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Government provision of disaster aid is typically hampered by liquidity constraints
and lack of rules and administrative capacity to disburse reconstruction resources. We
show that by easing these hurdles, Mexico’s indexed disaster fund (Fonden) substan-
tially lessens losses from extreme weather. To estimate Fonden’s impact on economic
recovery, as measured by night lights, we exploit the rainfall index that determines
program eligibility. We find that, for 15 months after a disaster, eligible municipalities
are 10% brighter than those ineligible, with gains concentrated among less resilient
municipalities. We additionally document how Fonden rules curb moral hazard and
shield resources from political abuse. (JEL Q54, H12, H84, I38, O10.)

Extreme weather events are one of the main channels through which the climate interacts
with the economy. During the last decade, average annual losses due to extreme weather
events amounted to $144 billion and were roughly 1.7 times larger than corresponding losses
during the 1990’s (Swiss Re, 2018). These costs are likely to increase as the frequency
and severity of extreme weather events caused by climate change are predicted to worsen
(IPCC, 2012; Emanuel, 2017). Following an extreme weather event, governments’ most
common shock-coping response is the provision of disaster aid, the bulk of which is spent on
reconstruction projects (Ghesquiere and Mahul, 2010). These projects include the restoration
of lifeline infrastructure such as roads, electricity, and safe water, and are expected to reduce
the duration of costly periods of disruption to economic activity (Gurenko and Lester, 2004).
In developing economies, reconstruction efforts are commonly stifled by two key constraints
(Clarke and Dercon, 2016). First, funding for reconstruction is typically only arranged
after a disaster occurs. This practice leads to costly liquidity gaps that delay the start of
reconstruction efforts and to resource mobilization with high opportunity costs on growth
and social welfare. Second, even when funding is available, countries usually lack specialized
rules and administrative capacity to minimize delays and leakages in the disbursement of
reconstruction resources.
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In this paper, we study Mexico’s Fund for Natural Disasters (Fonden), a national in-
dexed disaster fund designed to overcome these constraints. Fonden reduces liquidity gaps
by arranging for the financing of reconstruction efforts before a disaster occurs. Specifically,
instead of raising funds using budget reallocations, post-disaster borrowing, tax increases,
or foreign disaster aid, Fonden relies on an annual budget allocation and risk transfer instru-
ments that include the purchase of excess loss reinsurance and the issuance of catastrophe
bonds. Fonden also uses a rules-based system to disburse reconstruction resources with
minimum delays and leakages. The rules define which hazards and assets are covered, and
describe in detail the procedures that should be followed to verify the occurrence of a qual-
ifying disaster (primarily using indexes), transfer resources to affected municipalities, and
contract, execute, and audit reconstruction projects. Fonden’s responsibility covers recon-
struction of public infrastructure and low-income housing.

We analyze whether Fonden helps reduce the disruption to economic activity that follows
an extreme weather event, its cost-effectiveness, heterogeneity in the impact of the program,
and its effect on risk management behavior. Our unit of analysis is the municipality, the
administrative unit below a state. In absence of information on municipal level economic
activity, we follow the recent literature and proxy changes in economic activity using night
lights (see Donaldson and Storeygard, 2016, for a literature review). Among extreme weather
events, we focus on the set of hydro-meteorological shocks that make up the bulk of Fonden
expenditures, that is heavy rainfall, flooding, and hurricanes. To estimate the causal im-
pact of Fonden on economic activity, we take advantage of Fonden’s index insurance rules.
Specifically, a municipality is eligible for Fonden resources when rainfall occurs in excess of a
predetermined threshold. If the heavy rainfall rule is not triggered, a municipality may still
be eligible for Fonden transfers by meeting the heavy wind or flooding criteria. The heavy
rainfall rule is important for identification because it allows us to compare those municipal-
ities that were barely eligible and those that were barely ineligible for a payout. Because
compliance with the rainfall index is imperfect, due primarily to the supplementary wind
and flooding criteria that we do not observe, we exploit this rule using a fuzzy regression
discontinuity design.

Our results fall into five categories. The first set of results relates to the shock-coping
impact of Fonden on night lights. We find that the program can considerably reduce the dis-
ruption to economic activity generated by hydro-meteorological events. In the year following
an event, we observe that ineligible municipalities become dimmer while those eligible re-
main relatively brighter. Our preferred Intention-to-treat (ITT) estimate indicates that night
lights are 10% brighter in eligible municipalities than in ineligible municipalities. Among mu-
nicipalities near the cut-off that received Fonden because they experienced rainfall in excess
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of the threshold compared to those that did not, our estimate of the Local Average Treatment
Effect (LATE) shows that Fonden increased night lights by roughly 50%.

This considerable lessening of the decline in economic activity in the year following the
disaster is not permanent. We find that, consistent with administrative records, the impact
of Fonden over time can be characterized in three phases: (i) A phase of setup for reconstruc-
tion, extending from months zero to four, during which we observe no impact of Fonden on
night lights. (ii) A phase of active recovery, extending from months five to 15, during which
we find an increasing effect of Fonden on night lights that peaks at the end of the period.
(iii) A phase of catching up, extending from months 16 to 24, during which the impact of
Fonden on night lights progressively decreases. As can be expected with large reconstruction
programs, we observe spillover effects on neighboring municipalities. These effects go in the
same direction as the direct effect and quickly decay with distance.

The second set of results suggests that our previous findings may be externally valid and
that the shock-coping benefits of Fonden are likely larger than the costs of the program.
Specifically, we show that our estimate of Fonden’s LATE is locally constant (Cerulli et al.,
2016; Dong and Lewbel, 2015), that is, that the estimated effect does not change with the
running variable. This finding is important because it implies that our estimate is likely
informative beyond the subset of complier municipalities near the cut-off. Next, we perform
a series of back-of-the-envelope calculations on benefits and costs. We find that Fonden’s
LATE on night lights is roughly equivalent to a 4% increase in municipal GDP and that the
value of the economic activity generated by Fonden is 1.4 times larger than the cost of the
program.

The third set of results documents heterogeneity in the effect of Fonden. Specifically, we
provide supporting evidence to argue that it is Fonden investments in road reconstruction
that yield the largest benefits, and that municipalities that may be initially less resilient,
because they lack water management infrastructure, benefit disproportionately more from
Fonden.

The fourth set of results illustrates that, even in the absence of extreme weather events,
Fonden may alter households’ risk management behavior because it reduces their risk of
experiencing a loss. Specifically, we use a difference-in-differences design that compares mu-
nicipalities where rainfall shocks are less salient (historically low rainfall) with municipalities
where these shocks are more salient (historically high rainfall) before and after the introduc-
tion of Fonden. Our focus is on testing whether the provision of subsidized disaster insurance
encourages households to settle in disaster-prone areas. We find that Fonden led to a 4%
increase in the share of flood-prone land that is inhabited, but that this effect disappeared
after Fonden tightened-up rules on relocation of households away from high risk areas.
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Finally, we show that our estimates of the impact of Fonden are robust and have a causal
interpretation. Specifically, we provide supporting evidence to show that the heavy rain-
fall rule was not manipulated, and that it is unlikely to have affected night lights through
alternative channels. We offer results from two placebo exercises, conduct a broad set of
robustness checks, and show that predetermined covariates capturing the capacity of local
governments and other characteristics of municipalities are continuous at the cut-off. Be-
sides its importance for identification of causality, these results also suggest that Fonden’s
institutional rule based on indexation makes it hard for local governments to manipulate the
running variable, protecting resource transfers from political abuse.

Our findings contribute to the literature on effectiveness of disaster aid. This litera-
ture has documented both the lack of incentives to provide discretionary disaster aid in the
absence of strong democratic institutions and media coverage (e.g., Sen, 1981; Besley and
Burgess, 2002; Eisensee and Strömberg, 2007) and the largely dysfunctional nature of gov-
ernment responses to extreme weather events. For example, Noy and Nualsri (2011) argue
that in developing economies the fiscal response to natural disasters leads to increased losses
because governments tend to decrease expenditures and increase taxes in the aftermath of
disasters. By comparison, in industrialized economies governments generally respond to
disasters by increasing expenditures, but these additional expenditures are mainly provided
through programs that are neither designed nor funded to deal with extreme weather shocks.
As recently shown by Deryugina (2017), the largest component of the fiscal response following
hurricanes in the US is not disaster aid but the expansion of social safety nets.

National indexed disaster funds offer a promising alternative to improve the provision
of disaster aid because they allow governments to rely upon some of the institutional inno-
vations that insurance companies regularly use to manage risk. These innovations include
ex-ante risk financial planning to guarantee the availability of funds; rules to determine risk
ownership, pay claims, and curb moral hazard; and use of parametric indexes to minimize
the cost of assessing losses and shield resources against political influence.

Take up by governments of national indexed disaster funds remains limited, presumably
due to their large setup costs and lack of quantitative information on their overall benefits, or
on the benefits of specific innovations. This is in general the case for index insurance which
has been widely studied in the context of smallholder agriculture (Carter et al., 2017) but
about which little is known in the context of catastrophe insurance deployed at a national
scale.

In this paper we fill this gap by providing the first causal estimate of the effect of a
national indexed disaster fund on economic recovery and on the risk management response
of households. We thereby demonstrate the potential that a rules-based government response
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has to mitigate the disruption to economic activity generated by extreme weather. These
findings are important because the institutional innovations embodied in Fonden can be
easily replicated in other countries.

Our results also add empirical evidence to the literature on the economic impact of
natural disasters (see Cavallo and Noy, 2009; Kellenberg and Mobarak, 2011; Klomp and
Valckx, 2014, for literature reviews), where a consensus is yet to be reached on the extent
to which disasters can harm or spur economic growth, and on how these effects may vary
depending on disaster type and intensity. We find that in Mexico large rainfall events have a
short-run negative effect on local economic growth. While our results highlight that Fonden
has accelerated economic recovery by one year or two, they also indicate that its effect on
growth is not permanent because municipalities that are not eligible for Fonden catch-up. We
thus do not, at least over a two years period after the disaster, find evidence of mechanisms
that could create permanent differences such as poverty traps (Azariadis and Drazen, 1990;
Kahn, 2005; Noy, 2009; Carter et al., 2007) or build-back-better effects (Crespo Cuaresma
et al., 2008; Hallegatte and Dumas, 2009).

The paper is organized as follows. Section 1 provides information on Fonden. Section 2
describes the data. Section 3 presents the identification strategy and the results. Section 4
gives supporting evidence on our identification assumptions and robustness checks. Section
5 concludes.

1 Mexico’s Fonden Disaster Fund

Fonden is a federal program that became operational in 1999 and is designed to insure public
infrastructure and low-income housing against natural disasters. It is expected to provide
disaster-aid efficiently because its financial plan guarantees the availability of funds and
because its rules-based system ensures the timely execution of reconstruction funds.

As argued by Clarke and Dercon (2016), there are strong parallels between the institu-
tional innovations embodied in Fonden and the way an insurance company operates. To
guarantee the availability of funds after a disaster of any size, like an insurer, Fonden uses a
financial plan that relies on its budget allocation to pay for frequently occurring claims, and
on risk-sharing instruments to pay for costly but less frequent claims. Specifically, Fonden’s
budget (no less than 0.4 percent of the federal budget and ≈ USD $800 million) is used to
pay for frequently occurring losses, for the purchase of excess loss reinsurance, and for the
placement of catastrophe bonds. This financial plan allows Fonden to draw on the payouts
of reinsurance and bonds (≈ USD $700 million) to cover the costs of large disasters. In the
case of a rare disaster, that is large enough to exhaust all of Fonden sources of funding,
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Fonden is designed to continue operating through an exceptional budget allocation. This
exceptional allocation draws primarily from Mexico’s Oil Surplus Fund (World Bank, 2012).

Also like an insurance company, Fonden relies on three sets of rules. The first defines
risk-ownership, by specifying ex-ante the assets and perils that the program covers. While
Fonden coverage extends to several types of private and public assets, as revealed by program
expenditure data, the main types are: roads (61%), hydraulic infrastructure (supply of safe
water 19%), low-income housing (6%), and education (1%) and health (1%) infrastructure.1

Regarding perils, the program protects against several geological and hydro-meteorological
hazards. In this paper, we focus on rainfall, flooding, and hurricanes because these hazards
make up 93% of the claims and 96% of program expenditures.2

The second set of rules defines the procedure for the verification and payment of claims.
This procedure can be broadly divided into three steps: (i) verification of the occurrence of
a disaster; (ii) damage assessment; and (iii) disbursement of resources, reconstruction, and
auditing.

Like with index insurance, Fonden verification is, for most hazards, based on comparing
a measure of the intensity of the hazard to a predefined threshold. The verification process
begins with a request made by the governor of an affected state or by a federal ministry
with affected assets. The request contains a list of municipalities that are believed to have
experienced damages from a natural disaster. In the case of hydro-meteorological events,
the technical agency designated to perform the verification is Conagua (the national water
authority). To corroborate the occurrence of heavy rainfall, flooding, or hurricanes, Conagua
relies primarily on a heavy rainfall rule. Since 2004, this rule establishes that heavy rain-
fall occurs if daily rainfall at any of the municipality’s representative weather stations is
greater than, or equal to, the percentile 90 of maximum historic daily rainfall for the month
in which the event took place. In addition to the heavy rainfall rule, Conagua also uses
Fonden’s supplementary criteria for the verification of hurricanes and flooding. Specifically,
the occurrence of a hurricane can also be verified when sustained winds exceed 80 km/h.
Similarly, flooding is also verified when Conagua confirms that water has pooled in areas not
normally submerged, or that a body of water has overflown past its normal limits.3

Conagua concludes the verification process by submitting to Segob (the Secretariat of
the Interior) a list of the municipalities that were requested and a list of the municipalities

1Figure A1 in the appendix provides further details by plotting Fonden expenditures by year and type of
reconstruction.

2We exclude from the analysis hazards covered by Fonden for whom we have no measure of their intensity.
These hazards include: Avalanche, earthquake, forest fire, heavy snow, landslide, subsidence, seaquake, severe
drought, severe hailstorm, tornado, tsunami, and volcanic eruption.

3Our weather dataset does not allow us to replicate the verification exercise performed by Conagua using
thresholds other than heavy rainfall.
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with a verified disaster. Among verified municipalities, Segob further confirms, using a
preliminary damage report, that the disaster has exceeded the local operational and financial
response capabilities and issues a disaster declaration in the Official Newspaper. The disaster
declaration lists the requested and verified municipalities. Only municipalities listed as
verified in the disaster declaration are considered eligible for Fonden.

In the next step, among municipalities with a verified disaster, Fonden acts like an
indemnity insurance contract because it quantifies and fully compensates municipalities for
the losses experienced.4 To quantify the losses, a damage assessment committee, comprised
of both federal and state representatives, visits the affected area, documents in detail the
extent of damages, and issues a damage report. This report provides geocoded photographic
evidence of damages and itemized reconstruction costs. The committee’s work is audited
by an inter-ministerial commission and by Fonden before disbursement. On average this
step is completed within 76 days of the disaster. Most municipalities have funds ready for
disbursement within three months. Since 2009, reconstruction of lifeline infrastructure has
been further expedited by allowing partial disbursements to take place immediately after
disaster verification.

In the last step, design and contracting of reconstruction work is undertaken by several
federal agencies, such as the Ministry of communication. These agencies can follow their
operating procedures and hire third-party service providers when necessary. In exchange for
using Fonden resources, they are required to submit progress reports to Fonden regularly.
On average, reconstruction is expected to last for 150 days. The bulk of construction work
is completed within a year of fund disbursement.5

The third set of Fonden rules aims at curbing moral hazard behavior. In the case of low
income households which we will examine in section 3.7, Fonden rules ban the reconstruction
of dwellings in high-risk areas, but permit the use of program resources for the re-location of
households to safe areas. Initially, Fonden rules allowed re-located households to maintain
ownership of high-risk land in exchange for pledging that the land would not be use for
residential purposes. Over time program rules have become more stringent on re-located
beneficiaries. The revised 2009 Fonden rules banned beneficiaries from undertaking any type
of construction on high risk land, while the revised 2011 rules made eligibility to re-location
resources contingent on the transfer of high-risk land to the municipal government.

In contrast, the reconstruction process in municipalities that do not receive Fonden re-
sources is predominantly discretionary. As revealed by interviews with senior federal and

4State and municipal government assets are subject to a cost-sharing provision by which Fonden provides
only partial coverage (50% in most cases).

5Figure A2 plots the histogram of time to disbursement and of planned reconstruction times.
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state civil protection officials, non-Fonden reconstruction is undertaken primarily by state
and municipal governments who, by and large, lack plans to finance or disburse recon-
struction expenditures.6 Specifically, our interviews indicate that local governments rely on
budget reallocations and on non-standardized procurement processes. These budget reallo-
cations may be costly because they entail delays in the mobilization of resources, and because
they frequently divert maintenance resources that prevent the deterioration of infrastructure.
Similarly, the reliance on direct procurement and on non-standardized tendering processes
may increase delays and the leakage of public resources. Thus, while local governments may
be able to mobilize resources for reconstruction, our prior is that these resources are likely
to arrive later than those of Fonden and presumably at higher cost.7

2 Data

We proxy changes in municipal level economic activity using imagery from the United States
Air Force Defense Meteorological Satellite Program (DMSP). Specifically, we use imagery
gathered by three satellites: F15, F16, and F18. These satellites observe every location
on earth between 8:30 pm and 10 pm solar local time. These weather satellites use the
Operational Linescan System (OLS) sensor to record cloud formation by measuring the
amount of moonlight reflected by clouds at night. On nights with low or no cloud cover
the sensor instead detects the light emissions coming from earth’s surface. The National
Oceanic and Atmospheric Administration (NOAA) has developed a methodology to compile
daily DMSP imagery into monthly and annual composite images that filter the transient
light observed in the raw images.8 The resulting stable cloud-free night light composites
measure, by and large, man-made lights.

As discussed by Donaldson and Storeygard (2016), under the assumption that lightning
is a normal good, night lights provide a plausible proxy for economic activity. In a quickly
expanding literature night lights have been shown to be a good proxy for economic activity
at several levels of aggregation: countries (e.g., Henderson et al., 2011, 2012), regions (e.g.,
Besley and Reynal-Querol, 2014; Hodler and Raschky, 2014), and cities (e.g., Storeygard,
2016).9 Importantly for our paper, since the 1970s night lights have been regularly used in
the remote sensing literature, and more recently in the economic literature, to both measure

6An important exception is federal non-concession roads which use earmarked ministry of communications
emergency funds for reconstruction in the absence of Fonden.

7We were unable to document examples of large-scale privately funded reconstruction projects.
8Natural sources of transient lights include, for example, the bright half of the lunar cycle, auroral activity,

and forest fires, see Elvidge et al. (1997) for details on the filtering process.
9In appendix A we provide additional evidence on the strong relationship between night lights and eco-

nomic activity in Mexico using state level data.
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the immediate losses in the aftermath of a disaster and to track the post-disaster recovery
process (see Klomp, 2016; Nguyen and Noy, 2018, and references therein).

NOAA produced for this paper a series of night light composites. These composites cover
the entire geographic area of Mexico at roughly one square km resolution and provide infor-
mation at monthly frequency. In addition to filtering transient light, NOAA also performed
an inter-calibration process for our composites. This process was developed to allow over
time comparisons between composites. Details of the algorithm used by NOAA can be found
in Weng (2014).

The night light dataset is composed of 168 satellite-month composites each with roughly
2.5 million pixels.10 Each pixel in a composite contains information on the intensity of lights,
usually called the digital number (DN), in a scale ranging from 0 (no light) to 63 (maximum
light), and on the number of cloud free nights used to create the composites. To derive
unique monthly DN values for years with overlapping satellite coverage we take pixel level
weighted averages across satellites, where the weights are given by the number of cloud-free
observations.11

For our initial analysis, and in order to match night lights with other calendar year
datasets, we aggregate the pixel-month panel, obtained in the previous step, in a pixel-year
panel.12 This is accomplished by taking pixel level averages of the DN across months. When
we explore the dynamic impact of Fonden in section 3.2, we will take advantage of our more
granular dataset and construct average night lights over different time periods as described
in that section. Next, we aggregate to the municipal level by calculating average municipal
night light intensity.13 We then take the natural logarithm of the resulting calculation and
compute its change over time. The key outcome variable in the paper is the log difference
in average municipal night lights between the year the disaster takes place and the following
year.

Data on municipal eligibility to Fonden was assembled by Boudreau (2016) using the
archives of Mexico’s Official Newspaper. The archives contain the universe of disaster decla-
rations. As previously mentioned, each declaration lists all municipalities requested and the
subset which is eligible to Fonden. In addition the declarations provide a broad classification
of the hazard that caused the request. While information on the declaration, for example,
allows us to distinguish between geological and hydro-meteorological hazards, they don’t

10Our dataset excludes lights generated by gas flares as determined by Elvidge et al. (2009).
11We also follow Henderson et al. (2012) and take simple averages across satellites. The results from the

unweighted averages produce estimates that are nearly identical albeit with slightly larger standard errors.
12The resulting dataset is similar to the yearly frequency night light composites that are publicly available.
13This average is a measure of light intensity per area, and is equivalent to the measures used by Henderson

et al. (2012) and Hodler and Raschky (2014).
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allow for a more detailed classifications, such as distinguishing between heavy rainfall and
flooding.14

To replicate the verification process for the heavy rainfall rule, the Mexican govern-
ment granted us access to three Conagua datasets. First, data on historical rainfall at the
weather-station-day level. This dataset contains the universe of weather stations and rain-
fall records. Second, a weather-station-month level dataset containing the thresholds used
to verify Fonden eligibility.15 Third, the mapping between municipalities and the subset of
weather stations used for Fonden verification. Using weather station identifiers, we merge
the three datasets and calculate a normalized running variable, rainfall mm to the threshold,
by subtracting the threshold from the observed rainfall.

Using day and municipal identifiers, we merge the dataset obtained in the previous step
with the declarations dataset. In the case of municipalities with multiple weather stations,
or natural hazards spanning more than one day, the maximum of the running variable was
chosen. This is done because eligibility to Fonden is triggered when the threshold is crossed
at any weather station and during any day. Next we aggregate the previous dataset to the
municipal-year level and we merge it with the night lights dataset.16

Our period of analysis takes place between 2004 and 2012. It is determined by the
introduction of the heavy rainfall rule in 2004 and the last available year of night lights data
in 2013.17 During this period we observe 2701 municipal-year requests for Fonden funding
generated by a hydro-meteorological hazard, of which 1930 qualified for Fonden resources.18

We have additionally collected various complementary municipal-year level datasets.
These include from the Ministry of Finance (MoF), administrative records from Fonden
detailing expenditures, time to disbursement, and planned reconstruction times; and from
INEGI, census data, expenditures and revenues of municipal governments, and State level
GDP. A complete list of additional datasets and sources used can be found in table A6.

Table 1 provides summary statistics for the main variables used in the paper. Our
14As can be expected in the case of related hazards, the words rainfall, hurricane, and flooding often appear

in the same request. The sentence where they appear usually includes the conjunction “and” in Spanish:
“e” and “y”.

15Conagua calculated these thresholds in 2004, 2007, and 2011. We received the thresholds for 2007 and
2011, but not for 2004, as they were not preserved when Conagua upgraded its computer system. For 2004,
we received the rainfall dataset used by Conagua and detailed instructions on how to compute the percentile
90 from the engineer charged with the calculation.

16In the case of multiple requests during a year we code an observation as eligible for Fonden if it received
Fonden in at least one request during the year.

17OLS imagery is not available after 2013 because the program was discontinued in favor of higher reso-
lution VIIRS imagery. The two types of images are not comparable.

18We exclude from the analysis 229 observations for which we are unable to calculate the running variable.
While these observations are covered by the weather station network, at the time of the disaster, the weather
station used for verification was out of service.
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outcome variable log difference night lights (NL) ranges roughly from -2.5 to 2.5 with a mean
of -0.028. We find that roughly 70% of the municipalities that requested Fonden funding
were eligible, but only 36% would qualify under the heavy rainfall rule. This occurs because,
as previously mentioned, municipalities are also eligible to Fonden through supplementary
hurricane and flooding criteria.

The normalized running variable is measured in millimeters (mm) and has a cut-off
at zero. The running variable support extends from -220 to 300 mm. This variable is
constructed from the heavy rainfall Fonden thresholds (average 89 mm ≈ 3.5 inches (in))
and observed rainfall (average 82 mm ≈ 3.2 in). To get a better sense of the magnitude
of rainfall events in our sample, consider that the United Nations World Meteorological
Organization defines a heavy rainfall event as occurring when daily rainfall exceeds 50 mm
≈ 2 inches. Alternatively, consider that in terms of 24 hour rainfall observed at the peak of
hurricane Harvey, the largest event in our sample (≈ 20 in) is of a similar magnitude as the
rainfall observed in Harris county Houston. By comparison, an average event in our sample
is of a similar magnitude as the rainfall experienced in Montgomery county, which is 50 miles
north of Harris county.

3 Results

3.1 The impact of Fonden on local economic activity

We use the heavy rainfall rule to identify the causal impact of Fonden on economic re-
construction, exploiting the discontinuous change in Fonden assignment that occurs at the
threshold rainfall level. We use a fuzzy regression discontinuity (FRD) design because eligi-
bility to Fonden requires the disaster to exceed local response capabilities (which is almost
always the case) and because the verification of a hydro-meteorological event can occur by
meeting the heavy rainfall rule, or by meeting Fonden’s flooding or hurricane criteria. The
validity of the method relies on the assumption that characteristics of municipalities that
could affect changes in night lights vary smoothly with the running variable, which we will
verify in section 4.

We begin with a graphical illustration of the FRD design. Figure 1a plots the probability
of receiving Fonden as a function of the running variable, with 95% confidence intervals.19

The solid lines are fourth-order global polynomials fits, estimated separately on each side
of the threshold. The figure reveals a jump in the probability of receiving Fonden at the

19Following Calonico et al. (2015), the evenly spaced bins are optimally chosen to minimize the integrated
mean square error.
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threshold level. Moving from just below to just above the threshold increases the likelihood of
receiving Fonden from about 0.65 to 0.90. The figure hints at a strong first stage relationship,
and implies that Fonden’s Local Average Treatment Effect (LATE) will be roughly four times
larger than that of the Intention-to-Treat (ITT) effect.

Analogously, figure 1b plots the ITT relationship. That is, log difference night lights,
between the year the disaster occurs and the following year, as a function of the running
variable. The figure shows a clear jump at the threshold. Change in night lights in munic-
ipalities eligible for Fonden under the heavy rainfall rule (immediately to the right of the
cutoff), is roughly 10% (0.1 log points) higher than in ineligible municipalities (immediately
to the left of the cutoff). The global polynomial additionally reveals two interesting features
of the relationship between night lights and the relative intensity of rainfall. First, among
ineligible municipalities, night lights become progressively dimmer as the running variable
approaches the cut-off from the left, i.e., as rainfall increases up to the threshold level. Sec-
ond, consistent with the idea that Fonden reconstruction funding is proportional to damages,
we find that the relationship between night lights and the running variable is, by and large,
flat after the cut-off.20

The regression analogs of figures 1a and 1b are recovered by estimating the following
equations:

Ymt = β0 + β1ABOV Emt + g(Rmt) + εmt, (1)

Fmt = α0 + α1ABOV Emt + g(Rmt) + vmt, (2)

where Ymt represents our measure of the change in local economic activity (night lights) over
the year after the disaster for municipality m hit by a shock in year t, Fmt is a binary variable
that denotes a municipality receiving Fonden, g(Rmt) captures the relationship between the
outcome and the running variable Rmt, ABOVE is an indicator variable for observed rainfall
exceeding the heavy rainfall threshold, and εmt and vmt are error terms. The parameters of
interest are the ITT estimate β̂1 in equation 1, the first stage estimate α̂1 in equation 2, and
τFRD=β̂1/α̂1 which can be interpreted as the LATE under some additional assumptions.21

To derive point estimates, robust p-values, and confidence intervals for these parameters we
20While our bin-width choice is fully data driven, figures A3a to A3d halve and double the number of bins

in order to illustrate that our results are not sensitive to this choice.
21As shown by Hahn et al. (2001) τF RD can be interpreted as the LATE under three additional assumptions.

The first is monotonicity, that is that experiencing rainfall in excess of the threshold does not decrease the
probability of receiving Fonden for any municipality (which seems plausible). The second is the existence of
a first stage. The third, local independence, implies that in a neighborhood around the threshold assignment
to Fonden under the heavy rainfall threshold is as good as random, and that assignment affects night lights
only via Fonden treatment. Dong (2018) has recently shown that a local smoothness assumption can be used
instead of local independence. We provide supporting evidence for local independence in section 3.4 and for
local smoothness in section 4.1.
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use local polynomial methods as described in Calonico et al. (2018).22

Table 2 presents the results from estimating equations 1 and 2. The nonparametric
local polynomial estimates are derived under several choices of bandwidth, kernel, and local
polynomial order. Specifically, we use two optimal bandwidth selection algorithms. The first
hMSE (odd columns) minimizes the asymptotic mean squared error and is optimal for point
estimation. The second hCER (even columns) minimizes the asymptotic coverage error rate
and is optimal for inference of confidence intervals (Calonico et al., 2018). Throughout the
paper we use a triangular kernel because as discussed in Cattaneo et al. (2017b) it provides
the optimal choice of weights for the hMSE.23 We limit our choice of local polynomials to
linear (columns 1 and 2) and quadratic (columns 3 and 4) as recommended by Gelman and
Imbens (2018).

Panel A presents estimates of the first stage and panel B of the ITT effect and of Fonden’s
LATE. The estimates in panel A, columns 1 and 2, reveal that being above the threshold
increases the probability of receiving Fonden by roughly 24 percentage points. These coeffi-
cients are statistically significant at the one percent level. The intention-to-treat estimates
in panel B, columns 1 and 2, reveal that change in night lights in municipalities intended
for treatment under the heavy rainfall rule are roughly 10% (0.1 log points) higher than
in municipalities below the threshold. Among complier municipalities at the cut-off, our
preferred point estimate of Fonden’s LATE τFRD, in column 1, indicates that the program
led to a 0.4 log point (50%) increase in change in night lights. In all cases the estimated
coefficients are statistically different from zero at the one percent level, and our preferred
95% confidence interval, in column 2, is in the 0.15 to 0.84 log point range.

Next, in columns 3 and 4, we repeat the previous exercise using instead a local quadratic
polynomial. The estimates of Fonden’s LATE for both bandwidths are slightly larger than
those of columns 1 and 2. Importantly, all estimated coefficients remain statistically signifi-
cant at the five percent level, and the 95% confidence intervals for the LATE do not include
zero. Overall, these results provide robust evidence of the capability of Fonden to lessen the
decline in economic activity created by extreme weather events.

3.2 The dynamic impact of Fonden

To study the dynamic impact of Fonden, we take advantage of the monthly frequency of the
night lights data, and construct windows of post-disaster observations that are at different
distances of the disaster date. We do this in two ways, first by extending the length of the

22In all cases the bandwidth selection methods and the inference of standard errors and confidence intervals
have been adjusted for clustering at the municipal level.

23In section 4 we further show that our results are robust to the choice of kernel.

13



post-disaster period and second by considering post-disaster periods away from the disaster
date. We discuss these two approaches in turn.

In the first analysis, we measure change in night lights between the 12 months before
the disaster occurred and post-disaster periods of 0-3 months, 0-4 months, etc., up to 0-
24 months. We repeat the analysis of section 3.1 with each of these post-disaster periods.
Figures 2a to 2d report the ITT effect of Fonden for 4 cases, with a plot of the log difference
in night lights as a function of the running variable. We have selected 3, 5, 15, and 24 months
after the disaster because they illustrate key points in the post-disaster dynamics. We also
report estimates of Fonden’s LATE for each of the 21 post-disaster periods in Figure 3a.24

The series of ITT figures indicate that the impact of Fonden can be broadly characterized
in three phases. In the very short run (illustrated by the 0-3 months post-disaster period),
while funds and reconstruction efforts are being set up, we find no difference between those
municipalities just above and below the threshold. During this phase all groups face a
reduction in night lights of roughly 0.05 log points. In the second phase, starting at five
months we see a clear jump at the threshold, this jump progressively increases until roughly
15 months. During this period the global polynomials indicate that while night lights are
dimmer for municipalities to the left of the threshold, this loss is less important for those to
the right of the threshold. In the third phase, illustrated by the 0 to 24 months post-disaster
period, municipalities to the left of the threshold catch up with municipalities to the right
of the threshold. Visually, the global polynomials suggest that by 20 months there are no
differences in night lights between municipalities on either side of the threshold.

Consistent with graphical evidence of the ITT, the LATE figure provides further evidence
supporting characterization of the dynamics of Fonden as a three stage process. Regardless
of specification, starting at five months and continuing up to 15, we see an incremental build
up of the impact of Fonden on night lights. This increase is followed by a progressive decline.
After 18 months we can no longer detect, at conventional levels, a statistically significant
Fonden LATE.

In terms of magnitude, the 0 to 12 month coefficient is roughly two-fifths smaller than
that of our benchmark point estimate of section 3.1. One reason why this could occur is
because this precise definition of the post-disaster period always includes the first three
months after the disaster, while in using calendar years in 3.1, for all disasters that happen
between January and September of a year, the 3 months immediately after the disaster are
included in the reference disaster year. These are months when municipalities on either side

24As before, we use a triangular kernel, a local linear polynomial and an hMSE bandwidth. To ensure
that our coefficients are comparable to each other, we present estimates derived using one of three common
bandwidths, specifically the average, the minimum, and the maximum of the 21 optimal hMSE bandwidths.

14



of the threshold are equally affected by the hazard.
As illustrated in figure A2 this dynamic closely coincides with the period of maximum

activity implied by Fonden administrative records. The records indicate that Fonden inter-
ventions, by and large, start within three-four months of the disaster and fade out by 14
months when the bulk of reconstruction work is expected to be completed.

In the second analysis, we focus on estimating Fonden LATE during the active recovery
phase, by using this time a 9-month moving average for the post-disaster period. We thus
define the first post-disaster period as the span of time running from months one to nine
after the disaster, then months two to ten, etc., until months 16 to 24. Figure 3b plots
the point estimates and robust 95% confidence intervals for this exercise. The figure reveals
that, consistent with previous results, the impact of Fonden increases progressively, peaks
between four and 12 months, and then starts to decline. Focusing on the period in which
reconstruction has begun produces estimates that are remarkably similar in magnitude to
our benchmark of section 3.1. Specifically, the point estimate of Fonden’s LATE between 4
and 12 months ranges from 0.36 to 0.4 log points depending on bandwidth choice.25

In conclusion, the findings of this section show that the impact of Fonden is only observed
after the disbursement process has, by and large, taken place. They also highlight that the
impact of Fonden is not permanent, but rather that it progressively build ups, peaks at
roughly 15 months in the post disaster period, and then declines.

3.3 Spillover effects

Given the scale and nature of Fonden interventions, it is possible that the impact of the
program may spill over to neighboring municipalities. For example, the reconstruction of an
arterial road is likely to benefit all neighboring municipalities and not only the municipality
where reconstruction work took place. To study spillover effects, we calculate for each
municipality the log difference night lights between the year the disaster takes place and the
following year using neighboring pixels at various distances. These are pixels that are outside
the boundaries of the municipality but that are within a given distance of their border.

Table 3 provides evidence of localized spillover effects that go in the same direction as
our estimates of the impact of Fonden. To facilitate comparisons, in column 1, we reproduce
the results from our benchmark specification (table 2 column 1). In column 2, we estimate
Fonden’s LATE among pixels that are within 0 to 20 km of the municipal boundary. We

25These results, are not driven by the choice of length of the moving average: smaller and longer durations
yield results that are consistent with the dynamics that have been described. For example, estimates using
a 12 month moving average reveal that the impact of Fonden is concentrated between four and 15 months
following a disaster. The impact of Fonden is statistically significant at the one-percent level, and its
magnitude is in the 0.35 to 0.37 log point range.
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find a statistically significant Fonden LATE that is roughly three fifths the magnitude of our
benchmark estimate. Next, in column 3, we estimate Fonden’s LATE among pixels that are
within 20 to 40 km of the municipal boundary. In this case, the estimate of Fonden’s impact
is small and statistically indistinguishable from zero.26

On the whole, we find evidence of spillover effects that quickly decay and that go in
the same direction as our estimates of the impact of Fonden. Thus, to the extent that
these limited spillover effects matter, their key implication is that our benchmark estimate
of Fonden’s LATE provides a lower bound of the impact of Fonden.

3.4 External validity

As previously discussed, the strong internal validity of Fonden’s LATE comes at the cost
of deriving an estimate that only applies to a small sub-population, namely the subset of
complier municipalities near the threshold. From a policy perspective, we are particularly
interested in understanding whether Fonden leads to similar effects, both in terms of sign
and magnitude, among a broader group of municipalities such as those with nearby values
of the running variable.

To explore the external validity of the LATE, Dong and Lewbel (2015) proposed a
methodology to estimate, under weak conditions,27 the derivative of the treatment effect
with respect to the running variable. Intuitively, a treatment effect derivative (from here
on TED) that is small and statistically indistinguishable from zero indicates that the ITT
is locally constant, and hence is more likely to have external validity. Another reason why
we are interested in estimating TED is that, as shown by Dong (2018), a TED close to
zero provides evidence in favor of the local independence assumption that underpins our
interpretation of τFRD as Fonden’s LATE.

More recently, Cerulli et al. (2016) have extended this framework to fuzzy regression
discontinuity designs by introducing the complier probability derivative (from here on CPD),
which analogously measures the stability of the complier population.

To estimate TED and CPD, we use Cerulli et al. (2016)’s algorithm and follow the authors
guidance in choosing a local quadratic polynomial and a triangular kernel. We compute TED
and CPD using both optimal hMSE and hCER bandwidths.

Table 4 presents our estimates of Fonden’s TED and CPD. Results show that both our
first stage and Fonden’s LATE are stable. For both CPD and TED, regardless of specification

26To guarantee comparability of the coefficients in columns 1 to 3, we estimate all coefficients using the
same sample as column 1 (same bandwidth). We verified that these findings are not driven by imposition of
this non optimal bandwidth, using the optimal hMSE for each estimation.

27They assume continuous differentiability of conditional means.
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in columns 1 and 2, the estimates are very small and statistically indistinguishable from zero.
These findings are important because they suggest that municipalities that are further away
from the threshold are likely to experience Fonden treatment effects that are of similar
magnitude as those right at the threshold. Moreover, a TED close to zero additionally
implies that the local independence assumption is likely to hold in our setting.

3.5 Cost-Benefit analysis

The impact of Fonden on the economy stems primarily from two mechanisms. First, Fonden
can directly enhance economic recovery by improving the government’s shock coping response
following a natural disaster. Second, Fonden can indirectly alter risk-management behavior
by insuring public infrastructure and low income housing against natural disasters. For
example, Fonden may indirectly induce households, firms, and local governments to allocate
more resources to more risky investments. These investments may include higher yielding
production activities (a potential benefit of insurance), but also induce reconstruction of
housing in high risk areas (a well known moral hazard effect of subsidized insurance). We
do not have information on the indirect effects of beneficial risky investments and only find
limited suggestive evidence of moral hazard in housing reconstruction in section 3.7. In this
section, we limit our analysis to the direct shock coping benefits that are measured by night
lights and compare them with the cost of the program.

Table 5 reports the results. There are 1378 municipal-year requests that were awarded
Fonden and for which we have complete municipal-level Fonden expenditures.28 To convert
Fonden’s LATE (measured in night lights growth) to GDP growth, we multiply our estimate
of Fonden’s LATE with the inverse of the elasticity of night lights with respect to state
GDP.29 The implicit assumption we make is that the calculated state-level elasticity is also
informative of the unobserved municipal-level elasticity. The resulting estimate implies that,
in the year following the disaster, GDP grew 3.9% more in municipalities with Fonden than
those without.

Next, we calculate the average gain per municipality by multiplying the increase in growth
generated by Fonden with a proxy of municipal GDP in 2003.30 We find that mean 2003
municipal GDP has a value of roughly (USD 2010 PPP) 184 million.31 Multiplying this

28In this exercise we use all of the sample and assume homogeneous treatment effects. We also performed
exercises where we use a smaller number of observations in the neighborhood of the cut-off. These exercises
yield very similar results and are available upon request.

29Specifically, we use the annual fluctuations specification. In appendix A we show that night lights can
be used to predict short- and long-term growth of state level GDP.

30To proxy municipal GDP, we divide state GDP across municipalities proportionally to their population.
31Because proxy municipal GDP has a heavy-tailed distribution, we use the geometric mean. Using the
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value by our estimate of the impact of Fonden on GDP growth gives an average gain per
municipality of (USD 2010 PPP) 7.2 million, and a total gain of (USD 2010 PPP) 9.9 billion.
In the last column we divide the total gain by Fonden expenditures in these municipalities.
We find that the benefit of Fonden is 1.4 times greater than its cost, but we cannot reject
the null hypothesis that the ratio is equal to one.

While our estimate of Fonden cost-benefit is imprecisely estimated (90% confidence in-
terval is 0.08 to 2.72) it is remarkably consistent with both empirical evidence on the returns
to infrastructure spending, and with the predictions of macroeconomic models. For exam-
ple, Gonzalez-Navarro and Quintana-Domeque (2016) randomize the paving of local roads
in Mexico and find a cost-benefit ratio of 1.09. Other empirical studies, that use subnational
level data and instrumental variable strategies, conclude that public spending multipliers
are in the 1.4 to 2 range, (Acconcia et al., 2014; Fishback and Kachanovskaya, 2010). More
recently, Leeper et al. (2017) quantify government spending multipliers in the US using a
DSGE model. They find short-run multipliers that are approximately 1.3.

3.6 Heterogeneous effects of Fonden

To further understand the economic relevance of Fonden, we investigate in table 6 whether
the impact of Fonden on economic activity varies with the type of asset that Fonden recon-
structs and whether municipalities that are initially less resilient benefit disproportionately
more from the program.

Given that prolonged disruptions to the road network are damaging to all sectors of
the economy, we conjecture that Fonden’s road reconstruction expenditures are particularly
effective at mitigating the losses from extreme weather. Because expenditure type can only
be observed among municipalities that receive Fonden, we begin with a descriptive exercise
in which we compare the estimated impact of Fonden using observations where the primary
type of municipal expenditure is either roads (61% of the sample) or non-roads (hydraulic,
education, health, and housing). Panel A columns 1 and 2 present the results. While these
estimates cannot be given a causal interpretation given the endogenous sample split, they
are consistent with the idea that roads reconstruction is particularly important for lessening
the decline in economic activity after a disaster. Specifically, the impact of Fonden estimated
in the sub-sample where roads is the primary type of expenditure, in column 1, is sharply
estimated and roughly twice as large as that for non-road expenditures, in column 2, which
is only statistically significant at the ten-percent level.

In columns 3 to 6, we provide further evidence of the importance of road reconstruction

median instead of the geometric mean produces nearly identical results.
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by studying heterogeneity with respect to resilience of the road network. Specifically, since
disruptions in municipalities with less road redundancy are likely to be more damaging, we
investigate whether the impact of Fonden varies with the initial density of the road network.
Using the U.S. Geological Survey 2003 map of Mexico’s roads (which includes paved, gravel,
and dirt roads) we calculate for each municipality road density (road kilometers per 100
square km) and intersection density (number of nodes per 100 square km). Importantly, as
shown in figure 6 both of our measures of road network density do not change discontinuously
at the threshold. To test whether Fonden has a differential impact, we split the sample at
the median of each of our density measures (7.93 for road density and 6.38 for intersection
density) and estimate the impact of Fonden in each sub-sample.

While we find that Fonden leads to increased economic activity in all municipalities,
consistent with our prior, we also find that Fonden benefits disproportionately more munic-
ipalities with below median road network density. This is the case for both road density
(columns 3 and 4) and intersection density (columns 5 and 6). The difference in the impact
of Fonden is particularly clear in the case of intersection density where the estimate for below
median is 3.3 times larger than that for above median intersection density. These results
are consistent with the idea that market integration may mitigate some of the losses from
extreme weather (Burgess and Donaldson, 2010), but they also highlight that, in places with
limited redundancy, the effectiveness of trade may hinge on the ability of governments to
keep transportation networks operating.

Next, in columns 7 and 8, we study whether Fonden benefits more municipalities that are
less resilient because they lack water management infrastructure. In the absence of a direct
measure of the municipal prevalence of storm drains, we use the percentage of dwellings
connected to sewage.32 As before, we show in figure 6 that the pre-Fonden percentage of
dwellings connected to sewage is continuous at the normalized threshold. We then proceed
by splitting the sample at the median 72% and estimate the impact of Fonden in each
sub-sample. While the coefficients are noisily estimated, taking the point estimates at face
value clearly indicates that municipalities with below median connections to sewage benefit
disproportionately more from Fonden. These results highlight the importance of Fonden
among disadvantaged municipalities that lack specialized public goods to manage disaster
risk.33

32The presence of sewage drains is a good proxy for storms drains because they are usually constructed
contemporaneously, or as in the case of combined sewage serve both purposes.

33We also tested splitting the sample at the median of three other variables related to resilience. We find
no differential Fonden effect using the percentage of dwellings with piped water, and larger Fonden effects
for below median night lights, and above median infant mortality. These differential effects are consistent
with those of dwellings connected to the sewage, but they are less sharply estimated.
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All in all, the results in table 6 suggest that Fonden’s impact on economic recovery is
likely driven by interventions that minimize disruptions to the road network, and that impact
of the program may be larger in municipalities that are initially less resilient.

3.7 Risk-management responses to Fonden

In this section, we investigate whether the provision of insurance through Fonden altered risk-
management behavior in housing construction. There is mixed evidence in the literature on
the impact of subsidized natural disaster insurance on risk management behavior. Whether
insurance coverage induces moral hazard or not depends on whether those who purchase
insurance are highly risk averse and take other precautionary measures that reduce risk.
For example, in the U.S., a well documented problem of the subsidized insurance from the
National Flood Insurance Program (NFIP) is that a small number of repetitive loss properties
(1.2 percent of the policies) account for up to 24 percent of total claims (Michel-Kerjan, 2010).
Accordingly, it has been widely argued that the NFIP reduces the incentives to re-locate to
safe areas (King, 2013), and even that it may explain why the U.S. has failed to adapt
to hurricane damage (Bakkensen and Mendelsohn, 2016). Nonetheless, recent studies on
the impact of the NFIP on housing development, purchase of insurance, and risk reduction
activities tend not to find evidence of moral hazard (Browne et al., 2018; Hudson et al.,
2017).

In the case of Fonden, as discussed in section 1, the program provides free disaster in-
surance for low income housing. Repetitive loss properties are in principle not a primary
concern for Fonden because program rules ban reconstruction in high risk areas. Resources
for affected households in high risk areas are instead used to re-locate housing to safe ar-
eas. Nonetheless, Fonden’s pre-2011 rules may have encouraged development in high risk
areas because they allowed beneficiary households to receive housing in a safe area while
maintaining ownership of their high risk land.

To study this potential effect of the availability of Fonden on housing construction in
high-risk areas, we contrast municipalities where rainfall shocks are less salient with those
where rainfall shocks are more salient, before and after the year 1999 when Fonden was put
into place.34 To construct a proxy measure of the share of high-risk area that is plausibly
inhabited, we collect flood maps from Conagua and calculate for each municipality and year
the share of high-risk area (defined as 1-in-2 year floodplain) where night lights are visible.

Our sample is composed of all municipalities in Mexico between 1993 and 2013. The
34Our definition of how salient rainfall shocks are in a municipality relies on the average annual rainfall in

the 25 years that preceded Fonden. Municipalities with above median rainfall are considered more salient,
those below less salient.
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econometric specification is a regression of the share of high-risk area that is plausibly in-
habited on year and municipality fixed effects, and the interactions between the rainfall
salience dummy and the year dummies. The comparison group is municipalities with low
salience in 1998 (the year before Fonden became operational). Coefficients are reported in
figure 4. The figure reveals that there are no pre-trends (all the coefficients up to 1998
included are small and not significantly different from zero) and that Fonden leads to an
increase in the share of high-risk land that is inhabited. Using a standard pre-post definition
of time (as opposed to year fixed effects), we estimate that Fonden led on average to a 1.1
percentage points increase in the share of the high-risk area that is inhabited (p-val=0.002).
Since the average pre-Fonden share is 0.27, the effect of Fonden roughly corresponds to a
4% increase.35

Importantly, figure 4 also shows that after 2011 Fonden has no impact on the share of
high-risk land that is inhabited. As previously mentioned, this post 2011 period coincides
with revised Fonden rules that aimed at curbing moral hazard behavior by conditioning
re-location resources to the transfer of high risk land to local governments.

4 Validation and falsification of the FRD design

In this section we provide supporting evidence for our identification assumptions. First, we
show using several tests that the running variable is unlikely to have been manipulated.
Second, we show that Fonden assignment is unlikely to have affected night lights through
channels other than Fonden funding. Third, we further illustrate the validity of the FRD
design by conducting two falsification exercises and a wide range of robustness checks.

4.1 Manipulation of the running variable

The Fonden verification process is unlikely to be susceptible to manipulation for several in-
stitutional reasons. First, there is no formal appeals process to challenge Conagua’s decision.
Second, tampering with weather stations is unlikely because they serve a variety of purposes
both civilian and military. Third, the subset of weather stations used for Fonden verification
and the percentile 90 thresholds are not known outside of Conagua. Fourth, there is little
time for collusion because Conagua’s decision must be issued within four days of the request
for verification.

35We also tested other outcomes. For households, we tested whether Fonden affected construction in areas
at high-risk of landslides. For local governments, we tested whether Fonden altered their expenditures in
public investments or their ability to borrow. We don’t present these results because there is clear evidence
of a differential pre-trend with each of these outcomes.
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Nonetheless, to test whether municipalities could have manipulated the running variable,
we take advantage of McCrary (2008) observation that in the absence of manipulation the
density of the running variable should be continuous around the threshold. Figure 5a plots
the histogram of the running variable in the range of the estimation bandwidth hmse, with
the dashed line representing the normalized heavy rainfall threshold. Visually, there is no
apparent excess density to the right of the threshold as would be expected if municipalities
were trying to game the Fonden eligibility rules.36

To formally test whether the density of the running variable is continuous at the threshold,
we use the local polynomial density estimator and test statistic developed by Cattaneo et
al. (2017a). Figure 5b plots the estimated empirical density. This graphical representation
of the test clearly shows that the running variable is continuous at the threshold.37

Table 7 formally confirms the previous results.The null hypothesis is that the density of
the running variable is continuous at the threshold. The optimal bandwidth for the test is
calculated by minimizing the asymptotic MSE. The bandwidth selection can be performed
allowing for different bandwidths on each side of the threshold, or using a common bandwidth
for both sides. Rows 1 and 2 present the resulting test static for each case. In row 3, we
use a common bandwidth and additionally assume that the cumulative density function
and higher order derivatives are the same for both groups around the threshold (restricted
inference). As explained by Cattaneo et al. (2018), this restriction is reasonable in the
context of manipulation testing and generates improvements in terms of statistical power.
Importantly, in all cases we fail to reject the null hypothesis at conventional levels.

To further test whether manipulation could have taken place, we preform in table A2 a
“donut-hole” robustness check. This test takes advantage of the observation that, if rainfall
measures were tampered with, municipalities closest to the threshold would presumably be
the ones most likely to have experienced manipulation. The test therefore consists in checking
the sensitivity of our preferred specification table 2 column 1 when we progressively exclude
observations that are within 5 mm of the threshold. We find that in all cases the impact of
Fonden remains statistically significant at the five-percent level, and that the point estimate
of the LATE is at least as large as the effect we initially estimated (0.4 log points).

Another test for manipulation is whether the predetermined characteristics of municipali-
ties change discontinuously at the threshold. This follows from the idea that if municipalities
lack the ability to precisely manipulate the running variable there should be no systematic
differences between municipalities with similar values of the running variable.

36The mode of the running variable is located to the left of the threshold because, even among a sample
of municipalities requested for verification, rainfall events that are smaller than the heavy rainfall threshold
are relatively more common.

37Figures A4a and A4b provide analogous graphs using the entire support of the running variable.

22



We focus on 24 variables drawn from the census and administrative records. Unless
otherwise stated, all variables are measured in the most recent year available that predates
the request for Fonden funding. The selected variables can be categorized in three groups.
The first group aims at capturing basic features of state capacity, in particular those related
to the provision of publics goods (e.g., electricity, water, health, education, roads). This
set of variables is important because presumably municipalities with greater state capacity
might be more effective at lobbying for Fonden resources. The second set of variables mea-
sures the financial capacity of local governments. The third captures basic features of the
municipality’s geography and population.

Using the same methodology as used in section 3.1, figures A5 to A8 plot each of the
covariates as a function of the running variable. This graphical analysis does not reveal any
clear discontinuities at the normalized threshold. To formally test whether the predetermined
covariates are continuous at the threshold, we estimate equation 1 using as outcome each of
the predetermined covariates. Figure 6 plots the resulting point estimates and 95% confidence
intervals for all variables. To facilitate comparison across variables, we standardize the
variables and present estimates in standard deviation units. We find that in 23 out of 24
cases the predetermined covariates are statistically indistinguishable from zero. The only
exception, percent of population 15 or older with no schooling, is significant at the 10%
level before correcting for multiple inference.38 These results strongly indicate that the
predetermined covariates appear to be continuous at the threshold.

On the whole, these empirical results are consistent with the idea that the Fonden institu-
tional setup makes it hard for local governments to sort around the heavy rainfall threshold.
Accordingly, we conclude that manipulation of the running variable is unlikely in this set-
ting. This result is important because it provides supporting evidence for our identification
assumptions and for the local smoothness assumption that underpins our interpretation of
τFRD as Fonden’s LATE. Moreover, it suggests that Fonden’s rules based on indexation have
been successful at protecting reconstruction resources from political abuse.

4.2 Assignment of other post-disaster resources

Both our extensive review of government procedures for the allocation of post-disaster re-
sources in Mexico and our interviews with Fonden administrators failed to uncover any
instance in which the running variable could directly affect non-Fonden resource allocations.
Given that the heavy rainfall thresholds are known only to Conagua, its also unlikely that
the running variable was used informally by other government agencies for the allocation of

38We correct for multiple inference using sharp FDR q-values as described in Anderson (2008).
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resources.
Nonetheless, in table 8 we investigate whether government transfers to local governments

from both the federal and state government changed discontinuously at the heavy rainfall
threshold. Specifically, we estimate equation 1 using as dependent variable the growth in
per-capita transfers between the year the disaster takes place and the following year for three
type of transfers. Column 1 documents that there is no discontinuity for overall transfers.
In columns 2 and 3, we break up overall transfers into revenue sharing transfers (these funds
are awarded using a rule and can be used for any purpose) and conditional transfers (these
funds are awarded using both rules and discretion and can be used only for their earmarked
purpose). The estimated coefficient in column 2, revenue sharing transfers, is statistically
indistinguishable from zero. The estimated effect size is large relative to its average, but the
implied increase in the transfer represents less than 5% of the average Fonden expenditure.
The coefficient in column 3, conditional transfers, is small and statistically indistinguishable
from zero. This result is important because as previously mentioned some conditional trans-
fers can be discretionarily awarded and these type of transfers include resources earmarked
for the construction of infrastructure. All in all, we conclude that that the heavy rainfall
rule is unlikely to affect night lights through channels other than Fonden assignment.

4.3 Falsification exercises

We also illustrate the validity of the FRD design by investigating in the period before the
hazard takes place whether night lights are continuous around the threshold. Specifically,
figure A9 plots the log difference in night lights between two years before a hazard and the
year before the hazard as a function of the running variable. The figure reveals no apparent
discontinuity at the threshold. Consistent with the graphical analysis, when we estimate
equation 1 using the predetermined log difference night lights we find a small coefficient that
is statistically indistinguishable from zero, -0.038 (robust p-val=0.379).

Another exercise that can be used to validate the FRD design is to estimate the impact
of Fonden at placebo thresholds. To carry out this test we begin by restricting the sample
to observations with nonnegative values of the running variable. This is done in order to
exclude the true threshold. Next we estimate the impact of Fonden at placebo thresholds.
The thresholds are given by the first five deciles of the running variable. We then restrict the
sample to observations with negative values of the running variable and repeat the previous
exercise. Table A3 presents estimates from these two sets of placebo thresholds along with
estimate at the true threshold for comparison. We find no evidence of Fonden treatment
effects at any of the placebo thresholds. In all cases the placebo estimates are statistically
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indistinguishable from zero at conventional levels. We conclude that night lights only change
discontinuously at the normalized zero threshold.

4.4 Robustness Checks

In table A4 we show that our results are not sensitive to the choice of kernel and bandwidth.
In column 1, instead of simultaneously choosing the hMSE for both the first stage and the
ITT, we follow common practice and use the hMSE bandwidth of the ITT. In columns 2
and 3, we use a uniform and a epanechnikov kernel. These kernels are not optimal for the
selection of the hMSE bandwidth but they are commonly used. In columns 4 and 5, we
recalculate hMSE and hCER allowing for different bandwidths to be chosen on each side of
the threshold. The resulting estimates of Fonden’s LATE are similar, and in all cases the
coefficients remain statistically significant at the one-percent level.

To further show that the choice of bandwidth has no bearing on our results, figure A10
plots estimates of Fonden’s LATE and robust 95% confidence intervals for various band-
widths. The largest bandwidth is one and a half times the optimal hMSE while the smallest
is half the hMSE. We further divide this range into 10 equal intervals and present esti-
mates for each. As expected, the figure shows that larger bandwidth choices lead to reduced
variance and increased bias. Importantly, even over this wide range of bandwidths, our es-
timates of Fonden’s LATE are of similar magnitudes and remain statistically significant at
conventional levels.

In table A5, we further show that our estimates are robust to various issues. We begin
with issues related to night lights. It is common practice to use all available night lights
imagery and take pixel level averages in years with overlapping satellite coverage. To show
that our results are robust to this choice, column 1 uses imagery only from the newest
satellite that is available in each time period. Next, we address the issue of top-coding,
that is that certain areas of the globe are too bright for the OLS sensor to accurately track.
Recent work by Krause and Bluhm (2016) suggests that the problem of top-coding could
affect not only pixels with a digital number of 63 (the maximum), but all pixels with a digital
number greater than 55. To show that our results are not affect by top coding, in column 2
we exclude all pixels with DN greater than 55 (0.6 percent of our sample). Last, while our
composites have been specifically created by NOAA to be comparable over time, in column
3 we follow Henderson et al. (2012) an address comparability by including year fixed effects
to our specification. In all cases the estimated Fonden LATE’s are of similar magnitudes
and remain statistically significant at the five-percent level.

In columns 4 to 5, we investigate whether our results are affected by the exclusion of
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municipalities that received Fonden on consecutive years. Specifically, in column 4, we
exclude all municipalities that received Fonden in the year before or after each request. In
column 5, we expand the window to two years before and after. Next, in columns 6 and
7, we exclude municipalities whose eligibility to Fonden depends on extreme heavy rainfall
thresholds, that is, the bottom and top deciles of the thresholds distribution. In spite of the
smaller sample size leading to wider confidence intervals, we estimate similar Fonden LATE.
These estimates remain statistically significant at conventional levels in all cases.

Last, we use the methods proposed by Cattaneo et al. (2016) to study how the impact
of Fonden varies in relation to the value of heavy rainfall thresholds that are not extreme.39

The top part of figure A11 plots the histogram of Fonden heavy rainfall thresholds. We will
focus on the 30 to 130 (mm) threshold range which makes up roughly 80% of the density.
To explore heterogeneity we choose within this range six threshold values that are within
20 mm of each other, that is: 30, 50, 80, 90, 110, and 130. For each of these values we
separately estimate Foden’s LATE using only the 400 treatment and control observations
that are closest to each value.

The bottom part of figure A11 plots point estimates and robust 95% confidence intervals
for Fonden’s treatment effect at each of the six threshold values, a quadratic polynomial
fit for these six treatment effects, and the value of the pooled Fonden LATE. The figure
shows that all point estimates are positive and that most have values similar to the pooled
Fonden LATE. The quadratic polynomial fit further indicates that, by and large, Fonden’s
LATE is homogeneous with respect to the value of the thresholds. The smaller sample size
for each of the six estimates generates wide confidence intervals that include zero in most
cases. By comparison, our pooled estimate of Fonden LATE is statistically significant at
the one-percent level because we gain statistical power by aggregating the sample across
thresholds.

5 Conclusion

The primary response of governments to extreme weather events is the provision of disaster
aid. Their capacity to respond is however commonly constrained by liquidity gaps and by
lack of specialized rules and administrative capacity that facilitate the effective disbursement
of disaster aid. In this paper we showed that, by alleviating these constraints, a national
indexed disaster fund can considerably mitigate the disruption to economic activity generated

39Specifically, we use a continuous non-cumulative threshold approach. This approach best fits our setting
because: (i) the values of the percentile 90 thresholds are continuous, (ii) the value of the thresholds is
unrelated to the Fonden funding amounts, (iii) knowledge of observed rainfall is not sufficient to know the
threshold the municipality faces.
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by extreme weather events. We measure changes in local economic activity using night lights
and identify the causal effect of Fonden, Mexico’s disaster fund, by exploiting discontinuities
in the rules that determine eligibility to the program. We find that Fonden considerably
reduces the decline in night lights in the aftermath of a disaster and that this effect is
sustained for about a year. Building on these findings, we perform a cost-benefit analysis
and conclude that the value of the economic activity generated by Fonden is likely larger
than the cost of the program. These results provide the first evidence on how disaster funds
can considerably improve the shock coping responses of national governments. They likely
under-estimate the full value of disaster funds as effective shock-coping can have additional
positive benefits not well captured by night lights such as effects on health and human capital
accumulation.

Additional results on the heterogeneous impact of Fonden suggest that reconstruction
of lifeline transportation infrastructure such as roads is particularly important and that
municipalities that lack redundancy in their transportation network may benefit dispropor-
tionately more from Fonden. These results suggest that the effectiveness of trade and other
adaptive responses to extreme weather may depend on the ability of governments to keep
transportation networks operating. We also find that municipalities that are initially less
resilient, because they lack water management infrastructure, benefit more from Fonden.
Moral hazard effects under the form of inducing construction in flood-prone areas may have
been initially present, but were subsequently removed by stricter rules on reconstruction.

These results are important for policy-makers as most developing countries are currently
notably under-prepared in coping with the losses created by extreme weather events. In that
sense, the Fonden initiative can be a useful role model. We have shown that a national in-
dexed disaster fund along with tight and enforceable implementation rules can be an effective
option for countries to cope with what can otherwise be dramatic national experiences.
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Table 1: Summary statistics

Mean Std. Dev. Min Max Obs.

Log difference NL -0.028 0.241 -2.556 2.585 2701
Fonden=1 0.715 0.452 0 1 2701
Above threshold=1 0.366 0.482 0 1 2701
Ri (mm) -7.527 76.343 -219.2 297.15 2701
Fonden Threshold (mm) 89.489 44.132 1.5 236.8 2701
Rainfall (mm) 82.879 81.034 0 457.8 2701

Table 2: Impact of Fonden robust bias-corrected local polynomial estimates

(1) (2) (3) (4)
Panel A: First Stage

Dependent variable: Fonden=1

Above Threshold (α1) 0.241 0.237 0.219 0.249
Robust p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001

Panel B: Intention to treat and LATE
Dependent variable: Log difference NL

Above Threshold (β1) 0.099 0.107 0.103 0.126
Robust p-value 0.001 0.002 0.017 0.005
RD LATE (τF RD) 0.411 0.453 0.471 0.505
Robust p-value 0.001 0.004 0.038 0.015
Robust 95% CI [0.194, 0.798] [0.154, 0.837] [0.026, 0.868] [0.099, 0.898]
h 62.817 43.369 79.244 51.890
N−

W |N+
W 1120|552 797|419 1343|631 937|490

Bandwidth Selection ĥMSE ĥCER ĥMSE ĥCER

Polynomial degree p = 1 p = 1 p = 2 p = 2

Note: Panel A presents estimates of equation 2, Panel B present estimates of equation 1 and
of the LATE. Point estimators are constructed using a triangular kernel, the order of the
polynomial and the optimal bandwidth is indicated in each column. Robust p-values and
95% confidence intervals are constructed using bias-correction with robust standard errors
clustered at the municipal level. The size of the bandwidth h is expressed in mm. N−

W |N+
W

denote the effective number of observations used for estimation in each side of the bandwidth.

Table 3: Spillover effects

(1) (2) (3)
Dependent variable: Log difference NL

Within 0-20 km 20-40 km
Mun. around Mun. around Mun.

RD LATE 0.411 0.246 0.036
Robust p-value 0.009 0.002 0.951
Robust 95% CI [0.119,0.836] [0.095,0.408] [-0.129,0.054]
h 62.817 62.817 62.817
N−

W |N+
W 1120|552 1120|552 1120|552

Note: This table presents estimates of the LATE, in columns 2 to
3 the Log difference NL is calculated using pixels that are within
the distance to the municipal boundary indicated in the column title.
Point estimators are constructed using a triangular kernel, a local
linear polynomial, and an hMSE optimal bandwidth. Robust p-values
and 95% confidence intervals are constructed using bias-correction
with robust standard errors clustered at the municipal level. N−

W |N+
W

denote the effective number of observations used for estimation in each
side of the bandwidth.
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Table 4: Complier probability derivative and treatment effect derivative

(1) (2)
CPD 0.0015742 0.0014824
p-value 0.495 0.752

TED 0.0041573 0.0028432
p-value 0.765 0.905

h 77.93 49.615
N−

W |N+
W 1329|627 913|465

Bandwidth Selection ĥMSE ĥCER

Polynomial degree p = 2 p = 2
Note: This table provides estimates of the complier proba-
bility derivate as described in Cerulli et al. (2016), and of
the treatment effect derivative as shown in Dong and Lewbel
(2015). All specifications use a triangular kernel and a local
quadratic polynomial. N−

W |N+
W denote the effective number

of observation used for estimation in each side of the band-
width.

Table 5: Cost Benefit Analysis

(1) (2) (3) (4) (5) (6) (7) (8)
Obs. Fonden Inverse Implied Mean Mun. Gain per Total Benefit/Cost
N effect on elasticity NL effect on GDP in 2003 Mun. Gains ratio

NL growth to GDP GDP growth (Millions) (Millions)

1378 0.411 0.095 0.039 184.3 7,163,489 9,871.29 1.399
Std. Err. (0.154) (0.038) (0.022) (7.68) (4,120,169) (5,677.59) (0.805)
90% CI [0.076, 2.724]
Note: Fonden’s LATE is taken from table 2 column 1. The inverse elasticity of night lights to GDP is taken from table A1
column 2. Because municipal GDP has a heavy-tailed distribution the estimate in column 5 corresponds to the geometric mean.
All values are in (USD 2010 PPP). Standard errors in parentheses. The point estimate in column 8 is calculated using: N(β2 ×
β3 × β5)/Cost. Where the subscript represents the column in which the coefficient is reported. Assuming that covariance and
co-skewness are equal to zero the standard error is given by: N

√
(β2

2 + se2
2) × (β2

3 + se2
3) × (β2

5 + se2
5) − β2

2 × β2
3 × β2

5)/Cost.

Table 6: Heterogeneous effects of Fonden

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable: Log difference NL

Sample split Primary expenditure Road density km Road intersection density Connection to sewage

Roads Non-roads Below Median Above Median Below Med. Above Med. Below Med. Above Med.
RD LATE 0.487 0.255 0.559 0.243 0.676 0.208 0.814 0.045
Robust p-value 0.001 0.081 0.011 0.047 0.007 0.098 0.053 0.588
Robust 95% CI [0.255, 0.964] [-0.033, 0.573] [0.153, 1.208] [0.004, 0.613] [0.24, 1.523] [-0.045, 0.531] [-0.01, 1.482] [-0.189, 0.333]
h 65.665 56.953 65.821 72.403 65.496 73.545 38.317 51.004
N−

W |N+
W 816|310 575|189 578|284 630|303 579|292 641|299 362|181 446|258

Note: This table presents estimates of Fonden’s LATE. Point estimators are constructed using a triangular kernel, a local linear
polynomial, and an hMSE optimal bandwidth. Robust p-values and 95% confidence intervals are constructed using bias-correction
with robust standard errors clustered at the municipal level. N−

W |N+
W denote the effective number of observation used for estimation

in each side of the bandwidth.
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Table 7: Continuity of the running variable

h− h+ N−
w N+

w p-value

Method
Unrestricted, 2-h 41.589 37.675 772 393 .802
Unrestricted, 1-h 34.505 34.505 657 371 .245
Restricted (1-h) 44.231 44.231 816 422 .435
Note: This table presents results for Cattaneo et al. (2017a)
test for continuity of the density of the running variable. The
null hypothesis is that the density of the running variable is
continuous at the threshold. The threshold of the normalized
running variable is zero. h− and h+ denote the length of the
bandwidth on each side of the threshold. N+

W denote the ef-
fective number of observation used by the test on each side
of the bandwidth. The method column reports: unrestricted
inference with two distinct estimated bandwidths (2-h), un-
restricted inference with one common estimated bandwidth
(1-h), and restricted inference with one common estimated
bandwidth (1-h).

Table 8: Other resource allocation

(1) (2) (3)
Growth of per capita transfers to municipalities

Total Revenue sharing Conditional

Above
Threshold 0.013 0.033 -0.009

Robust p-value 0.94 0.401 0.791
Robust 95% CI [-0.085, 0.091] [-0.039, 0.097] [-0.199, 0.152]
ĥMSE 33.551 45.768 50.223
N−

W |N+
W 478|281 641|337 698|374

Mean dep. variable 0.093 0.093 0.118
Note: The table presents estimates of equation 1 where the outcome is as indi-
cated in the column title. Point estimators are constructed using a triangular
kernel, a local linear polynomial, and an hMSE optimal bandwidth. Robust
p-values and 95% confidence intervals are constructed using bias-correction
with robust standard errors clustered at the municipal level. N−

W |N+
W denote

the effective number of observations used for estimation in each side of the
bandwidth.
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Figure 1: First stage and ITT
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(a) First stage
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(b) ITT
Note: The figures plot each outcome (probability of receiving Fonden and night lights) as a function of the normalized running
variable, that is, rainfall mm to the heavy rainfall threshold. Specifically, the figures plot at the mid-point of each bin the average
and the 95% confidence interval of the outcome. The number of bins is selected to minimize the integrated mean square error.
The solid lines are fourth-order global polynomials fits. These lines are constructed from raw data and fitted separately on each
side of the threshold. The vertical dashed line indicates the cut-off of the normalized running variable that determines eligibility
to Fonden.
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Figure 2: Dynamics of Fonden impact: ITT at various post disaster periods.
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(a) Post-disaster: log night lights, 0 to 3 months
after
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(b) Post-disaster:log night lights, 0 to 5 months
after
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(c) Post-disaster: 0 to 15 months after
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(d) Post-disaster:0 to 24 months after
The figures plot log difference night lights at different point of the post disaster period as a function of the normalized running variable,
that is, rainfall mm to the heavy rainfall threshold. Specifically, the figures plot at the mid-point of each bin the average and the 95%
confidence interval of the outcome. The number of bins is selected to minimize the integrated mean square error. The solid lines are
fourth-order global polynomials fits. These lines are constructed from raw data and fitted separately on each side of the threshold. The
vertical dashed line indicates the cut-off of the normalized running variable that determines eligibility to Fonden
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Figure 3: Dynamics of Fonden impact: LATE at various post-disaster periods
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(b) 9 month moving average
Note: Sub-figure a plots coefficients and robust 95% confidence intervals of Fonden LATE. The outcome variable is the log
difference in night lights between the average 12 months before the disaster occurs and the average in the months following
the disaster as indicated in the graph. Each plotted coefficient is estimated independently using a triangular kernel, a local
linear polynomial and one of three common bandwidths. Estimates derived using the same bandwidth are comparable to
each other. The common bandwidths are derived by calculating the optimal hMSE bandwidth for each coefficient and then
calculating the average, the minimum and the maximum of the optimal bandwidths. LATE estimates using the average
bandwidth are represented by circles, minimum by triangles, and maximum by diamonds. Sub-figure b repeats the previous
exercise using as outcome the log difference in night lights between the average 12 months before the disaster occurs and a
9 month moving average in the post disaster period.
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Figure 4: Risk-management response to Fonden
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Note: Fonden became operational in 1999. The figure plots the coefficients of the interaction between the salience dummy
and the year dummies. The comparison group is low salience municipalities in 1998. The regression include municipal
and year fixed effects.The error bars correspond to 95 percent confidence intervals constructed using robust standard errors
clustered at the municipal level.
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Figure 5: Histogram and estimated density of running variable
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(b) Estimated Density
Note: Sub-figure A plots the histogram of the running variable within the hmse estimating
bandwidth. Sub-figure B plots the estimated empirical density. This estimate is derived using
the methods proposed by Cattaneo et al. (2018). Analogous graphs for the entire support of
the running variable can be found in figures A4a and A4b in the appendix.

38



Figure 6: Continuity tests of predetermined covariates

●
● ●

●

●

● ● ● ●
●

●
●

●
●

● ● ● ●
●

● ●
●

●

●

−1.0

−0.5

0.0

0.5

1.0

E
st

im
at

ed
 D

is
co

nt
in

ui
ty

 (
S

td
. D

ev
. U

ni
ts

)

%
 d

ew
lin

gs
 w

ith
 e

le
ct

ric
ity

%
 d

w
el

lin
gs

 w
ith

 p
ip

ed
w

at
er

%
 d

w
el

lin
gs

 c
on

ne
ct

ed
 to

se
w

ag
e

%
 d

w
el

lin
gs

 w
ith

 a
re

fr
ig

er
at

or

H
ea

lth
 U

ni
ts

 (
ph

t)

%
 P

op
. w

ith
 n

o 
so

ci
al

se
cu

rit
y

In
fa

nt
 m

or
ta

lit
y 

ra
te

R
oa

d 
de

ns
ity

 in
 2

00
3 

(p
er

10
0 

sq
. k

m
)

R
oa

d 
in

te
rs

ec
tio

n 
de

ns
ity

in
 2

00
3 

(p
er

 1
00

 s
q.

 k
m

)
%

 P
op

. 1
5 

or
 o

ld
er

ill
ite

ra
te

%
 P

op
. 1

5 
or

 o
ld

er
 w

ith
 n

o
sc

ho
ol

in
g

P
ro

xy
 m

un
ic

ip
al

 G
D

P
 in

 2
00

3

P
er

 c
ap

ita
 r

ev
en

ue
 o

f
m

un
ic

ip
al

 g
ov

er
nm

en
t

P
er

 c
ap

ita
 r

ev
en

ue
 s

ha
rin

g
tr

an
sf

er
s

P
er

 c
ap

ita
 c

on
di

tio
na

l
tr

an
sf

er
s

P
er

 c
ap

ita
 e

xp
en

di
tu

re
s 

of
m

un
ic

ip
al

 g
ov

er
nm

en
t

P
op

ul
at

io
n

N
o.

 o
f d

ew
lin

gs

Lo
g 

ni
gh

t l
ig

ht
s

E
le

va
tio

n 
(m

)

S
ur

fa
ce

 a
re

a 
(s

q.
 k

m
)

Lo
ng

itu
de

La
tit

ud
e

M
ea

n 
A

nn
ua

l R
ai

nf
al

l

Predetermined Covariates
Note: All variables are standardized to facilitate comparison across variables. The circles represent point
estimates constructed using a triangular kernel, a local linear polynomial, and an hMSE optimal bandwidth.
The solid lines represent robust 95% confidence intervals.
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APPENDIX - FOR ONLINE PUBLICATION

A Predicting State level GDP growth with night lights

While our primary interest lies in determining whether night lights growth can predict munic-
ipal GDP growth, in the absence of this data we instead investigate the relationship between
growth of night lights and state GDP growth. Given that our primary purpose is to estimate
an elasticity of light to GDP that would allow us to back out the impact of Fonden on local
economic activity, we restrict the sample to the 28 states that have requested Fonden fund-
ing in the 2004-2012 period. We follow the approach taken by Henderson et al. (2011) and
focus primarily on determining whether night lights are able to predict year to year growth,
annual fluctuations, recession and expansions, and long term growth.

Table A1 presents the main results. The benchmark specification regresses log GDP on
log night lights, state fixed effects, and year fixed effects. Standard errors are clustered at
the state level in all cases. Column 1 presents the result of the benchmark specification. We
sharply estimate an elasticity of roughly 0.21.

Next, in column 2 we test whether night lights are capable of predicting annual fluctua-
tions by extending the previous specification to include state trends. Since we are primarily
interested in short term deviations from the state growth path, this is the key specification
for our analysis. As in the previous case we sharply estimate an elasticity in the order of 0.1
(p-val=0.02).40 This result is important because it suggests that night lights do a reasonably
good job of predicting annual fluctuations in GDP.

In column 3 we test for ratchet effects, that is whether, relative to the state mean over
time, increases and decreases in night lights are symmetrically related to increases and
decreases in GDP. This calculation is preformed in two steps: (i) We demean the data by
regressing GDP and lights on year and state fixed effects. (ii) We regress the GDP residuals
on absolute value positive lights residuals, and absolute value negative lights residuals. We
find that the coefficients are very similar in magnitude and that they have the opposite signs.
We thus conclude that night lights are capable of picking up both economic expansions and
economic downturns.

In terms of R2, note that the R2 reported in columns 1 and 2 is a within state R2, it still
accounts for the role of year dummies. The R2 reported in column 3, 8%, reflects solely the
contribution of night lights to explaining within-state and within-year variation in GDP.

40The wild cluster bootstrap (5000 iterations) produces a p-value of 0.027
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Last in column 4, we look at the ability of night lights to predict long-term growth. This
is done using a long difference specification where we regress the change in log GDP between
2004 and 2013 on the change in log night lights between 2004 and 2013. We find a positive
and sharply estimated elasticity, and an R2 of 0.38. All in all, while our sample size is small
compared to those of other papers in the literature, our results validate the idea of using
night lights as a proxy for economic activity at the subnational level in Mexico.

Table A1: Elasticity of night lights to GDP

(1) (2) (3) (4)
Base Annual Asymmetric Long

Specification Fluctuations Fluctuations Difference

ln(GDP) ln(GDP) Res ln(GDP) ln(GDP)
ln(lights/area) 0.215 0.095 0.618

(0.065) (0.038) (0.163)
[0.003] [0.02] [0.001]

|+ Res ln(lights/area)| 0.169
(0.118)
[0.162]

|- Res ln(lights/area)| -0.256
(0.111)
[0.029]

Observations 280 280 280 28
R-squared 0.885 0.957 0.078 0.377
State FE X X In demean .
Year FE X X In demean .
State Trend . X . .

Note: Standard errors clustered at the state level in parentheses, p-values in squared brackets.
Mexico has 32 states. The sample has been restricted to the 28 states that received Fonden
between 2004 and 2012.
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B Tables and Figures

Table A2: Donut-hole Analysis

Donut-hole
Radius

RD
Estimate

Robust
p-value

Robust
95% CI ĥMSE Obs. Excluded

obs left
Excluded
obs right

0 .411 .001 [0.194, 0.798] 62.82 1672 0 0
.5 .426 .002 [0.196, 0.840] 61.79 1643 3 7
1 .552 .002 [0.27, 1.232] 62.08 1617 30 10
1.5 .665 .016 [0.158, 1.522] 47.38 1269 33 13
2 .703 .004 [0.313, 1.705] 56.2 1456 39 21
2.5 .421 .017 [0.098, 1.015] 56.53 1436 61 26

Note: Sensitivity of the LATE estimate to the exclusion of observations that are within 5 mm of the
threshold. Point estimators are constructed using a triangular kernel, a local linear polynomial, and
an hMSE optimal bandwidth. Robust p-values and 95% confidence intervals are constructed using
bias-correction with robust standard errors clustered at the municipal level.

Table A3: Placebo cutoffs

Row Alternative
cutoff

RD
Estimate

Robust
p-value

Robust
95% CI ĥMSE N−

W |N+
W

1 -46.2 .116 .853 [-1.022, 0.845] 14.42 232|250
2 -36.1 -1.403 .979 [-8.537, 8.311] 11.91 196|222
3 -26.8 -.236 .895 [-1.415, 1.236] 15.12 261|286
4 -19.5 .912 .349 [-1.197, 3.385] 13.05 279|223
5 -9.1 -.622 .126 [-2.276, 0.28] 6.12 113|102
6 0 .411 .001 [0.194, 0.798] 62.82 1120|552
7 8 -1.611 .27 [-4.733, 1.325] 21.13 98|236
8 15.4 .007 .451 [-0.781, 0.347] 16.32 197|155
9 26.2 -1.486 .948 [-19.31, 20.641] 14.45 145|110
10 38.2 -.986 .696 [-4.623, 3.087] 12.88 109|87
11 53.1 .264 .846 [-1.568, 1913] 16.5 108|92

Note: Estimates of the LATE at the true zero cut-off and at various placebo cut-
offs. The sample in rows 7 to 11 is restricted to nonnegative values of the running
variable, the placebo cut-off are given by the first five deciles. The sample in rows
1 to 5 is restricted to negative values of the running variable, the placebo cut-offs
are determined in an analogous manner. In all cases point estimators are constructed
using a triangular kernel, a local linear polynomial, and an hMSE optimal bandwidth.
Robust p-values and 95% confidence intervals are constructed using bias-correction
with robust standard errors clustered at the municipal level
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Table A4: Robustness Checks I

(1) (2) (3) (4) (5)
Panel A: First Stage

Dependent variable: Fonden=1

Above Threshold 0.234 0.285 0.234 0.246 0.237
Robust p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Panel B: RD treatment effects
Dependent variable: Log difference NL

RF hMSE Kernel Asymmetric h

RD Late 0.419 0.356 0.408 0.419 0.475
Robust p-value 0.007 p < 0.001 0.002 0.005 0.009
Robust 95% CI [0.126, 0.804] [0.192, 0.620] [0.188, 0.809] [0.138, 0.787] [0.125, 0.875]
h 54.646|54.646 62.987|62.987 58.582|58.582 46.026|63.333 31.776|43.725
N−

W |N+
W 986|508 1125|552 1048|526 855|552 609|419

Bandwidth Selection ĥMSE ĥMSE ĥMSE ĥMSE2 ĥCER2
Kernel Triangular Uniform Epanechnikov Triangular Triangular

Note: Panel A presents estimates of equation 2, Panel B present estimates of the LATE. Point estimators are
constructed using the kernel and optimal bandwidth algorithm indicated in each column. Robust p-values
and 95% confidence intervals are constructed using bias-correction with robust standard errors clustered at
the municipal level. The size of the bandwidth h is expressed in mm. N−

W |N+
W denote the effective number

of observations used for estimation in each side of the bandwidth.

Table A5: Robustness Checks II

(1) (2) (3) (4) (5) (6) (7)
Panel A: First Stage

Dependent variable: Fonden=1

Above Threshold 0.235 0.24 0.228 0.271 0.28 0.255 0.2
Robust p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Panel B: RD treatment effects
Dependent variable: Log difference NL

NL alternative definitions Multiple exposure to Fonden Extreme Thresholds

New Sat. Exclude Year Exclude obs. Exclude obs. Exclude Exclude
only top coded Fixed with Fonden in year with Fonden two bottom decile top decile

pixels Effects before or after years before or after thresholds thresholds
RD LATE 0.406 0.412 0.352 0.444 0.569 0.423 0.376
Robust p-value 0.007 0.001 0.023 0.001 0.003 0.004 0.032
Robust 95% CI [0.122, 0.77] [0.2,0.805] [0.051, 0.7] [0.218,1.099] [0.138 , 0.919] [0.151,0.819] [0.038, 0.855]
h 60.012 64.565 52.492 66.214 47.108 61.596 48.786
N−

W |N+
W 1079|536 1153|546 942|493 915|423 527|264 1016|465 797|424

Note: Panel A presents estimates of equation 2, Panel B present estimates of the LATE. Point estimators are constructed using
a triangular kernel, a local linear polynomial, and an hMSE optimal bandwidth. Robust p-values and 95% confidence intervals
are constructed using bias-correction with robust standard errors clustered at the municipal level. N−

W |N+
W denote the effective

number of observations used for estimation in each side of the bandwidth. The dependent variable in column 1 is constructed using
only information form the newest satellite available. Column 2 excludes pixels whose value DN exceed 55. The specification in
column 3 includes year fixed effects. Columns 4 to 7 exclude observations as indicated in the column title.
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Table A6: Additional datasets and Sources

Variable Source

INEGI (The National Institute of Statistics and Geography)
Population

Census
http://www.beta.inegi.org.mx/
proyectos/ccpv/2000/default.html
http://www.beta.inegi.org.mx/
proyectos/ccpv/2005/default.html
http://www.beta.inegi.org.mx/
proyectos/ccpv/2010/default.html

No. of dwellings
Pop. with no social security
Pop. with no social security
Pop. 15 or older illiterate
Pop. 15 or older with no schooling
Dwellings with electricity
Dwellings with piped water
Dwellings connected to sewage
Dwellings with a refrigerator
Elevation

Public finances of municipalities
http://www.beta.inegi.org.mx/
proyectos/registros/economicas/
finanzas/

Revenue of municipal government
Expenditures of municipal government
Total transfers
Discretionary federal transfers
targeted federal and state transfers

Municipal boundaries
http://www.inegi.org.mx/geo/
contenidos/geoestadistica/m_
geoestadistico.aspx

Municipal surface area
Centroid longitude
Centroid latitude

http://www.inegi.org.mx/est/
contenidos/proyectos/cn/pibe/default.
aspx

State level GDP

Fund for Natural Disasters Fonden
Fonden expenditures

Fonden online databaseFonden disbursement times
Fonden planned reconstruction times

Other Datasets
Health Units per 100.000 SINAIS
Infant mortality rate CONAPO
Road Network 2003 US Geological Survey Global GIS Databases
Areas at high risk of flooding CONAGUA
PPP Exchange Rates World Bank
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Figure A1: Fonden Expenditures by year and type of reconstruction
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Note: Author’s calculations from Fonden administrative records. Expenditures are measured in Billion USD PPP
2010

Figure A2: Fonden fund disbursement and planned reconstruction times
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Note: Author’s calculations from Fonden administrative records. Planned duration of Fonden intervention include
both disbursement and planned reconstruction.
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Figure A3: First stage and ITT
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(a) First stage (bins x 2)
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(b) ITT (bins x 2)
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(c) First stage (bins / 2)
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(d) ITT (bins / 2)
Note: The figures plot each outcome (probability of receiving Fonden and night lights) as a function of the normalized running
variable, that is, rainfall mm to the heavy rainfall threshold. Specifically, the figures plot at the mid-point of each bin the average
and the 95% confidence interval of the outcome. The number of bins is selected to minimize the integrated mean square error.
The solid lines are fourth-order global polynomials fits. These lines are constructed from raw data and fitted separately on each
side of the threshold. The vertical dashed line indicates the cut-off of the normalized running variable that determines eligibility
to Fonden.
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Figure A4: Histogram and estimated density of running variable
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(b) Estimated Density in BW
Note: Sub-figure A plots the histogram of the running variable. Sub-figure B plots the esti-
mated empirical density. This estimate is derived using the methods proposed by Cattaneo
et al. (2018).
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Figure A5: Predetermined Covariates I
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Note: The figures plot each outcome as a function of the normalized running variable, that is, rainfall mm to the heavy rainfall threshold.
Specifically, the figures plot at the mid-point of each bin the average and the 95% confidence interval of the outcome. The number of bins is
selected to minimize the integrated mean square error. The solid lines are fourth-order global polynomials fits. These lines are constructed
from raw data and fitted separately on each side of the threshold. The vertical dashed line indicates the cut-off of the normalized running
variable that determines eligibility to Fonden.
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Figure A6: Predetermined Covariates II
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Note: The figures plot each outcome as a function of the normalized running variable, that is, rainfall mm to the heavy rainfall threshold.
Specifically, the figures plot at the mid-point of each bin the average and the 95% confidence interval of the outcome. The number of bins is
selected to minimize the integrated mean square error. The solid lines are fourth-order global polynomials fits. These lines are constructed
from raw data and fitted separately on each side of the threshold. The vertical dashed line indicates the cut-off of the normalized running
variable that determines eligibility to Fonden.
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Figure A7: Predetermined Covariates III
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Note: The figures plot each outcome as a function of the normalized running variable, that is, rainfall mm to the heavy rainfall threshold.
Specifically, the figures plot at the mid-point of each bin the average and the 95% confidence interval of the outcome. The number of bins is
selected to minimize the integrated mean square error. The solid lines are fourth-order global polynomials fits. These lines are constructed
from raw data and fitted separately on each side of the threshold. The vertical dashed line indicates the cut-off of the normalized running
variable that determines eligibility to Fonden.
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Figure A8: Predetermined Covariates IV
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Note: The figures plot each outcome as a function of the normalized running variable, that is, rainfall mm to the heavy rainfall threshold.
Specifically, the figures plot at the mid-point of each bin the average and the 95% confidence interval of the outcome. The number of bins is
selected to minimize the integrated mean square error. The solid lines are fourth-order global polynomials fits. These lines are constructed
from raw data and fitted separately on each side of the threshold. The vertical dashed line indicates the cut-off of the normalized running
variable that determines eligibility to Fonden.
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Figure A9: Placebo
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Note: The figure plots (Placebo) log difference night lights as a function of the normalized running
variable, that is, rainfall mm to the heavy rainfall threshold. Specifically, the figures plot at the
mid-point of each bin the average and the 95% confidence interval of the outcome. The number of
bins is selected to minimize the integrated mean square error. The solid lines are fourth-order global
polynomials fits. These lines are constructed from raw data and fitted separately on each side of
the threshold. The vertical dashed line indicates the cut-off of the normalized running variable that
determines eligibility to Fonden

Figure A10: Fonden impact sensitivity to Bandwidth

● ●
●

● ● ● ● ● ●
● ●

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Bandwidth

R
D

 L
AT

E

31.40 37.68 43.96 50.24 56.52 62.80 69.08 75.36 81.64 87.92 94.20

Optimal BWOptimal BW x 0.5 Optimal BW x 1.5

Note: Estimates of Fonden LATE at 10 evenly spaced bandwidths. The smallest bandwidth 31.4
mm is 50% smaller than the optimal hMSE bandwidth, the largest 94.3 mm is 50% larger than the
optimal hMSE . The circles represent point estimates constructed using a triangular kernel, a local
linear polynomial, and the bandwidth indicated by the graph. The solid lines represent robust 95%
confidence intervals.
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Figure A11: Fonden treatment effect curve
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Note: Sub-figure A plots the histogram of Fonden’s Heavy rainfall thresholds. Sub-figure B plots point
estimates (circles) and 95% confidence intervals (solid green lines) of Fonden’s LATE at six threshold values.
Each estimate of Fonden’s LATE uses only the 400 treatment and control observations that are closest to
each threshold. Sub-figure B also plots Fonden’s pooled LATE taken from table 2 column 1 (dashed blue
lines), and a quadratic polynomial fit of Fonden’s LATE at the six threshold values (red dashed lines).
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