1984). This is the only assumption required to estimate the factor share equations (see below) with the omission of materials. However, in order to estimate an output equation excluding a materials

7 We can assume that in the macroeconomy the quantities of factor inputs are exogenous at least in the short run, but that factor prices are endogenous. This obviously is not strictly true, especially for energy prices. However, it is a more reasonable assumption for the macroeconomy than for a single industry or firm. Also we should expect the production technology at the macroeconomic level to be non-monotonic. This is because the assumption of free-disposal may no longer hold (Stern 1994).
variable I have to also assume that non-energy materials are strictly complementary to aggregate KLE input and therefore have a zero marginal product. Any increase in output due to an increase in materials use with constant KLE input is credited to technical change. This is a strong assumption. While it could be argued that these are reasonable approximations in a manufacturing industry they are clearly unreasonable approximations in an industry such as agriculture where fertilisers, pesticides, water etc. can be used in varying proportions and clearly do have a marginal product.

In accordance with Harvey and Marshall (1991) it is assumed that technical change is both of the factor augmenting type represented by three stochastic trend variables, A_K, A_L, and A_E, and also of a factor neutral type represented by a stochastic trend A_0. However, such a trend is unidentifiable in the model developed here and therefore it was dropped. The translog production function for period t, imposing symmetry restrictions (see Berndt and Christensen 1973) on the cross-product coefficients π_{ij}, is:

$$\ln Q_t = \pi_0 + \sum_i \pi_i \ln (X_{it} A_{it}) + \frac{1}{2} \sum_i \sum_j \pi_{ij} \ln (X_{it} A_{it}) \ln (X_{jt} A_{jt})$$ (8)

where Q is output and the X are the various factor inputs. Following Kim (1992), and given the above assumptions, I derive inverse factor demand functions from the production function that determine the price of each of the three factors of production. These demand functions yield after various manipulations, the cost share equations:

$$S_{it} = (\partial C_t/\partial Q_t) [\pi_i + \sum_j \pi_{ij} \ln A_{it} + \sum_j \pi_{ij} \ln X_{jt} + \varepsilon_i]$$ (9)

where C is total cost and the S_i the shares of each factor in costs. I assume that the production function is homogeneous, but do not impose constant returns to scale. As the cost shares sum to a constant in every period the covariance matrix of their disturbances is singular ie. $\sum \varepsilon_i = 0$ and it is not possible to obtain a maximum likelihood estimate of all three equations jointly (Barten 1969). I chose to drop the energy share equation.

8 This means that the estimate of autonomous energy efficiency is not absolute but relative to overall technical progress.
In order to estimate all three augmentation trends at least three equations are required. The obvious third equation is the production function. However, the production function itself involves multiples of the unobserved augmentation variables, which cannot then be estimated using the diffuse Kalman filter. For this reason the output equation is not the production function (8) but is instead based on integrating (2) under the assumption of factor market equilibrium and substituting into (8):

\[
\ln Q_t = \pi_0 + \left(\frac{\partial C_t}{\partial Q_t} \right)^{\dagger} \left[\sum_j S_j \ln A_j + \sum_j S_j \ln X_j + \varepsilon_{qt} \right]
\]

(10)

The local linear trend model follows a random walk with a time-varying drift that itself follows a random walk:

\[
\ln A_{it} = \ln A_{it-1} + \gamma_{it} + \eta A_{it} \\
\gamma_{it} = \gamma_{it-1} + \eta \gamma_{it}
\]

(11)

(12)

All the error terms \(\eta \) are assumed to be uncorrelated. The elements of \(a_t \) in (7) are therefore:

\[
a_t = [\ln A_{Kt}, \ln A_{Lt}, \ln A_{Et}, \gamma_{Kt}, \gamma_{Lt}, \gamma_{Et}]'
\]

(13)

where \(\gamma_{Kt}, \gamma_{Lt}, \) and \(\gamma_{Et} \) are the stochastic trend terms and the transition matrix in (7) is:

\[
R = \begin{bmatrix}
I_3 & I_3 \\
0 & I_3
\end{bmatrix}
\]

(14)

The initial state of \(A \) is set to zero with zero variance, while \(\gamma \) has a diffuse prior distribution. This indexes the augmentation trends to one in the first year. The observed variables are also indexed to one.

\[9\] De Jong’s Diffuse Kalman Filter algorithm avoids the need to specify initial conditions for nonstationary stochastic trends but it can only handle models that are linear in the state variables. This is also the reason why homogeneity of the production function is assumed.
To summarise – two of equations (9) are estimated for labour and capital together with (10). I use De Jong’s (1991a, 1991b) diffuse Kalman filter algorithm. In total there are six parameters of the production function that must be estimated by maximum likelihood: $\pi_0, \pi_K, \pi_L, \pi_E, \pi_{KK}, \pi_{KL}$, and π_{LL}, which form the parameters of $z()$ in (6) as well as five in the constant covariance matrix E and six in H. An estimate of the error variance of the first equation σ^2_u that is concentrated out of the likelihood function is also produced. Maximum likelihood is performed iteratively using the Broyden, Fletcher, Goldfarb, and Shanno approximation of the Hessian matrix and finite difference derivatives.

Full details of the data employed are provided in Stern (2000). Labour is measured in hours worked by full-time and part-time employees in domestic industries. Capital is measured by a Divisia index aggregating producer's private capital. Energy is measured by a Divisia index aggregating a variety of fuel types (shown in Figure 2). Output is gross output calculated using a Divisia index as the real value of GDP and energy. Due to this high level of aggregation, is possible that the estimate of autonomous energy efficiency will incorporate the effects of some aspects of structural change on the output side of the economy (Solow 1987). The time period employed is 1948-1990.

The estimates of the hyperparameters, their standard errors, and the estimate of σ^2_u are presented in Table 1. Most of the parameters are highly significant. Some of the error variances are insignificant as is π_{LL}. The main features of the results concern the estimated production function parameters and the stochastic properties of the technical change trends. The production technology is characterised by increasing returns to scale. The degree of returns to scale is 1.146. This compares to Kim's (1992) estimate for US manufacturing of 1.15 for a homogenous function and 1.28 for a non-homothetic function, and Capalbo's (1988) estimate of 0.77 for the US agricultural sector. The parameters of the production function have the expected relationships. Increasing application of any factor leads, ceteris paribus, to diminishing and eventually decreasing returns. Also the second derivatives of the function are all positive within some range of input values. Increasing the use of other factors raises the marginal product of a factor of production. Table 2 presents the results of diagnostic tests on the residuals of each equation. The results show that the model is an adequate representation of the data for all the equations.

Table 1

Table 2

As seen from the estimates of the variances of the relevant disturbances (H), the labour and capital trends are integrated random walks as the variance of η_{A1} is insignificantly different from zero. The
energy trend is a local linear trend where both the disturbances have significant variances. Figure 3 presents the time paths of the technical change trends. Capital would be expected to have little trend, as the quantity of capital is theoretically the capitalised sum of capital services. This should hold as long as the government statisticians succeed in dividing changes in the nominal stock of capital between volume and inflationary components. However, as explained above in this model there is also a factor-neutral technical change trend that has not been estimated. Therefore we should assume that the general downward trend in the capital augmentation factor is due to a similar upward trend in the factor-neutral technical change trend. As a result of the high estimated degree of returns to scale, estimated overall technical change has been fairly modest with around a 50% increase in effectiveness over the period. The fluctuations in the trend would be partly due to changes in the capacity utilisation of capital.

Figure 3

Relative to this overall trend, the efficiency of labour use has increased substantially over time. The rise in labour efficiency is expected given the high share of labour in costs, which would induce labour saving technical change and higher levels of human capital accumulation over time.

Relative to the overall upward trend, energy shows large fluctuations. Until the mid-1960s autonomous energy efficiency is increasing and then it starts a sharp decline. However, the results show that the first oil shock in 1973 does not disrupt the overall downward trend in energy efficiency. Only after the second oil shock does the trend reverse and energy efficiency increase. Finally in the late 1980s the rate of improvement in autonomous energy efficiency slows as the price of oil again falls.

These results show that when the overall TFP trend is broken down into its component parts, technical change is shown to be a much more fragile and erratic process than is often assumed in the literature (e.g. Barnett and Morse 1963). The augmentation indices for different inputs may be moving in opposite directions and even change direction as in the case of energy here. At different points in time various of the alternative theories of the coupling and decoupling of energy use and GDP discussed above appear to dominate the trend. The impression is of initial gains in energy efficiency which eventually ‘run out of steam’ due to the effects of rising personal energy consumption and lower marginal productivities of new energy applications as the price of energy fell in the first three decades after the Second World War. The first oil shock was not significant enough to totally reverse that trend and even after the trend reversed it was not sustainable.

10 This approach was used by Berndt *et al.* (1993).
Rangelands in Botswana

Ecosystem stability and resilience are critical in the generation and maintenance of economic welfare. Current human activity, though aimed at increasing the productivity and stability of production of natural systems, may adversely affect the resilience of those systems and render them more susceptible to systemic shocks and stress. Declining resilience may mean that current human activity is unsustainable into the future.

Though some theoretical issues have been explored (eg. Barbier 1993; Perrings et al 1995), little progress has been made on empirical measurement. Naturally, the lack of data on environmental and biological variables is as much a constraint here as in any other area of natural resource economics (Conrad and Clark 1987). The generalised technological change approach could be valuable here as it can be used to estimate unobserved changes in the states of environmental variables that affect economic productivity. This approach is illustrated here using a study of rangeland productivity in Botswana. The reader can find a description of the background to the case study and the rationale for the way the model is constructed in the paper I have already published on this topic (Perrings and Stern 2000). In this chapter, I will therefore focus on describing the model and explaining the results.

It is assumed the economy is made up of identical price-taking livestock farmers who enjoy open access to the range, and who maximise the utility derived from the profits, \(\Pi \), from livestock production. The property rights regime is assumed to be essentially open-access, implying that there are no economic or social incentives for farmers to take the external costs of natural resource degradation into account in their stocking strategies. Although the introduction of boreholes is now introducing some private control over access to the range, the assumption is not unreasonable for the period being evaluated. Individual livestock farmers are, therefore, assumed to neglect the effect of their actions on the state of the range. Hence, the private decision problem is to maximise the utility of the net benefits of livestock production subject to the dynamics of the farmer’s own herd. The short and long run dynamics of the range are assumed to be irrelevant to the private decisions of farmers. The only livestock to enter the farmers’ profit function is cattle. Sheep and goats are excluded from the model, though they are very important in reality. They are assumed to be risk averse. Risk neutral models were tested, but performed extremely poorly. The general form of the model is given by the optimisation problem that follows. Pastoralists maximise the net present value of their welfare \(W \) over time:

\[
\text{Max}_{\Pi t} \quad W_t = \sum_{t=0}^{\infty} \rho^t W(\Pi_t)
\]

subject to the following growth equation for their cattle herd:
\[\Delta X_{it+1} = X_{it} \left[\alpha_1 \left(1 - \frac{X_t}{K_t} \right) + \alpha_2 (s_t - 1) \right] - U_{it} + \varepsilon_{X_t} \quad (15) \]

where:

- \(U_t \) is herd offtake,
- \(X_t \) is the aggregate stock on the rangeland,
- \(X_{it} \) is the farmer’s own herd,
- \(K_t \) is the state of the range,
- \(s_t \) is rainfall,
- \(\rho \) is the discount factor,
- \(\varepsilon_{X_t}, \eta_t \) are random error terms.

The period interval is a year starting in September. The animal stock variable is measured at the beginning of each time period, whereas the flow variables are measured for the duration of the time period. Peak rainfall occurs in summer (Southern Hemisphere). Animal growth depends on the state of \(K \) at the beginning of the time period, the rainfall within the period, and offtake. Recent theories of rangeland dynamics argue that herd dynamics are most influenced by rainfall in years of exceptionally high or low rainfall and most influenced by stocking density in years of average rainfall (Arntzen 1994; Perrings 1994). Unlike Perrings (1994) we assume that rainfall only interacts with \(X_{it} \) and not with \(X_{it} X_t / K_t \). This is because the functional form in Perrings (1994) implies that increases in rainfall reduce the growth of livestock when cattle exceed the current carrying capacity, which is counterintuitive.

We assume that profits are given by:

\[\Pi_{it} = p_U U_{it} - C(X_{it}, Y_t, s_t) \quad (16) \]

where \(p_U U_{it} \) is the price of cattle offtake. The net cost function, \(C() \), may be either positive or negative, since it admits the possibility that there may be stock benefits to livestock holdings. The function has the following form:

\[C(X_{it}, Y_t, s_t) = (\kappa_0 + \kappa_X X_{it} + \kappa_Y Y_t + \kappa_s s_t) X_{it} \quad (17) \]
where X_{it} is the cattle stock of herder i, Y_t is a measure of the non-farm costs or benefits of agriculture, and s_t is a measure of rainfall deficit (rainfall relative to the mean over the sample period). The cost of holding livestock, κX, includes labour and material intermediate inputs. Labour costs of herding each additional animal are thought to decline initially with increasing herd size, but eventually to increase. The stock benefits of livestock are the sum of benefits derived from draft power, non-meat products, insurance against adverse climatic conditions and so on (Perrings 1996).

In the estimated cost function, Y_t is proxied by GDP per capita. This reflects two things. First, subsidies to agriculture are highly correlated with per capita GDP. Second, increased wealth increases demand for livestock - styled a ‘sink for savings’ by Collier and Lal (1984) - and raises the benefits of livestock holding. Rainfall is expected to reduce the cost of production through its impact on demand for supplementary feed, water and the like. This will vary with the size of the herd.

Utility of farmer i at time t, W_{it}, is given by the Box-Cox transformation utility function:

$$W_{it} = \left(\frac{\Pi_{it}}{\delta} - 1\right) / \delta$$

which allows us to estimate the degree of risk aversion reflected in the value of the parameter δ. For a risk averse farmer $\delta < 1$.

The growth of cattle herds is assumed to be a function of rainfall, a time trend, the average availability of graze and the area grazed. The latter is a function of the increase in the number of boreholes (tubewells) sunk over this period (Braat and Opschoor 1990). We therefore model the annual increase in grazing area as a function of the number of boreholes. There are two equations of motion describing range dynamics. The first, (19), describes the dynamics of the current carrying capacity, K_t. The second, (20), describes the dynamics of the long-run maximum carrying capacity or climax state, M_t.

$$\Delta K_t + 1 = K_t \left[\beta_1 (1 - K_t/M_t) + \beta_2 (s_t - 1)\right] - \mu \hat{X}_{t+1} + K_t \eta_t / M_t$$ (19)

$$\Delta M_t + 1 = \frac{g_1 M_t / \hat{K}_{t+1}}{1 + \exp(g_2 (1 + g_3 M_t / \hat{K}_{t+1}))} + \eta_t$$ (20)

where:

$$\hat{K}_{t+1} = K_t \left[\beta_1 (1 - K_t/M_t) + \beta_2 (s_t - 1)\right] - \mu \hat{X}_{t+1}$$ (21)
\[
\hat{X}_{t+1} = X_{it} [\alpha_1 (1 - X_t / K_t) + \alpha_2 (s_t - 1)] - U_{it}
\]
(22)

and \(\eta \) is a random error term. The first of these equations is the more familiar, though it has some distinctive features. It assumes that the growth of graze and browse in any given period—and hence carrying capacity—follows a logistic path, in which the natural rate of regeneration varies with rainfall. The growth of graze and browse is also assumed to vary with consumption during the period. Since this includes consumption by calves and stock added during the period, it is described by the term \(\mu X_{t+1} \).

The second equation of motion is less familiar. It does not derive from existing range ecology models, although it is intended to capture the sense of the informal state and transition models. Equation (20) describes the evolution of the long run or potential carrying capacity of the range. \(M \) can be reduced when the current carrying capacity is less than a minimum proportion of the equilibrium value \(M \).

This use of the threshold level of \(M_t / \hat{K}_{t+1} \) below which \(M \) is unchanged expresses the idea of a loss of resilience. The system is less resilient the further \(K \) is from \(M \). The functional form used to transmit changes in \(K \) to changes in \(M \) is a smooth transition regression model (STR) (Granger and Teräsvirta, 1993). \(\Gamma = 1 / (1 + \exp(\gamma_2 (1 + \gamma_3 M_t / \hat{K}_{t+1}))) \) switches between 0 and 1 along a logistic curve as \(M_t / \hat{K}_{t+1} \) increases. The error term \(\eta_t \) means that in the absence of such loss of resilience changes in \(M \) (and therefore \(K \)) are possible. These changes may reflect permanent expansion of grazing into new areas by the expansion of the number of waterholes but also temporary variations in the area grazed each year.

Perrings and Stern (2000) solve the optimal control problem to show that the privately optimal rate of offtake \(U_{it}^* \) is given by:

\[
U_{it}^* = \frac{C_{it} + \frac{\lambda_{it}}{p_{U_{it}} (1 + \alpha_1 (1 - X_t / K_t) + \alpha_2 (s_t - 1)) - \frac{\partial C}{\partial X_{it}}}}{p_{U_{it}}} \quad \text{(21)}
\]

We treat \(\lambda_{it} \) as an additional state variable estimated using the Kalman filter. It evolves deterministically according to:
\[\lambda_{it+1} = \left(\frac{1 + r}{1 + \alpha_1 (1 - X_t / K_t) + \alpha_2 (s_t - 1)} \right) \frac{\partial C}{\partial X_{it}} \Pi_{it}^{\delta - 1} + \lambda_{it} \]

(22)

Equation (21) gives the privately optimal offtake for a single herd. Aggregating and adding a random error term, \(\varepsilon_{Ut} \), we have

\[U_{it}^* = n_t \ U_{it}^* + \varepsilon_{Ut} \]

(23)

where \(n \) is the number of herds.

This completes specification of the whole model. It consists of the two state-space measurement equations (15) and (23); and the two transition equations (19), and (20).\(^{11}\)

We estimate the initial state \((K_1, M_1, \lambda_1) \) assuming that \(X \) and \(K \) are in a steady state and \(\lambda \) is at its (privately) optimal value. The first observation is not, however, used in the calculation of the likelihood function, which means that it is treated as a diffuse prior. The initial state covariance matrix is given by \(HH' \) where \(H \) is a 3x1 matrix, with \(H_{11} = K_1 / M_1, H_{31} = 0, \) and \(H_{21} \) is estimated. The initial states are derived from (15), (19), and (20):

\[K_1 = - \alpha_1 X_1^2 / (U_1 - \alpha_1 X_1) \]

(31)

\[M_1 = - \beta_1 K_1^2 / (\mu X_1 - \beta_1 K_1) \]

(32)

\[\lambda_1 = (1 + r) p_{U1} (p_{U1} U_{i1} - C_{i1}) \delta - 1 \]

(33)

In order to identify \(K \) we set \(\alpha_1 = 0.3 \). This value is the same as in Perrings (1994) and is close to that (0.265) estimated in a linear regression of (23) assuming that \(K \) is constant. Because (23), (28) is a recursive system an additional identification restriction is required. We set the correlation between the error terms of the two measurement equations \(\varepsilon_X \) and \(\varepsilon_U \) to zero. \(\sigma_{\varepsilon X} \) is concentrated out of the likelihood function so that \(E_{11} \) is set to 1. This leaves 15 parameters to be estimated.
Full details of the data employed are provided in Perrings and Stern (2000). In that paper we also conducted a number of policy experiments with the model that are omitted here.

Residual diagnostics for the measurement equations are given in Table 3. Both equations fit the data reasonably well. The residual diagnostic statistics are also encouraging. The maximum likelihood estimates of the hyperparameters are given in Table 4. The standard errors are estimated using the Berndt et al. (1974) algorithm. Around half the estimated parameters have t-statistics greater than one. This implies that a more parametrically parsimonious model might be developed or optimally a longer time series is required to obtain more accurate parameter estimates. σ^2_u is the estimate of the standard error of the residuals in the cattle stock equation (15), which was concentrated out of the likelihood function. The other error variances involve this term so that for example the standard deviation of the residuals in the offtake equation (23) is $\sigma_u \varepsilon_{2,2} = 0.001038$.

Table 3

Table 4

Figure 4 presents estimates of the variables that drive private stocking and offtake decisions: the price of offtake, the net cost of livestock holdings, and the private user cost of herd growth. The net cost of livestock holdings is initially negative, implying that there were net private benefits to holding cattle stocks (draft power, non-meat products, tax advantages and so on—dominated the cost of herd maintenance). The relative value of the private benefits of offtake and livestock holdings is summarised in Figure 5. In the late 1960s and early 1970s the net benefits of livestock holdings were about equal to offtake benefits. This might be expected from the literature on cattle herding in sub-Saharan Africa. But from the mid-1970s on, stock benefits declined as the opportunity cost of agricultural labour rose, becoming negative in the mid-1980s.

Figure 4

The parameter estimates for the cattle stock equation imply that given the state of the range rainfall in the current year has only moderate effects on the herd. The estimated parameter of 0.1389 is close to the OLS estimate of 0.125. The parameter estimates for the range transition equation imply that the intrinsic growth rate is 1.19394. The growth of the carrying capacity of the range fluctuates strongly.

11 Note that although the cattle stock is a state variable in the private decision problem, it is an observation in the Kalman filter estimation.
12 Neither Durbin Watson statistic shows definite evidence of first order serial correlation. The Box Pierce Q statistics present a similar picture. There are no tabulated significance levels for the Augmented Dickey-Fuller statistic in a nonlinear model of this type but these statistics would indicate reasonable residual stationarity if these were linear regressions. The Breusch-Pagan test for coefficient variation shows that the Kalman Filter
with current rainfall. The grazing coefficient is 0.65206. All these coefficients are higher than we previously supposed (Perrings 1993, 1994). The estimated initial values for K and M are 2.29 million and 3.48 million respectively, implying that X was at 59% of K and K at 66% of M. That is, initial stocking rates were above the maximum sustainable yield (given water availability in 1964-65).

The parameters of the cost function show evidence of decreasing returns to scale. There are net benefits for small herds when national income is low. At the average GDP per capita for the period net stock benefits peak for a herd of 22 animals, while stock costs exceed stock benefits for herds of greater than 44 animals. At 1965 income levels net stock benefits peaked at a herd size of 120. It would thus appear that economic development has reduced the net benefits from stock holdings. This may be because it has raised the opportunity cost of labour used in herding or because use of cattle for non-consumption purposes such as draft power has fallen.

Figure 6 shows the evolution of the state variables over time. These include both the two unobserved variables estimated by the Kalman filter, and the cattle stock. The stocks are the relevant quantities at the beginning of the years shown: i.e. X_{1994} is the cattle stock at the end of 1993. The trend in the time series for M is a function of the spread of boreholes. That is, the maximum carrying capacity of the range increased with the supply of water for livestock. Our results show that this expansion is not uniform. There are substantial increases in M during periods when the cattle herd approached current carrying capacity and some consolidation in the intervening period. But we cannot tell if the decline in M in those periods is due to change in the area grazed or due to a slow degradation of the rangeland that is not associated with loss of resilience. The current carrying capacity K shows large fluctuations as would be expected from the high estimates we obtained for the parameters in its equation of motion. The cattle stock never actually exceeds the estimated carrying capacity.

Figure 7 decomposes the changes in M into random fluctuations and the contribution of the parametric loss of resilience function. The changes are in terms of M_{t+1} so that the changes occurring in the years indicated result in the increase or decrease in M in the following year. The results indicate one potential loss of resilience event in 1985/86 (contributing an 8% reduction in M going into 1986/87). However, as the parameters \(\gamma_1, \gamma_2, \) and \(\gamma_3 \) are statistically insignificant we are unable to confirm a loss of resilience. M itself declines by only 3.7% between 1985/86 and 1986/87. This may have been due to expansion into new grazing areas occurring simultaneously with the loss model is picking up most of the coefficient variation that is present, though the statistic for the Xt+1 equation is significant at the 5% level but not at the 1% level.
of resilience in some areas of the rangeland. These kind of potential responses make determining whether a loss of resilience has occurred from aggregate data of the sort we use here particularly difficult.

These episodes are a response to rainfall deficit shocks, and occur when the system is stressed due to high grazing pressure. 1985/86 was the fifth year of a major drought. Rainfall was actually slightly higher than in the previous year, but the cumulative effects of drought worked to lower current carrying capacity relative to the size of the herd. \(\frac{X}{K} \) is at a maximum for the entire sample in 1985/86. They also work to reduce \(\frac{K_{t+1}}{M_t} \), the variable which actually controls the loss of resilience switch in our model. This is at a minimum in 1985/86. The large coefficients for the transition equation for \(M \) imply that the resilience threshold is very sharp.

We are interested in whether it is possible to detect change in the capacity of the system to absorb exogenous shocks (the measure of resilience *sensu* Holling (1986)). The changing sensitivity of the system to rainfall shocks is illustrated in Figure 8. This shows the threshold level of rainfall that we estimate to have been sufficient to induce a loss of resilience compared to actual rainfall. This was derived using a one-step ahead simulation - i.e. lagged values of variables are actual observations not simulations and the error terms from the econometric model are treated as exogenous variables. Changes in rainfall affect \(M \) by affecting the optimal offtake, the growth of the herd, and the growth of the range. The optimal offtake impacts on \(\dot{X}_{t+1} \) in addition to the direct rainfall affect on \(\dot{X}_{t+1} \) which then affects \(\dot{K}_{t+1} \) in addition to the direct rainfall affect on \(\dot{K}_{t+1} \). \(\dot{K}_{t+1} \) alone then enters the loss of resilience function. We then perturb actual rainfall until \(\Gamma = \frac{1}{1 + \exp(\gamma_2 (1 + \gamma_3 M_t / \dot{K}_{t+1}))} = 0.5 \) i.e. halfway switched on. This rainfall figure is the reported ‘resilience’ in Figure 5. The dating is the same as in Figure 4 so that rainfall would have to be 360 millimetres and below in 1986 to cause a loss of resilience that would result in \(M \) declining from that year to 1987. The link between change in the resilience of the range and herd size is complicated by the fact that there was extensive growth of the livestock sector in the period. More range was brought into use. As a result, resilience is not a monotonically decreasing function of herd size. Nevertheless, it does turn out that the system came closest to losing resilience in 1979, when the size of the national herd was at its highest.

Figure 8

The implications of this for the speed of return to equilibrium are illustrated in Figures 9 and 10. These report a sequence of impulse responses of \(K \) and \(X \) to a change in rainfall. The responses are measured in LSUK/millimetre of rainfall (thousand livestock units per millimetre of rainfall). The graphs show the one, three, five and ten year responses to a change in rainfall in the year on the \(X \) axis. The impulse response function is not shown in other years for simplicity. As this is a nonlinear
model the impulse response function is different for a perturbation in each of the years in the sample. Range vegetation is inherently more responsive to rainfall fluctuations than livestock, as is to be expected. This is partly because of the grazing term. Growth of the vegetative cover of rangeland slows as cattle stocks build up in wet periods. The higher the figure the larger the movement for a given shock and the more ‘unstable’ or responsive is the system.

Figure 9

Figure 10

The one period impulse responses of the two variables are generally opposite; ie. the responsiveness of K increases as that of X decreases. X is strongly influenced by the effect of rainfall on offtake. Higher rainfall reduces offtake, spurring the growth of X, and vice versa. As grazing pressure rises in droughts the growth rate of X slows down for any given level of rainfall. Overall, though, the one period responsiveness of both livestock and vegetation to variations in rainfall rises over the period. That is, the reduction in resilience of the system implies an increase in its volatility. It takes a progressively smaller change in rainfall to induce the same response in both vegetation and livestock.

In general, K is more responsive to rainfall shocks than X, but the nature of the response varies over the period. Up until the late 1970s, the immediate rangeland response to rainfall is typically substantial, but dies out fast. The return time to the previous equilibrium involves a period of between 3 and 5 years. By contrast, the cattle stock initially responds slowly. The effects of a shock build up over 3 to 5 years and the return time to equilibrium takes a much longer period – typically exceeding 10 years. From the late 1970s on, however, the pattern changes. The return time for rangeland increases until it too exceeds 10 years. In the mid 1980s drought, the loss of resilience in K is reflected in a very sharp increase in the impulse response over all but the very short period. By the late 1980s, the response to rainfall shocks is again a decreasing one as the system converges on a new equilibrium.\(^\text{13}\) The general pattern of the impulse responses of X is similar. In the mid-1970s, during a period of high rainfall, the maximum response of cattle stocks to rainfall shocks occurs in one year. By the early 1980s, however, the position is reversed. The ten-year response is equivalent to four times the one-year response; while in 1985 the ratio rises to about seven to one. That is, consistent with a loss of resilience, the effect of a rainfall shock in those years is explosive, rather than damped.

Conclusions

In this chapter I have argued that an alternative tractable way of estimating changes in environmental and natural capital stocks is to treat the impact of those changes on the economic system in the same

\(^{13}\) Note that the effects of the 1992 loss of resilience do not show up on Figure 6 as there are only two periods remaining in the sample.
way as econometricians have traditionally modelled the effects of unobserved changes in technology on economic output. This idea is derived from Perrings (1987) and O’Connor’s (1993) conception of change in the economy-environment system as a process of uncontrolled technological change.

The US case study illustrates what is possible to do with sophisticated time series techniques in the arena of the conventional modelling of technological change. In particular, a time varying estimate of the unobserved autonomous energy efficiency trend was extracted from the US macro data using a simple optimisation model of economic behaviour and a simple structural time series model of technological change estimated with the Kalman filter.

The Botswana study is both interdisciplinary and integrated. Insights from ecology are combined with economic intertemporal optimisation theory in a form relevant to the particular institutional conditions of Botswana. The Kalman filter is again used to estimate a model that jointly includes parameters of the economic system such as risk aversion and the discount rate and the unobserved state variables of the natural system – the current and equilibrium states of the rangeland. These estimates are extracted from the data containing minimal information about the natural system – the number of cattle and level of rainfall each year and the number of tubewells as a proxy for the area grazed.

It seems that many such similar integrative ecological-economic applications could be developed to model integrated systems for which we have limited measurements of the relevant natural capital variables. The technique might also be extended to investigate pure natural science problems. A step in this direction is provided by Stern and Kaufmann (2000) in a model of global climate change. Further development of such a model could include modelling unobserved time series such as stored ocean heat, which plays a similar role in the climate system that renewable natural capital stocks do in ecological-economic systems.

Acknowledgments

The work described in this chapter has its origins in my dissertation research at Boston University carried out under a Doctoral Dissertation Fellowship from the Institute for the Study of World Politics and continued later at the University of York, Boston University, and Australian National University. The Botswana model was developed in collaboration with Charles Perrings.

References

Table 1. Maximum Likelihood Estimates of Hyperparameters in the U.S. Macro Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (standard error in parentheses)</th>
<th>Parameter</th>
<th>Estimate (standard error in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_K</td>
<td>0.4819 (0.0312)</td>
<td>$E_{3,2}$</td>
<td>-0.3787 (0.1323)</td>
</tr>
<tr>
<td>π_L</td>
<td>0.5739 (0.0388)</td>
<td>$E_{3,3}$</td>
<td>5.4255e-04 (0.5884)</td>
</tr>
<tr>
<td>π_E</td>
<td>0.0902 (7.4482E-03)</td>
<td>$H_{1,4}$</td>
<td>5.5423e-04 (0.8351)</td>
</tr>
<tr>
<td>π_{KK}</td>
<td>-0.2660 (0.0842)</td>
<td>$H_{2,5}$</td>
<td>3.5193e-04 (0.4324)</td>
</tr>
<tr>
<td>π_{KL}</td>
<td>0.2263 (0.0594)</td>
<td>$H_{3,6}$</td>
<td>4.8293 (1.7930)</td>
</tr>
<tr>
<td>π_{LL}</td>
<td>-0.2861 (0.3215)</td>
<td>$H_{4,7}$</td>
<td>1.7571 (0.9496)</td>
</tr>
<tr>
<td>π_0</td>
<td>4.3584E-03 (6.5663e-03)</td>
<td>$H_{5,8}$</td>
<td>0.7041 (0.2686)</td>
</tr>
<tr>
<td>$E_{2,1}$</td>
<td>-0.8166 (0.1039)</td>
<td>$H_{6,9}$</td>
<td>3.3614 (1.8105)</td>
</tr>
<tr>
<td>$E_{2,2}$</td>
<td>0.1925 (0.0882)</td>
<td>σ^2_u</td>
<td>4.28478e-05</td>
</tr>
<tr>
<td>$E_{3,1}$</td>
<td>1.5075 (0.2540)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Residual Diagnostics: U.S. Macro Model

<table>
<thead>
<tr>
<th>Equation</th>
<th>S_K</th>
<th>S_L</th>
<th>S_E</th>
<th>$\ln Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>1.7885</td>
<td>2.0268</td>
<td>2.1195</td>
<td>1.8892</td>
</tr>
<tr>
<td>Q(18)</td>
<td>23.2226 (0.1822)</td>
<td>16.1559 (0.5817)</td>
<td>17.0336 (0.5208)</td>
<td>19.3560 (0.3702)</td>
</tr>
<tr>
<td>LM(1)</td>
<td>1.0211 (0.3122)</td>
<td>2.0867 (0.1486)</td>
<td>1.5877 (0.2077)</td>
<td>1.6054 (0.2051)</td>
</tr>
<tr>
<td>t(43)</td>
<td>0.1950E-01 (0.9845)</td>
<td>-0.2191E-01 (0.9826)</td>
<td>0.1564E-02 (0.9988)</td>
<td>0.2092E-01 (0.9834)</td>
</tr>
</tbody>
</table>

Notes: significance levels in parentheses. Tests are as follows:
- **DW**: Durbin Watson test for first order serial correlation
- **Q(18)**: Box Pierce Q test for general serial correlation / nonstationarity
- **LM(1)**: Breusch-Pagan Lagrange Multiplier Heteroskedasticity Test $H_1: \varepsilon_t^2 = f(t)$
- **t(43)**: t test on residual sample mean $H_0: E(\varepsilon_t) = 0$
Table 3. Residual Diagnostics: Botswana Model

<table>
<thead>
<tr>
<th></th>
<th>U_t</th>
<th>X_{t+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.77721</td>
<td>0.99376</td>
</tr>
<tr>
<td>DW</td>
<td>1.426290</td>
<td>2.584818</td>
</tr>
<tr>
<td>Q(7)</td>
<td>13.778183</td>
<td>11.538466</td>
</tr>
<tr>
<td></td>
<td>(0.05527020)</td>
<td>(0.11679514)</td>
</tr>
<tr>
<td>ADF</td>
<td>-4.18073</td>
<td>-4.06454</td>
</tr>
<tr>
<td>B-P</td>
<td>2.627091</td>
<td>6.947954</td>
</tr>
<tr>
<td></td>
<td>(0.2688503)</td>
<td>(0.03099352)</td>
</tr>
</tbody>
</table>

Notes: significance levels in parentheses. Tests are as follows:
- **DW**: Durbin Watson test for first order serial correlation
- **Q(7)**: Box Pierce Q test for general serial correlation / nonstationarity
- **ADF**: Augmented Dickey-Fuller test for residual stationarity
- **B-P**: Breusch-Pagan test for coefficient variation
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Parameter</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2</td>
<td>0.13859</td>
<td>r</td>
<td>0.16501</td>
</tr>
<tr>
<td></td>
<td>(0.05495)</td>
<td></td>
<td>(0.04824)</td>
</tr>
<tr>
<td>β_1</td>
<td>1.19394</td>
<td>κ_0</td>
<td>-0.04793</td>
</tr>
<tr>
<td></td>
<td>(1.02271)</td>
<td></td>
<td>(0.08279)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.61842</td>
<td>κ_X</td>
<td>0.0001514</td>
</tr>
<tr>
<td></td>
<td>(0.48354)</td>
<td></td>
<td>(0.0006198)</td>
</tr>
<tr>
<td>μ</td>
<td>0.65206</td>
<td>κ_Y</td>
<td>0.01544</td>
</tr>
<tr>
<td></td>
<td>(0.71201)</td>
<td></td>
<td>(0.00984)</td>
</tr>
<tr>
<td>γ_1</td>
<td>397.52479</td>
<td>κ_s</td>
<td>-0.01689</td>
</tr>
<tr>
<td></td>
<td>(773.14788)</td>
<td></td>
<td>(0.00877)</td>
</tr>
<tr>
<td>γ_2</td>
<td>-181.89518</td>
<td>$E_{2,2}$</td>
<td>0.62907</td>
</tr>
<tr>
<td></td>
<td>(369.21253)</td>
<td></td>
<td>(0.25000)</td>
</tr>
<tr>
<td>γ_3</td>
<td>-1.25890</td>
<td>$H_{2,3}$</td>
<td>13.96006</td>
</tr>
<tr>
<td></td>
<td>(12.04458)</td>
<td></td>
<td>(8.38597)</td>
</tr>
<tr>
<td>δ</td>
<td>-0.48003</td>
<td>σ_u</td>
<td>0.00165</td>
</tr>
<tr>
<td></td>
<td>(0.83499)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures in parentheses are standard errors.
Figure 1. U.S. Gross Energy Use and GDP
Figure 2. USA: Quality Weighted Final Energy Use and GDP

Indices 1947=100

GDP
E Quality

[Graph showing the relationship between GDP and energy quality indices from 1947 to 1987.]
Figure 3. USA: Factor Augmentation Trends
Figure 4. Livestock Prices

[Graph showing livestock prices from 1965 to 1990 with three lines representing offtake price, stock price, and shadow price.]
Figure 5. Livestock Cost and Offtake Revenue (Average Herd)
Figure 6. State Variables
Figure 7. Decomposition of Climax State M into Random Fluctuations and Loss of Resilience Function

Due to resilience loss $\frac{(M(t+1) - M(t))}{M(t)}$
Figure 8. Resilience with Respect to Rainfall
Figure 9. Response of Cattle Stock to Rainfall
Figure 10. Response of Rangeland to Rainfall