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Abstract

The solar photovoltaic (PV) industry in the United States has been the recipient of substantial pro-
duction subsidies at the federal and state level, often motivated both by environmental externalities and
dynamic spillovers from learning-by-doing in the diffusion of the new technology. Understanding the na-
ture of this diffusion and documenting the empirical extent of these spillovers are crucial for assessing the
benefits of solar production subsidies. Using a rich dataset on solar PV installations in California, we find
evidence of peer effects that depend on the installed base at the zip-code level, suggesting the presence
of social learning or snob effects for consumers. We then estimate a structural model of supply, using the
zip-code level installed base as a demand shifter to instrument for the quantity being installed at any given
time. We find evidence of highly non-appropriable contractor LBD at the regional level. These results
suggest that there is an economic basis for a production subsidy on solar in California, even if the current
subsidies may still be overly generous.
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1 Introduction

Policies to promote solar photovoltaic (PV) adoption have been gaining momentum throughout

the world, as concerns over global climate change and national security externalities continue

to grow. In the United States alone, commercial and residential solar installations are eligible to

receive a 30% solar energy investment tax credit, which was temporarily converted to a cash grant

by the American Recovery and Reinvestment Act of 2009. This federal subsidy comes on top of

individual state incentive programs, the most prominent of which is the California Solar Initiative

(CSI), a $3.3 billion 10 year program providing substantial subsidies for solar installations through

2016. Moreover, California, along with several other states, has adopted a Renewable Portfolio

Standard, which in California’s case requires electric utilities to generate 33% of their electricity

by 2020, a major boon for centrally generated solar. With such considerable policy interest and

high costs of implementation, it is critical to determine whether these policies are justified.

The answer to this question requires weighing the costs and benefits of such subsidies. Propo-

nents of solar energy often point first to the reduced environmental externalities from displacing

fossil fuel electricity generation, particularly during the peak hours of the day when wholesale

electricity prices are highest. However, there is ample evidence that the environmental exter-

nalities are not likely to outweigh the high cost of solar technology (van Benthem et al. 2008;

Borenstein 2008).1 Further justification for incentives must hinge upon the existence of additional

market failures relating to the dynamics of the diffusion of solar.

To establish and quantify the nature of these market failures it is necessary to first under-

stand the potential sources of the market failures. Two natural questions arise. First, what are

the determinants of the diffusion of solar? One such determinant may be peer effects, whereby

the number of current adopters of the technology may influence the choice of whether or not

to adopt. Spillover effects in technology adoption have been recognized in classic papers start-

ing with Griliches (1957), and continuing in the innovation diffusion models of the 1960s (Arndt

1967; Bass 1969; Frank et al. 1964) and the more recent network externality literature (David 1985;

Liebowitz 1994; Goolsbee and Klenow 2002). In the realm of environmentally friendly technolo-

gies, evidence for peer effects has been found in the purchase of hybrid electric vehicles (Axsena

et al. 2009; Kakihara 2009), in the adoption of technologies to phase out lead (Newell and Kerr

2003), and in the adoption of ethanol vehicles and fuel (Shriver 2009).

In solar adoption, peer effects may be due to a variety of pathways, including social learning
1Note that production subsidies for renewables are a second-best instrument to address environmental externalities,

since they effectively lower the price of electricity, reducing the incentives for energy efficiency
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about the value of solar and snob effects in which consumers adopt solar to send a message to

peers about their “green” choices. The presence of peer effects in solar improves our understand-

ing of the process of adoption of a critical renewable energy technology. It is important to note

however, that even if peer effects are present, this does not necessarily mean that there is a market

failure: if the peer effects are accounted for by the adopters or by the firms supplying the solar

panels, then there may in fact be no externality associated with the peer effects.

Second, what is the nature of the manufacturer and contractor cost structure? One of the

most prominent arguments given for promoting solar is the possibility of supply-side learning-

by-doing (LBD) in the solar industry, whereby the cost of an installation declines with cumulative

experience in installations. The concept of LBD in economics dates to the early 1960s, with theoret-

ical work by Arrow (1962) and empirical work by Alchian (1963). Since then, a sizable literature of

both theoretical and empirical work on LBD in economics has developed.2 Similarly, LBD has long

been used to examine new energy technologies, beginning with Zimmerman (1982), and more re-

cently as a common descriptive methodology for modeling technological change in renewables.3

Whether learning-by-doing can be considered a market failure depends on whether the learn-

ing from the experience by one firm engenders a spillover to other firms in the same industry.

For example, if solar manufacturers copy the latest manufacturing techniques that other firms

learned from trial-and-error, there would be a learning-by-doing spillover, sometimes called “ex-

ternal learning” effects, or “non-appropriable” LBD. In contrast, if solar manufacturers are able to

appropriate all of the gains from their learning (sometimes called “internal learning”), there is no

market failure, and hence no motivation for policy based on LBD.

This notion turns out to be critical when examining the costs and benefits of solar policies.

Indeed, van Benthem et al. (2008) perform an ex-ante policy analysis and find that the substantial

subsidy program in California can be justified on economic grounds based on environmental ex-

ternalities and LBD - assuming that LBD in California continues to follow the learning previously

seen for solar and the learning is non-appropriable.

This paper aims to shed light on the empirical evidence for peer effects and LBD in the Cali-

fornia solar PV market. Using a doubly stochastic hazard model of adoption, we find statistically

significant localized peer effects in the adoption of solar PV. These unique demand shifters are

then used as instruments in our structural model of supply for the California solar market. Our

2Classic papers using the concept of learning-by-doing include Spence (1981), Fudenberg and Tirole (1983), Young
(1991), Lieberman (1984), Irwin and Klenow (1994), and Foster and Rosenzweig (1995).

3See Grubb et al. (2002) and Gillingham et al. (2008) for overviews of modeling endogenous technological change in
climate policy models.

2



results suggest important contractor-level learning effects at the regional level. Moreover, we find

statistically significant non-appropriable LBD, providing empirical evidence for learning spillover

effects.

Our paper is structured as follows. Section 2 provides background on the California solar

market. Section 3 describes the panel dataset used for this study. Section 4 presents our hazard

model of adoption and the results of the demand estimation. Section 5 develops the structural

model of supply, which is estimated and provides evidence of small but statistically significant,

non-appropriable LBD at the contractor level. Finally, section 6 concludes.

2 Background

2.1 Solar Policy

There has been a long history of government support for solar energy in the United States. At

the federal level, incentives for solar date back to the Energy Tax Act (ETA) of 1978 (Public Law

9-618), which provided a 40% tax credit of up to $2,000 for homeowner installations of solar. This

tax credit was phased out in the mid-1980s, but low-level federal support through research and

development and pilot projects continued. More recently, the Energy Policy Act of 2005 created a

30% tax credit for residential and commercial solar PV installations, again with a $2,000 limit. The

Energy Improvement and Extension Act of 2008 further incentivized solar by removing the $2,000

limit and allowing the credit to be taken against the alternative minimum tax.

On top of this federal policy action, both state and municipal governments in California have

been long active in promoting solar - dating back to the creation of the California Energy Com-

mission (CEC) in 1974. For example, in 1984, the Sacramento Municipal Utility District developed

a 1 megawatt (MW) solar PV facility, which was later expanded to 2 MW. However, for several

decades much of the emphasis was on larger systems and the high cost of residential systems

deterred significant adoption. Interest in distributed generation solar PV picked up in the late

1990s. In 1997, Senate Bill 90 set in place the Emerging Renewables Program, and directed in-

vestor owned utilities to add a surcharge to electricity bills. The proceeds of this surcharge were

then allocated toward a $3 per Watt (W) rebate for solar installations (Taylor 2008).

In 1998, “net metering” was permitted, allowing owners of solar PV systems to receive credit

for electricity sold back to the grid during times when the use of electricity was below solar PV
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output. In 2000, Senate Bill 1345 directed the CEC to develop a additional grant program for

distributed generation solar, but the funding for this was short-lived. In addition, Senate Bill 17 of

2001 provided state tax credits for solar PV installations of up to 15%, and these credits remained

in place through the end of 2005 (CPUC 2009).

While these incentive programs were substantial, they were renewed on a year-by-year basis,

leading to much uncertainty in the solar market. The elements for a longer-term, more predictable

policy were put in place in California in August 2004, when Governor Schwarzenegger announced

the “Million Solar Roofs Initiative,” setting a goal of one million residential solar installations by

2015. In January 2006, the California Public Utilities Commission (CPUC) established the CSI, the

$3.3 billion, 10-year program aiming to “install 3,000 MW of new solar over the next decade and

to transform the market for solar energy by reducing the cost of solar” (CPUC 2009). The CSI was

a unique subsidy policy in that it counted on the policy reducing the cost of solar by reducing the

subsidy in steps over time as the number of installed MW increases (Figure (1)).

2.2 Solar Costs and Installations

The combination of the CSI and the federal incentives has corresponded with a considerable in-

crease in the number of installations in California (Figure 2). However, the cost per W of solar

PV installations in California has not simply declined along with the increase in installations,

but actually has been fairly level since 2001, as shown in Figure 3. For reference, cursory calcu-

lations suggest that the 2009 residential system average cost of $8 per DC W corresponds to a

levelized cost of roughly $0.30-$0.35 per kWh before any incentives.4 Centrally generated electric-

ity sources, such as coal or natural gas currently have a much lower levelized cost, usually in the

range of $0.05-$0.07.

The final installation price paid to a contractor can be broken down into several components.

The largest component of the cost is the cost of the PV module itself, which often makes up roughly

50% of the total cost of the installation (Wiser et al. 2009). The PV module market is widely con-

sidered a global market, with modules being built in Asia, Europe, and North America for use

anywhere in the world, including California (IEA 2009). The best data available on module prices

for multi-crystalline silicon modules (the most commonly used module technology in Califor-

4These calculations assume a 30 year solar system lifespan, a 30 year mortgage with an interest rate of 3%, an inverter
lifespan of 8 years, solar PV system output from Borenstein (2008), no soiling losses, and a PV panel decay for multi-
crystalline silicon panels of 0.5% corresponding to the best available evidence (Osterwald et al. 2006). The true levelized
cost would vary for individual installations, and alternative assumptions could change the levelized cost calculation
significantly.
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nia installations) are Navigant Consulting’s Global Module Price Index and the SolarBuzz North

America Module Retail Price Index. Both of these tend to follow each other relatively closely, and

the SolarBuzz North American Retail Price Index follows their European Price Index closely as

well - providing further evidence of a global market (SolarBuzz 2009). Figure 3 shows the Nav-

igant Global Module Price Index, both for “quantity” purchases (the price that most contractors

would pay), and purchases from very small scale buyers (the price that some very small con-

tractors may pay) (Consulting 2009). These data suggest that for a large contractor in California,

modules usually make up roughly 40% of the total cost over the past eight years.

An inverter is needed with every PV installation to convert electricity from direct current (DC)

to alternating current (AC). Inverters usually cost in the range of $0.50-$1 per DC W, implying

that they may make up roughly 6%-15% of the total cost. Like modules, the inverter market is

also considered to be a global market. The remainder of the installation cost is often called the

“balance-of-system” (BOS) cost, and is composed of labor costs, marketing costs, overhead, and

profits. Among these, labor costs are usually considered to be the largest. In California, there are

numerous contractors, and most install solar in only a few counties, as will be discussed below in

Section 3.

These facts about the solar market suggest that if there is LBD in California solar PV, as the

writers of the CSI hope, then the learning in module costs will likely be at the global level, while

learning in BOS costs will likely be at the regional level, corresponding to the geographic scope of

most contractors. Indeed, previous studies examining evidence for LBD in the solar industry have

focused on the global market for producing modules. The evidence so far for learning in the mod-

ule cost is very weak at best. Papineau (2004) finds the effect of cumulative experience on total

solar PV cost reductions to be significant in some specifications, but in her preferred specification

that includes a time trend, cumulative experience is insignificant. Nemet (2006) performs an engi-

neering analysis of the costs of PV modules and finds that learning can only weakly explain cost

reductions in the most important components of the cost of producing a PV module.

On the other hand, some authors have suggested that LBD may be important at the regional

level in lowering contractor BOS costs (Duke et al. 2005). Along with each additional installation,

contractors gain experience with managing and marketing technologically similar installations

and their workers gain experience in constructing the installation. If the learning that comes about

through these processes spills over to other contractors, the spillovers are most likely to occur at

the regional level, to other competing firms in the same geographic region who may be able to

replicate the same cost-reductions. Moreover in the solar PV market in California, it is common

for contractors to use temporary labor from a limited set of companies for large jobs or during
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times when there are many jobs - possibly leading to further spillovers at the regional level. Un-

fortunately, there is a dearth of empirical evidence on LBD in contractor BOS costs, a situation this

paper endeavors to alleviate.

3 Data

Our data come from multiple sources. The first source of data is the California Solar Initiative

website; the CSI tracks all solar installations since the programs conception in the three, investor-

owner utility regions (IOUs) in the state: Pacific Gas and Electric Company (PG&E), Southern

California Edison (SCE) and San Diego Gas and Electric (SDG&E). The CSI incentives are only

available for installations within these regions, although the regions cover nearly the entire state.5

The data are very rich and include the IOU, type of installation (residential, commercial, govern-

ment or nonprofit), size of the installation and incentive, PV installer and manufacturer informa-

tion, and zip code (and NAICS industry code if applicable) of the customer. In addition, the data

include the date when the customer reserved solar incentives for an installation and the date when

the project was completed, if it was completed. These two separate dates are extremely useful in

an empirical analysis since the reservation date is the one in which a consumer makes the decision

to install solar panels and locks in the incentive amount, and the completion date can be used to

calculate the cumulative install base at any point in time.

We augment the CSI data, which begin in 2007, with data back to 2001 which were tracked by

the CEC’s Emerging Renewables Program before the tracking responsibilities were handed off to

the CPUC, following the implementation of the CSI. The data also consist of installations, 99.5% of

which are in the IOU regions. We restrict the analysis to these regions since they contain almost all

of the installations and the data are not available after December 2006 for the non-IOU regions. The

CEC data include the same variables as the CSI data with the exception of the installation type. To

assign an installation type, we classify installations that are smaller than 10 kW as residential and

larger than 10 kW as commercial.6 The combined data set includes 50,207 installations between

January 2001 and October 2009, 30,564 of which are from the CSI period. We augment the data

with demographic data from Sourcebook America and American FactFinder.7

5The CSI incentives are either a one-time payment (for smaller systems) or broken down into smaller payments over
the course of five years (for larger systems).

6The level of 10 kW has been used in industry reports as a suitable cutoff level and it is the 95th percentile of
the residential installations in the CSI data. Since 10 kW is just below the 50th percentile for our CSI commercial
installations, some commercial installations will inadvertently be coded as residential in the pre-CSI period.

7We also use as data on hybrid vehicle registrations from a proprietary data set as a proxy for green preferences.
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We assume that peer effects operate at the zip code level. Without actual address data, we can-

not look at a smaller geographic scale. Table 1 contains summary statistics for the zip codes. The

average number of installations in a zip code is 31.4 (22.8 in the CSI period). Most of the installa-

tions are residential (27.5 per zip) although since residential installations are smaller on average

than commercial, government and nonprofit installations, as shown in Table 2, the residential in-

stallations make up only 33% of the installed MW. The price variable is adjusted by the CPI to real

2009 dollars per W and all Watts in this paper are direct current Watts.

One implicit assumption in our analysis is that local supply side spillovers are not contained

at the zip-code level, which is reasonable since contractors operate in regions that are signifi-

cantly larger. Table 3 breaks down the installations by contractor and manufacturer. The average

contractor operates in 2.8 counties and has performed 26.7 installations. One difficulty we face

in determining the extent of localized, nonappropriable contractor LBD is that it is not possible to

distinguish between LBD effects and demand-side peer effects if the peer effects operate at a larger

geographic unit than the zip code and regionalized nonappropriable LBD operates only at some

geographic unit (such as the county level) and is the same for all contractors within that unit.

In reality, LBD spillovers are most likely to occur between competing contractors, and each

contractor faces a different set of competitors, due to the different geographic coverage of each

contractor. Thus, we create a variable for the installed base of each contractor’s competitors, where

we define a competitor to be any other contractor who has installations in a county in which the

contractor operates (over the years covered in the dataset). Using this variable allows us to avoid

the potential issues inherent in using an arbitrary geographic cutoff point for where demand-side

peer effects end and supply-side LBD begins.

Table 4 includes summary statistics for the different installed base variables that will be used

in the analysis. In addition, we create current contracts variables for a contractor, its competitors,

a manufacturer and within a zip code. These quantity variables may capture scale economies,

depending on the nature of competition, as will be discussed further in section 5. One possible

criticism of estimations of LBD in other papers is that LBD is confounded with economies of scale.

Here we can control for both since we know the date at which the installation is requested and the

data at which it is finally completed.
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4 Solar Adoption

The most common empirical method employed in the technology adoption literature is a reduced-

form hazard function approach (Hannan and McDowell 1984; Mulligan 2003; Baker 2001; Engers

et al. 2009), especially in the presence of network effects.8 Diffusion models such as the Bass model

(Bass 1969) are derived from hazard models and assume that the probability of adoption depends

on the number of previous adoptions. These models include a positive effect of the installed base,

captured through a “coefficient of imitation,” as well as a market saturation component. The

combination results in the well-known “S-shaped” cumulative adoption curve.9

As an alternative to the hazard function approach, it is becoming more common to employ a

structural model of technology adoption.10 Structurally modeling the decision to adopt is useful

for performing a counterfactual analysis, but is fraught with difficulties such as multiple equilibria

(especially in the case of spillovers) and strategic behavior. Some models begin with a latent vari-

able model (Tucker 2004; Gowrisankaran and Stavins 2004; Tucker 2008) and then assume away

strategic behavior. In other cases, it is necessary to either find convincing instruments or to simul-

taneously estimate demand and supply. The popularity of the hazard function approach is largely

due to the fact that often the main goal is simply to establish the presence of and perhaps quantify

network effects, rather than to perform a counterfactual analysis, which would require a struc-

tural approach. Similarly, since our goal is to establish the presence and quantify network effects,

and since we do not have the entire menu of prices for all manufacturer-contractor combinations

that the consumers can choose from, which would be required in a structural model, we adopt a

hazard function approach as well.

One main challenge in the estimation of peer effects is separating the effect of the installed

base from correlated unobservables. Most of the empirical applications that estimate duration

models assume a specific distributional assumption for the hazard model and may sometimes

include fixed effects in the estimation of the hazard rate to control for some of the unobservables.

However, even the inclusion of market fixed effects completely ignores the effect of idiosyncratic

preferences for individuals within the market of study.

8Another common approach uses a normal, censored regression for the date of adoption (Lee and Waldman 1985;
Genesove 1999).

9Other reduced form models that are used in determining the presence of spillovers include linear models if the out-
come variable is continuous, such as the effect of movie reviews on box office revenues (Moretti 2008), or by assuming
a linear probability model (Goolsbee and Klenow 2002; Duflo and Saez 2003; Gowrisankaran and Stavins 2004; Oster
and Thorton 2009). Other papers exploit a natural experiment such as Kremer and Levy (2008) which studies the peer
effects on alcohol consumption.

10Recent structural work that incorporates network effects include Hamilton and McManus (2005), Lenzo (2006),
Schmidt-Dengler (2006) and Shriver (2009).
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The implicit assumption in most hazard models of adoption is that individuals are homoge-

nous, i.e., that there is no heterogeneity component in the hazard function parameters. This as-

sumption allows for easy estimation of the hazard function parameters using a simple maximum

likelihood approach. Robustness checks are usually limited to trying other parametric specifica-

tions of the hazard function. However, failure to account for individual heterogeneity can lead to

severely biased estimates of the duration model parameters, as explained in Heckman and Singer

(1984). In addition, Heckman and Singer show that if there is unobserved heterogeneity in the

hazard function, the hazard function parameter estimates are sensitive to the distributional as-

sumptions on that heterogeneity. Furthermore, they show that the distributions of the hazard

function and heterogeneity are not separately identified.

In our application, the presence of individual heterogeneity within zip codes cannot be dis-

puted. We feel that it is therefore more benign to assume a distributional form for the hazard

function than for the heterogeneity component. We assume that solar adoption follows a non-

homogenous Poisson process (also known as a Cox process or doubly stochastic Poisson process).

Poisson processes are pervasive natural phenomena and have the desirable feature of duration

independence, that is, the hazard function is independent of the time since the last adoption,

conditional on the hazard rate. However, the Poisson arrival rate is a stochastic function of the

independent variables, which may be dependent on time.

4.1 Hazard Model of Adoption

Assume that at any point in time, t, a (residential) consumer has an expected net present value for

the installation of solar panels which depend on the costs of the panels, the incentives in place,

electricity prices, and the future expectations over these variables. In addition, allow this net

present value to depend on the current “local” install base, where we define local to mean other

consumers in the same zip code. We assume a Poisson arrival process with the following hazard

rate:

λ(t) = λ0(t) exp(Xztβ + ηz + ξd
t + εzt), (1)

where Xzt are market and time-specific explanatory variables, ηz and ξd
t are zip code market

and time-specific indicator variables, respectively, and εzt is a stochastic term capturing the unob-

served heterogeneity. The waiting time between events in a Poisson distribution is exponentially
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distributed:

f(∆t) =
1
λ(t)

exp {−∆t/λ(t)}, (2)

and so the log likelihood function takes the following form:

L = −
∑

∆t/λ(t) + log(λ(t)), (3)

where the hazard rate in the stochastic value given in (1). The first order condition that maxi-

mizes this likelihood function can be arranged to give us the following expression for the natural

logarithm of time between adoptions:

log(∆tzt) = Xztβ + ηz + ξd
t + εzt. (4)

By estimating this model of time between successive adoptions, we can allow the hazard rate to

depend on time-varying market level regressors Xzt, such as the number of previous adoptions in

the market and the current number of ongoing installations as well as an observed heterogeneity

component. The monthly, time fixed effects capture changes in price level on a month-to-month

basis as well as other time-varying factors that are the same across markets. To control for any

changes in zip code-specific price levels (pre-incentive), we include the most recent price in the

zip code.11 Figure 4 includes histograms for time between zip code installations and the logarithm

of this time, which is the dependent variable in the demand-side regressions. The average time

between adoptions is 71 days, and the distribution is skewed with considerable variance. How-

ever, the distribution of log time appears to be symmetric; it is centered at 3.22 with a variance of

1.47.

By estimating (4), we assume a distributional form of the hazard function. This, however,

does not imply that the rate of adoption is independent of time-dependent regressors, merely that

the rate of adoption between adoptions does not change as a function of the time since the last

adoption. Furthermore, a distributional assumption is required: either on the hazard function

or on the distribution of heterogeneity, which is often assumed away with no discussion. When

11As a robustness check, we also estimate the model using a zip-code price index of the average price of the last ten
installations and find similar results.
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heterogeneity is obviously present, as it is in our application, we feel that an assumption on the

hazard function distribution is less restrictive.

In addition, we test for autocorrelation in εzt by estimating equation (4) and regressing the

residuals on lags of the residuals. We find that there is autocorrelation in the εzt, but only for one

lag. The presence of autocorrelation will not bias the estimates but it will lead us to underestimate

the standard errors if it is not accounted for. We therefore report asymptotic standard errors for

our estimates assuming an AR(1) process for the errors, εzt = ρεz(t−1) + edzt.

4.2 Hazard Model Estimation Results

One difficulty in testing for peer effects is controlling for correlated unobservables that shift de-

mand. In the estimation of equation (4), we control for zip code specific demand by using a

fixed effects estimator, and we include month-level dummy variables to control for time-varying

demand shocks. These dummy variables absorb shocks to overall demand from changes in the

economy, advertising campaigns, etc. We report standard errors which allow for AR(1) autocorre-

lation. This captures time-varying effects that affect only specific zip codes which would accelerate

or decelerate adoption over some period of time.

Table 5 contains the hazard model regression results, where the dependent variable is the log

of the time until next adoption within a zip code. The first column reports a specification in which

zip installed base and current contracts are measured by the absolute number of installations, in

hundreds. We include a linear and quadratic term for the zip code installed base in order to cap-

ture either increasing or decreasing effects of more installations. The coefficient on the zip code

installed base is negative and significant as expected, but there is also a significant, positive coef-

ficient on the quadratic term, meaning that the effect of additional installations declines with the

installed base. The interpretation of the size of the effect is that for the first 100 new installations

in the zip code (the average amount is 101), the time between adoptions decreases by a little less

than one percentage point (decreasing from 0.951% to 0.693%) in the PG&E utility region, and it is

twice this size in the SCE utility region.

At first glance, this may seem like a trivial effect on the rate of adoption, but over the period

covered by our data, a decrease of one percent in the time between adoptions is considerable.

Although the average time between installations across all zip codes is 229 days, this is because

there are some zip codes with very little adoption, distorting the mean. The median is much

lower, at 90 days, and the 25th percentile is only 28 days between installations. A one percentage
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decrease in the time between adoption in these zip codes leads to a large increase in the number

of total adoptions. Aggregating the effect over these heterogeneous zip codes leads to 524 more

adoptions for the years of our data (2001-2009) due to the peer effects.

If solar adoption were to become more prevalent in the zip codes with little adoption up to this

point in time, the influence of peer effects would increase. This is particularly relevant because the

rate of solar installations have just begun to accelerate in California. While the average number

of installations is 101, there is an average of 7,500 owner occupied homes in each zip code, so the

market is far from being saturated.

Note that we have not said anything regarding what causes the peer effects, and indeed a

study such as ours cannot determine the mechanism behind the peer effects. Ongoing research at

UCLA shows some support for the idea that people adopt solar for social image reasons (Lessem

and Vaughn 2009), which is sometimes referred to as a ”snob” effect. The authors make use of

a measure of ideology and show that while consumers’ election of a green energy alternative

through their utility provider is driven by their own ideology, the decision to adopt solar is driven

more by their neighborhood’s average ideology. Of course this could be due to either a snob effect

of due to the availability of more information in those areas.

Our research provides some limited support for an informational component to the peer ef-

fect. With the conception of the CSI, the utility districts were responsible for their own marketing

campaigns to promote solar adoption. The PG&E utility district was by far the most aggressive

with such campaigns. We also see that the peer effects are the smallest in this region. While there

are many possible reasons for the difference in the size of the peer effect across regions, one pos-

sible explanation is that in the PG&E utility region, since more information regarding solar was

provided through marketing vehicles than in the SCE and CCSE utility regions, this resulted in

a weaker peer effect because part of the peer effect is due to a transfer of information. An infor-

mational component of the peer effect is of course only one possible reason for the smaller peer

effects in the PG&E region; in all probability, the peer effects result from both informational and

snob effects.

We find no effect of the most recent installation price in the zip code on the rate of adoption.

Any effect of overall price levels are of course captured by the time dummies, so we would only

expect the most recent price to have any effect if there was time varying price disparity across zip

codes. We do, as expected, find that as the CSI incentives decline (with step number), that the

time between adoptions grows. This increase is not statistically significant which is not surprising

since these parameters are only identified through cross sectional variation in the current incentive
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step: time series variation is captured in the time fixed effects. Finally, we report the extent of the

heterogeneity and the amount of autocorrelation. The variance of the zip-code fixed effects is

given by σu and the variance of εzt by σε. There is an autocorrelation, ρ, of 0.525.

As a robustness check, we run the model using the fraction of owner-occupied homes who

have installed as the units for zip code installed base. The results are reported in the second

column of Table 5. The results are all qualitatively the same, in both sign an significance. The first

model has more observations since we don’t have to worry about any missing demographic data.

For this reason, and since we cannot be sure that the number of owner-occupied homes is the best

measure of market size, and also because the first specification using absolute installation counts

is a better fit to the data, we use absolute numbers in our additional model specifications.

In order to assess the effect of demographic demand variables on adoption, we run the full re-

gression using a zip code random effect and zip code level demographic variables. The results are

all as expected. Of course, the larger the owner-occupied installed base, the more solar adoption.

The percentage of the population who are male, white, have a college degree, and own a hybrid

vehicle also all lead to increased adoption whereas the percentage of people who drive to work,

work at home, or have over a half hour commute all lead to less adoption.12

To better understand the determinants of the peer effects, we run the regression including the

zip-code fixed effects but also with the demographic variables interacted with the zip code level

installed base. We find that the number of homes increases the size of the peer effect as does the

percentage of people aged 20-45, who use public transportation, and who work at home, whereas

the percentage of people who are male, who drive hybrids, or who own homes worth over 400

thousand dollars all lead to smaller peer effects.13

So far, the analysis has focused on residential PV installations. We performed the same anal-

ysis using government and commercial solar installations, first defining the market as a zip code

as done in the residential analysis and second, separating firms by industry type. We find no

evidence of peer effects for commercial installations.14 The lack of peer effects for commercial

installations provides no evidence that companies are using solar installations as a green differen-

tiation mechanism, a possibility touted in the California Solar Initiative Business Customer Fact

Sheet. It does perhaps lend even more support to our argument that it is peer effects that we are

capturing in the residential installation analysis.

12At 5 % significance.
13At 10% significance.
14There are too few government and nonprofit installations to run the analysis.
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Although we demonstrate that peer effects exist, this does not necessarily imply that this is a

network externality that leads to a market failure. The presence of peer effects could be accounted

for through the behavior of the agents. It is possible that people compensate their neighbors in

exchange for information regarding PV installations. More likely is the possibility that manu-

facturers and contractors price their panels to penetrate the market and make use of these peer

effects increasing demand, although since the peer effects are not firm specific, the prices would

still most likely be too high initially to overcome the market failure. Also, if the peer effects are

informational in nature, the first-best solution to addressing the market failure would be to pro-

vide consumers with the information and not rely on the peer effects to do so, as the marketing

campaigns in the different utility regions have attempted to do.

The next section uses the peer effects found here to help identify the more straightforward

LBD market failure.

5 Contractor and Manufacturer Supply

5.1 Model

To determine whether or not the solar industry in California exhibits LBD, we develop a model

based on profit-maximizing contractors and module manufacturers. Solar installations are not a

homogenous good, since each installation is unique. Thus, the profit for each contractor j at time

t is given by the sum over all of that contractor’s installations:

πc
jt =

Qcjt∑
i=1

(pijt − pm
ijt − wc

ijt)− F c
jt. (5)

Here Qc
jt is the total number of installations by contractor j, pijt is the pre-incentive price charged

to the consumer for installation i, pm
ijt is the cost of the PV module, wc

ijt are the BOS costs that

include all other costs besides the PV module, and F c
jt is the contractor fixed cost.

Similarly, the profits in California of manufacturer k for the module used in installation i at

time t are given by

πm
kt =

Qmkt∑
i=1

(pm
ikt − wm

ikt)− Fm
kt , (6)
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where Qm
kt is the total number of modules produced by manufacturer k at time t, wm

ikt is the man-

ufacturer’s marginal cost of production, and Fm
jt is the manufacturer fixed cost.

If LBD is an important factor in the production and installation of solar PV, we would expect

the cost of production and installation to decline as manufacturers and contractors have more ex-

perience. It thus follows that if LBD is influential, costs to both manufacturers and contractors

should be a function of the cumulative production of manufacturers and installations of contrac-

tors, respectively. Moreover, if learning is not fully appropriable, there will be spillovers leading to

costs declining along with the cumulative installations of all relevant competitors. For manufac-

turers, the relevant market is all of California, so all other manufacturers are relevant competitors.

Since contractors tend to be based on a single region, relevant competitors are all other contractors

who sell in any one of the counties that the contractor sells in.

Thus, we specify our marginal cost functions as follows:

wc
ijlt = αc + βcb

c
jt + βccb

cc
jt + βQcQ

c
jt + βQccQ

cc
jt + βscSit + θc

j + ξc
t + ζl + εcijt, (7)

wm
ikt = αm + γmb

m
kt + γmcb

mc
kt + γQQ

m
kt + βsmSit + θm

k + ξm
t + εmikt.

where bcjt is the contractor installed base (i.e., the contractor’s cumulative installations), bccjt rep-

resents the installed base for the contractor and all of the contractor’s direct competitors, Qcc
jt is

the contractor’s competitors’ current on-going contracts (included to account for the possibility

of short-term capacity constraints in availability of temporary labor), Sit represents the size of

the installation, bmkt is the manufacturer’s installed base, bmc
kt is the total installed base, and the ε’s

are i.i.d. mean zero error terms (we allow for the possibility of heteroskedasticity). The ξ’s are

time dummy variables to account for unobserved changes in firm costs over time, such as the

total global quantity solar panels manufactured. The θ’s are contractor or manufacturer dummy

variables that are included to account for initial firm specific installation bases (before our dataset

begins in 2001) and heterogeneity in firm marginal costs. Finally, ζl are dummy variables for the

installation type, since contractors may have different costs depending on whether the installation

is a residential, commercial, or government installation.

The nature of competition in the California solar market determines the first-order conditions

for the firms’ profit-maximization problems. Discussions with industry analysts and players in

the market suggest that the contractor market is highly competitive; the barriers to entry are rel-

atively low for already licensed general contractors. For example, between January 2007 and

October 2009, there were 1,333 different contractors installing solar in California. The module
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manufacturer market has had documented capacity constraints hindering increased production

in the recent past, so it may not have been as competitive, although industry analysts believe that

with the recent price decline the market is becoming more competitive.

Since the evidence is only anecdotal, we allow for the possibility of market power in solving

the firms profit-maximization problem. We assume each firm charges a constant markup for all

installations of each installation type (i.e., pijt − pm
ijt − wc

ijt and pm
ikt − wm

ikt are constant). This

is more flexible than assuming perfect competition in which case the markup is assumed to be

zero. The assumption is needed in order to aggregate each firm’s profits over its installations and

compute its first order condition under Cournot competition. The profit-maximization conditions

for contractors and manufacturers are, respectively:

pijlt = pm
ijt + wc

ijlt −
∂pijt

∂Qc
jt

Qc
jt, (8)

pm
ikt = wm

ikt −
∂pm

ikt

∂Qm
kt

Qm
jt .

Our specification is flexible in that the ∂pijt
∂Qcjt

and ∂pmikt
∂Qmkt

terms, which are zero with competitive

markets, are absorbed in the current contract variables which are included under either type of

competition to allow for changing marginal costs.15 If there is marker power, we cannot sepa-

rately identify market power from non-constant marginal costs. Note that we do not assume con-

stant market power, market power is a function of the changing quantity variable. One implicit

assumption is that if market power changes with time as well as with quantity, then it changes for

all contractors by the same amount (in which case it is then absorbed in the time fixed effects).

We can combine (9) and (8) to yield our final specification, where the price for any installation

i of type l by contractor j and module manufacturer k is given by:

pijklt = α+ γmb
m
kt + γmcb

mc
kt + γ′QQ

m
kt + βcb

c
jt + βccb

cc
jt + β′QQ

c
jt + βsSit + θc

j + θm
k + ξt + ζl + εijkt (9)

where α = αc + αm, βs = βsc + βsm, γ′Q = γQ + ∂pmikt
∂Qmkt

, β′Q = βQ + ∂pijt
∂Qcjt

, ξt = ξm
t + ξc

t , and

εijkt = εcijt + εmikt.

15These could also be interpreted in such a way that our specification follows the conduct parameter approach which
nests the models of perfect competition, monopoly pricing and Cournot competition (Corts 1999; Genesove and Mullin
1998).
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If there is LBD in the California market, we expect to see significant coefficients on the installed

base variables. Moreover, the relative magnitude of the own firm versus firm plus competitors in-

stalled base variables should provide a sense for the degree to which the LBD is internal fully

appropriable learning or external non-appropriable learning. This formulation differs from some

of the previous literature on LBD by estimating an model where the installed base enters addi-

tively, rather than multiplicatively.16 We believe our formulation, based on our structural model,

is more likely to capture how experience actually affects costs - the underlying premise of LBD. In

addition, we are then able to include the ongoing contracts for contractors and manufacturers in

a meaningful way to separate the effects of LBD and non-constant marginal costs.

5.2 Identification and Estimation

Since the purpose of this study is to identify and assess the magnitude of the LBD coefficients,

we are most concerned about anything that could impinge upon the identification of these coef-

ficients. However, it is worth noting what our model cannot identify. Foremost in this category

are economies of scale or competitive effects. We can identify the sum of these two, but not each

individually. Of course, if perfect competition is assumed, then the ongoing contract coefficient

estimates are simply the effect of economies or diseconomies of scale.

In addition, an ordinary least squares (OLS) estimation of (9) suffers from endogeneity from

the simultaneous determination of price and quantity in the solar market. Similarly, it appears

reasonable to assume that the system size S is also simultaneously determined by supply and

demand. If Qm, Qc, and Qcc, and S are correlated with our variables of interest, we will not be

consistently estimating the LBD effect. One approach to address this issue is to explicitly specify a

demand equation and estimate the system of equations simultaneously. A second approach is to

estimate (9) using two stage least squares, with suitable instruments for our endogenous variables.

We choose the latter approach. Jointly estimating a full system of supply and demand garners

increased efficiency, but runs the risk of a misspecification on the demand side corrupting the

estimated coefficients of interest on the supply side. Moreover, we have a logical set of instruments

that are motivated by our hazard model estimation: the zip-code level localized installed base

of solar. The results of the hazard model demonstrate that the localized peer effects influence

consumer demand, so these fulfill the inclusion restriction. At the same time, it is difficult to see

how peer effects, as quantified by zip-code level installed base, could influence the marginal cost

16For example, most estimations of the extent of LBD are based on a specification along the lines of log(p) = α +
β log(bc) + ε, where the learning rate is given by LR = 1− 2β .
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of contractors and affect supply. While costs may vary across contractors, for a given contractor

they are not likely to vary across zip codes.17 Thus, the exclusion restriction here seems reasonable.

Demographic variables are additional possible instruments that act to shift demand and not

affect supply. For demographic variables at the zip code level, the motivation is simple: demo-

graphics should not appreciably affect manufacturers and contractors, except through how they

influence demand. We include the following demographic variables described in section 3 as in-

struments: % driving hybrids, population in zip, % with college degrees, % carpooling, % male

population, median home value, % of population with a home loan, % of population who have

done a major home repair, % of population in 2007 that was white, median household income, %

population less than 19 years old, % of population 20-45 years old, % population over 65 years old,

% of population who drive, % of population who carpool, % population who work at home, % of

population who have a 30 minute commute or greater, and interactions between each of these and

the residential zip code installed base.

Finally, the contractor-level fixed effects duplicate the installed base for 501 contractors who

only installed one solar system, so we drop these observations in our supply estimation to alleviate

this identification issue.

5.3 Supply Estimation Results

The results from estimating our supply model are given in Table 8. We report robust standard

errors. The first column presents a simple OLS estimation of equation (9) for diagnostic purposes.

The only significant variables are the contractor plus competitors installed base, the system size,

the contractor on-going contracts, and the contractor’s competitors’ on-going contracts. The OLS

results suggest a small amount of non-appropriable learning for contractors (e.g., the coefficient

indicates that if either the contractor or any of its competitors performs 100 more installations then

the cost of an installation will decline by $0.009 per W from an average price of $8 per W of which

just under half is the BOS cost subject to contractor learning). The system size coefficient suggests

very small economies of scale for a given installation, while the contractor on-going contracts

provides evidence for limited diseconomies of scale, as will be discussed further below.

The OLS results are suspect, since the simultaneous determination of price and quantity im-

plies that S, Qc, Qcc, and Qm can be expected to be endogenous. The data corroborate this, as

17Examining the data, we find low within-contractor variance of price across zip codes. This is informative, but far
from definitive, since price may not the same as marginal cost.
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the robust Durbin-Wu-Hausman test statistic is 14.1, which corresponds to a p-value of 0.000, giv-

ing strong evidence rejecting the null of exogeneity. The second column presents the results of

estimating equation (9) using two stage least squares with our demand shifters: residential zip-

code installed base (peer effects), and the demographic variables. While it is impossible to know

whether the entire set of these instruments truly identify the supply equation, we can perform a

Hansen-Sargan over-identification test to give some sense of whether our instruments are reason-

able. The test statistic is 31.5, which implies a p-value of 0.39 using a chi-squared distribution with

30 degrees of freedom. Thus, we fail to reject the null that the overidentifying restrictions are valid

instruments, providing evidence that we have valid instruments.

The estimation results suggest that there is a statistically significant learning effect. Just as in

the OLS result, the contractor installed base coefficient is small and insignificant. This suggests

that there is little appropriable LBD for contractors. The coefficient on the sum of the contractor

and competitors’ installed base is much larger than the OLS result, and remains highly significant.

The coefficient suggests that if the contractor performed 100 more installations, that experience

would imply a lowering of the price of solar installations by $0.065 per W, out of the average

price in the range of $8 per W for residential installations, of which just under half is the BOS

cost that contractor learning can affect.18 If we assume market power does not change with more

cumulative experience in installations, then our structural model implies that the marginal cost

would decline by the same amount - indicating a relatively small, but significant spillover from

experience. As with the OLS results, we find that the manufacturer installed base in California and

the total installed base are both insignificant. This suggests there is little evidence for California-

level LBD for manufacturers. There may or may not be LBD for manufacturers based on their

global installed base, but unfortunately, those data are not available.

The coefficients for on-going contracts for contractors and their competitors are positive and

significant, but because we can not separately identify them, it is impossible to know whether this

is a result of diseconomies of scale or market power. Anecdotal evidence based on conversations

with solar companies suggests that capacity constraints may play a role in this market. Solar com-

panies in California often rely on temporary laborers for key phases of many installations. These

temporary laborers are usually drawn from a few companies that specialize in renewable energy

installations. If solar contractors expand too quickly, they may temporarily exhaust the supply

of trained laborers, leading to higher costs. The positive and statistically significant coefficient

on the on-going contracts of the competitors corresponds well with this possibility. If the local

competitors of any given contractor have more on-going contracts, that may lead to short-term

18While our specification does not allow for a direct computation of a learning rate, if we estimate the percent change
in cost at the current values of costs and installations, we find a surprisingly small learning rate of just a few percent.
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shortages in trained temporary workers. Since our dataset runs from 2001 to mid-2009, a time of

rapid growth in the industry, it seems reasonable that we could pick up this effect.

5.4 Robustness Checks

[ In progress ]

6 Conclusions

With policy interest and activity in promoting solar greater than it has ever been, there is a pressing

need for retrospective analysis to understand whether there is evidence for other market failures

leading to an under-adoption of solar besides the environmental market failures. This is particu-

larly crucial in a state such as California, where there is also a planned cap-and-trade system to

internalize the environmental externality from fossil fuel-based electricity generation.

Our results suggest that there are statistically significant peer effects at the zip code level in the

adoption of solar in California. These peer effects may be due to a variety of factors, and under-

standing these peer effects more deeply may be informative for developing marketing strategies

for solar firms. However, the peer effects may or may not represent a market failure that warrants

policy intervention, depending on whether the spillovers inherent in the peer effects are internal-

ized by firms and/or adopters of the technology.

On the other hand, non-appropriable LBD represents a clear market failure if it can be demon-

strated. The difficulty is demonstrating whether or not LBD exists and is appropriable when there

is a paucity of disaggregated data on the cost structure of solar PV. We overcome this by estimat-

ing a structural model of solar supply using a rich data set of solar installations in California from

2001-2009.

Our result is that there is statistically significant, non-appropriable LBD (and insignificant,

appropriable LBD). This finding has important ramifications for solar policy by providing some

economic backing for the current, decreasing installation subsidies as well as potential production

subsidies which could correct for the LBD market failure. However, the non-appropriable LBD

is reasonably small, and may not come even close to justifying the substantial state and federal

subsidies now in place in California.
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In addition, to provide motivation for policy action, the LBD market failure should be partic-
ularly important for solar PV, since some degree of non-appropriable LBD may be a feature in a

wide range of technologies and there is a cost associated with any subsidy policy. Policy action

is warranted if the benefit from correcting the LBD market failure and the environmental benefits

together are greater than the cost of administering the policy and the distortionary cost of rais-

ing the revenue. We do not perform this benefit-cost analysis, but a detailed analysis may not be

completely necessary.

Based on the results of van Benthem et al. (2008), it is clear that if LBD is relatively small, then

the substantial subsidy policy in California is likely not justified on economic grounds. Moreover,

the new federal subsidy policy makes it even less likely that the current support for solar is eco-

nomic efficiency-improving. However, we must acknowledge that this result could turn based

on the assumptions in the benefit-cost analysis. Exploring these issues further will be a valuable

future research endeavor.
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Table 1: Zip code summary Statistics

Variable Mean Std. Dev. Min. Max. N
Zip code number of installations 31.425 49.385 1 516 1588
Zip code MW of installations 0.435 0.79 0.001 9.119 1588
Zip code number of residential installations 27.504 44.192 0 476 1588
Zip code MW of residential installations 0.142 0.236 0 2.218 1588
population (100,000s) 0.244 0.214 0 1.095 1268
household size 2.825 0.611 0 5.21 1268
median income 6.374 2.914 0 37.5 1268
% pop male 50.253 3.689 12.4 98.5 1268
% pop who are white 65.070 20.135 4.4 95.2 1268
% pop with college degrees 38.328 17.537 5.215 95.731 845
% pop between 20 and 45 33.481 8.178 3.9 79.600 1268
% pop over 65 12.371 6.476 0 80.900 1268
% pop who drive to work 86.303 10.139 20.34 100 1273
% pop who carpool 14.758 6.925 0.469 83.529 1252
% pop using public transit 3.896 5.656 0.058 42.593 1011
% pop who work at home or walk to work 8.782 6.866 1.617 61.496 1177
% pop with over a 30 min commute 38.174 12.717 5.371 80.881 1099
% pop who drive a hybrid 2.095 2.119 0 20 1449
number of owner occupied homes (1000s) 4.979 4.204 0 18.965 1268
median value owner occupied home 0.537 0.262 0 1 1268
home loan 121.546 68.211 0 576 1268
home repair 123.121 70.837 0 585 1268
fraction of homes worth 0-50K 2.617 3.858 0 53.2 1268
fraction of homes worth 50-90K 2.072 2.861 0 37.3 1268
fraction of homes worth 90-175K 5.888 7.881 0 61.7 1268
fraction of homes worth 175-400K 30.128 23.239 0 89.7 1268
fraction of homes worth 400K+ 58.899 29.979 0 100 1268
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Table 2: Installations by type

Residential

Variable Mean Std. Dev. Min. Max.
size (kW) 5.151 3.671 0.114 210.15
price ($/W) 8.42 4.361 0 697.333

N 46,924

Non-residential

Variable Mean Std. Dev. Min. Max.
size (kW) 71.761 194.716 0.99 1707.085
price ($/W) 8.303 2.821 0 107.195

N 5,846
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Table 3: Contractor and Manufacturer Installations

Contractor

Variable Mean Std. Dev. Min. Max.
Contractor number of installations 26.658 132.49 1 3426
Contractor MW of installations 0.369 2.511 0 70.768
Contractor number of counties 2.852 4.36 1 50

N 1,919

Manufacturer

Variable Mean Std. Dev. Min. Max.
Manufacturer number of installations 656.618 1579.182 1 7290
Manufacturer MW of installations 9.092 21.778 0.002 118.202

N 76
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Table 4: Installed base and ongoing contracts

Variable Mean Std. Dev. Min. Max.
installed base (1000s) 26.616 13.312 0.001 41.862
residential installed base (1000s) 24.312 12.169 0.001 38.27
zip residential installed base (100s) 0.512 0.558 0 4.28
manufacturer installed base (1000s) 2.054 1.778 0 6.164
contractor installed base (1000s) 0.308 0.487 0 1.814
competitor installed base (1000s) 15.74 10.251 0 38.544
zip contracts (100s) 0.117 0.129 0 1.12
contractor contracts (1000s) 0.134 0.283 0 1.632
manufacturer contracts (1000s) 0.699 0.55 0 2.5
competitor contracts (1000s) 4.128 2.377 0 11.436

N 50,207
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Table 5: Log time regressions for residential installations

(1) (2)

zip installed base -0.951 -0.136
(0.081) (0.034)

SCE x zip-code installed base -0.962 -0.513
(0.239) (0.146)

CCSE x zip-code installed base 0.173 -0.820
(0.615) (0.434)

zip installed base squared 0.258 0.019
(0.023) (0.004)

SCE x zip-code installed base squared 0.663 0.172
(0.160) (0.052)

CCSE x zip-code installed base squared -0.312 0.172
(0.301) (0.173)

previous installation price 0.002 0.001
(0.002) (0.002)

step==1 3.908
(0.572)

step==2 -0.360 3.520
(0.556) (0.148)

step==3 -0.366 3.502
(0.558) (0.155)

step==4 -0.418 3.438
(0.560) (0.161)

step==5 -0.323 3.529
(0.562) (0.169)

step==6 -0.255 3.599
(0.565) (0.179)

ρ 0.525 0.531
σu 0.965 1.130
σε 1.057 1.057
R-squared 0.190 0.078
N 35424 35308
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Table 6: Effect of demographics on adoption

(Estimate) (Sd. Err.)

population (100,000s) 0.925 (0.348)
household size -0.019 (0.099)
median income 0.028 (0.044)
% pop male -0.032 (0.013)
% pop who are white -0.010 (0.002)
% pop with college degrees -0.010 (0.004)
% pop between 20 and 45 0.001 (0.007)
% pop over 65 -0.001 (0.007)
% pop who drive to work 0.017 (0.011)
% pop who carpool 0.005 (0.008)
% pop using public transit 0.007 (0.011)
% pop who work at home or walk to work 0.029 (0.013)
% pop with over a 30 min commute 0.010 (0.002)
% pop who drive a hybrid -0.031 (0.017)
number of owner occupied homes (1000s) -0.094 (0.015)
median value owner occupied home 0.266 (0.234)
home loan -0.006 (0.005)
home repair 0.004 (0.005)
fraction of homes worth 90-175K -0.006 (0.012)
fraction of homes worth 175-400K -0.000 (0.007)
fraction of homes worth 400K+ -0.000 (0.008)

ρ 0.523
σu 0.150
σε 1.057
R-squared 0.288
N 32461
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Table 7: Effect of demographics on peer effect (installed base x demographic interactions)

(Estimate) (Sd. Err.)

population x zip-code installed base 5.067 (8.656)
hh size x zip-code installed base -2.721 (2.575)
med income x zip-code installed base -0.899 (1.029)
% pop male x zip-code installed base 0.428 (0.271)
% white x zip-code installed base 0.032 (0.048)
% college x zip-code installed base 0.028 (0.066)
% pop between 20 and 45 x zip-code installed base -0.190 (0.151)
% over 65 x zip-code installed base -0.029 (0.155)
% drive x zip-code installed base -0.335 (0.246)
% carpooling x zip-code installed base 0.192 (0.199)
% public transit x zip-code installed base -0.471 (0.248)
% work at home or walk x zip-code installed base -0.566 (0.284)
% pop with over a 30 min commute x zip-code installed base 0.000 (0.058)
% driving hybrids x zip-code installed base 0.401 (0.320)
number of owner occupied homes (1000s) x zip-code installed base -0.403 (0.351)
median home value x zip-code installed base -4.623 (5.173)
home loan x zip-code installed base 0.151 (0.112)
home repair x zip-code installed base -0.110 (0.103)
fraction of homes worth 90-175K x zip-code installed base 0.144 (0.356)
fraction of homes worth 175-400K x zip-code installed base 0.174 (0.205)
fraction of homes worth 400K+ x zip-code installed base 0.168 (0.214)

ρ 0.523
σu 0.894
σε 1.048
R-squared 0.139
N 31716
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Table 8: Estimation of structural pricing equation

(1) (2)
OLS 2SLS

manufacturer installations -0.0215 0.222
(0.05) (0.539)

all installations -0.0117 0.0107
(0.04) (0.0743)

contractor installations 0.0363 0.181
(0.36) (0.695)

contractor and competitor installations -0.0929 -0.648
(0.02) (0.163)

system size -0.00199 -0.0172
(0.00) (0.00522)

contractor on-going contracts 2.427 4.843
(0.46) (2.240)

contractor competitors on-going contracts 0.281 3.167
(0.06) (0.843)

manufacturer on-going contracts 0.123 -1.458
(0.18) (3.239)

Constant 17.43 18.57
(1.02) (1.421)

Time Dummies Y Y
Contractor Dummies Y Y
Manufacturer Dummies Y Y

Observations 49,222 42,373

(Robust standard errors in parentheses)
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Figure 1: CSI Incentive Schedule (Source: CPUC (2009))
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Figure 2: Solar PV Installations in California IOU Regions 2001-2009 (Sources: CPUC, CEC)
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Figure 3: Average Solar PV prices in California 2001-2009 (Sources: CPUC, CEC, Navigant Con-
sulting)

36



Figure 4: Time Between Zip Code Installations
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