Fixed-Effect Estimation of Highly-Mobile Production Technologies

William C. Horrace*
Syracuse University

Kurt E. Schnier
University of Rhode Island

November 6, 2006

Abstract

We consider fixed-effect estimation of a production function where inputs and outputs vary over time, space, and cross-sectional unit. We exploit variability in the spatial dimension to identify time-varying individual effects, without parametric assumptions on the effects. While estimation is unbiased, asymptotics along the spatial dimension allow estimation of robust standard errors and asymptotic normality of the marginal products. Also, if inference on the estimates of the individual effects is warranted, then spatial asymptotics provide asymptotic normality, while precluding an incidental parameters problem caused by asymptotics along the time or cross-sectional dimensions. We apply our results to a production function of bottom-trawler fishing vessels in the flatfish fisheries of the Bering Sea. We find significant spatial variability of output (catch) which we exploit in estimation of a harvesting function. We conclude that vessel individual effects did not change across the period 2002 to 2004. We apply the theory of ranking and selection to determine that individual effects are not statistically significant across vessels.

Key Words: Panel data, time-varying individual effect, spatial econometrics, fisheries, agriculture, heteroskedasticity.

JEL Codes: C23, D24, N50

* Center for policy Research, Syracuse University, 426 Eggers Hall, Syracuse NY, 13244; phone: 315-443-9061; fax: 315-443-1081; email: whorrace@maxwell.syr.edu. Thanks to Antonio Alvarez, David Castilla, Stacey Chen, Jaesung Cho, Bill Greene, Terry Kinal, Kajal Lahiri, George Monokroussos, Ozgen Sayginsoy, and Loren Tauer for comments. Many thanks to Michael Eriksen for the GIS plots. All errors are ours.
1. Introduction

Consider the econometric fixed-effect model:

\[y_{it} = \alpha_i + x_{it}\beta + z_{it}\gamma + v_{it}, \quad i = 1, \ldots, N, \quad t = 1, \ldots, T, \]

where \(i \) indexes individual or cross-sectional unit, and \(t \) indexes time. Notice that the individual effects, \(\alpha_i \), vary over time. The earliest specifications of this model were identified by the restriction \(\alpha_{it} = \alpha_i \) for all \(t \), producing the common panel data specification (see Mundlak, 1978; MaCurdy, 1981; and Chamberlain, 1984). To relax this restriction a series of papers parameterize the time-varying effects into an individual component and a time component, so that the temporal pattern is fixed across individuals or groups of individuals. See Cornwell, Schmidt, and Sickles (1990), Kumbhakar (1990), Battese and Coelli (1992), Lee and Schmidt (1993), Cuesta (2000), Ahn, Lee, and Schmidt (2001), Han, Orea and Schmidt (2005), and Lee (2005). The Kumbhakar (1990) specification is fairly restrictive:

\[\alpha_{it} = \alpha_i [1 + \exp(at + bt^2)]. \]

Ahn, Lee and Schmidt (2004) develop a highly-flexible \(p \)-factor parameterization:

\[\alpha_{it} = \sum_{j=1}^{p} \theta_j a_{ji}, \]

in the style of Bai and Ng (2000) and Bai (2003). There is also a sizeable Bayesian literature that addresses panel data estimation of production functions. However, Bayesian approaches are not directly comparable to the frequentist approaches considered herein, so while the Bayesian literature is certainly important, it will not be discussed here.\(^{i}\)

The Ahn, Lee and Schmidt (2004) model subsumes most of the models in the aforementioned papers. An excellent discussion of time-varying individual effects models, their underpinnings, estimation, and applicability is provided in the introduction of Ahn, Lee, and Schmidt (2001). In particular they relate these models to the work of Kiefer (1980), Holtz-Eakin
et al. (1988), and Chamberlain (1992). They also discuss their application to rational expectations models (Hall and Mishkin, 1982; Shapiro, 1984; and Keane and Runkle, 1992), production function estimation (Schmidt and Sickles, 1984; and Lee and Schmidt, 1993), and estimation of earnings equations where unobserved ability might vary with time due to a time-varying implicit price of ability. The intent of this research is to relax the parametric assumptions on time-varying individual effects, and exploit spatial variation of economics agents to identify and estimate the model with a 'within' transformation and ordinary least-squares. Our primary interest is production function estimation, but our results could also be applied in any of the aforementioned empirical settings, as long as agents are highly-mobile, location-specific data are observed, and the variability of output is statistically relevant along the spatial dimension.

While most production technologies are fixed (in the short-run), one can envision technologies that are not. The example we discuss in detail is the fishery, where fishing vessels harvest fish in different spatial locations of the sea and where spatial variability of harvest is statistically meaningful. Other examples of highly-mobile technologies are: police cruisers arresting criminals in different locations of a city, taxis competing for fares, sales forces mobilized to serve clients, farm combining operations that move from south to north over the course of a growing season, or natural gas and oil drilling operations. Here, the dependent variable (production) may be observed over time, space, and individual (i.e., y_{its}). With adequate spatial variability in the factors of production (x_{its}) the time-varying individual effects (α_i) can be modeled without parameterization. In fact, β in the linear model,

$$y_{its} = \alpha_i + x_{its} \beta + z_{it} \gamma + w_i \delta + v_{its},$$

can be estimated with a simple 'within' transformation, where within-cell averages are taken over the spatial dimension s (i.e., $y_{its} - \bar{y}_i$). In this paper, we consider only 'within' estimation and
deal with several perplexing issues related to it. The most difficult of which is that the parameters of space invariant production factors, z_{it} and w_{i}, are not identified. This problem is tackled by recognizing that mobile technologies are usually engaged in the harvesting of some natural resource or moving to where the stock of raw materials of production are most abundant (e.g., fishing vessels harvest fish, police forces 'harvest' criminals, and taxis 'harvest' fares). If the resource stocks (fish, criminals, etc.) are observable within each spatial location and vary over space, then we posit a harvesting function, in the spirit of Schaefer (1957), which interacts space-varying stock with the factors of production. As such, all the factors of production are (effectively) space-varying and are, thus, identified. Identification hinges critically on the fact that individual effects do not vary over space (i.e., α_{it} remains fixed across s). Identification also hinges on the assumption that resource stocks are exogenous, which we assume throughout this paper. Of course, if stocks are endogenous then some form of instrumental variables estimation is need. For our example, our measure of resource stock is, indeed, exogenous. These complications are discussed in the sequel.

Most spatial econometric innovations in the last ten years are conceptualized for fixed (or nearly-fixed) economics agents. This is not entirely unrealistic since in the short-run economic agents and capital remain in a fixed location. For example, Conley's series of spatial econometric papers are all based on a one-shot view of space, where agents are not changing position. See Conley (1999), Conley and Dupor (2003), Conley and Ligon (2002), and Conley and Topa (2002). Also, papers based on fixed weighting matrices do the same. For example, see Kelijian and Prucha (1999 and 2001). In these papers, the presumption, is that there is not enough mobility over time, for space to be considered as another source of variability in the data. Indeed, we contend that they are either assuming that resources are fixed (e.g., immobile capital
or natural resource), or that the time dimension is not large enough for mobility to be considered a reasonable assumption. Therefore, by relaxing the assumptions of spatially fixed inputs, our model makes a unique contribution to the literature on spatial econometrics.

In the sequel we also discuss aggregation issues, robust standard error estimation, asymptotics, and inference. The paper is organized as follows. The next section defines the harvesting function, and discusses estimation and robust inference. Section 3 discusses asymptotics and aggregation. In section 4, we apply our results to a production function of bottom-trawler fishing vessels in the flatfish fisheries of the Bering Sea. The last section concludes and makes suggestions for future research.

2. Specification and Algebra

In what follows, we couch the discussion in terms of the example of interest, Bearing Sea flatfish fisheries. However, the discussion is relevant to all the aforementioned highly-mobile technologies. Define the Cobb-Douglas harvesting function:

\[y_{is} = A_n \{ x_{is}^{\beta} z_{i}^{\gamma} w_{i}^{\delta} \}^{b_s} \exp(v_{is}) \quad i = 1, \ldots, N \quad t = 1, \ldots, T \quad s = 1, \ldots, S_n, \]

where \(s \) indexes spatial location fished, \(i \) indexes the vessel, and \(t \) indexes time. Notice that we allow the number of spatial locations, \(S_n \), to vary over \(i \) and \(t \); this is the spatial equivalent of an unbalanced panel. We make explicit the fact that the exogenous inputs to the harvesting function may be space-invariant (\(z_i \)), or possibly space- and time-invariant (\(w_i \)). The \(b_s \) is an observed time- and space-varying exogenous factor of harvesting, which doesn't vary over \(i \) and is a limiting factor for all harvesting inputs. In our fisheries context this would be the fish density (biomass) in a given location and time period. The idea is that fishing stocks are exogenous (as we shall see), and production efforts are only successful when fish are present.
The exogeneity of \(b_s \) may be called into question for many applications. In this context we think of endogeneity as coming from the decision of 'where to harvest.' That is, the location of the means of production is a key choice variable in the optimization problem. For example, cabbies elect to search for fares where population density is highest, and police forces patrol more in areas where the crime rate is highest, so production (output) effects the location decision, which is correlated to stocks of harvestable resources in each location.ii Fortunately, in our example, there is very low negative correlation between our measure of fish stocks and the decision of where to fish, as we shall see in section 4.

Notice that the inputs to fishing are effected by the biomass through the exponent \(b_s \) and that technical change, \(A_t \), is constant over all spatial locations and is, consequently, unaffected by the biomass in the spatial location (it is not raised to the \(b_s \) power). This is critical to identification for 'within' estimation of the model.iv Taking logs yields the following log-transformed production function:

\[
\ln y_{its} = \ln A_t + b_s \ln x_{its} \beta + b_s \ln z_{its} \gamma + b_s \ln w_i \delta + v_{its}.
\]

Let \(\alpha_{it} = \ln A_t \), \(Y_{its} = \ln y_{its} \), \(X_{its} = b_s \ln x_{its} \), \(Z_{its} = b_s \ln z_{its} \), and \(W_{its} = b_s \ln w_i \), then:

\[
Y_{its} = \alpha_{it} + X_{its} \beta + Z_{its} \gamma + W_{its} \delta + v_{its}, \quad i = 1, \ldots, N, \quad t = 1, \ldots, T, \quad s = 1, \ldots, S_t. \tag{1}
\]

This is just a fixed-effect specification, but the beauty of it is that ALL the regressors vary over \(s \) (due to their interactions with \(b_s \), which \textit{does} vary over \(s \)). Therefore, all the parameters (\(\beta, \gamma, \) and, \(\delta \)) are identified by 'within' estimation. The point is that inputs alone do not catch fish; it is the interaction of the biomass or density of fish with the production inputs that catch fish. As such, inputs that do not vary with spatial location (like a vessel size) can be interacted with biomass in different locations to identify the parameters of the model. This is similar in spirit to
Wooldridge's 'solution' to time invariant regressors in the usual fixed-effect model: they are not allowed "unless they are interacted with time varying variables, such as time dummies" (Wooldridge, 2002, p269). Although, in this case the interactions are well-justified, as it would seem that the marginal products of fishing inputs would equal zero when there were no fish to catch but would be very large when there are many fish to catch (particularly when they are being caught in trawling nets). Consequently, interaction of inputs with biomass makes sense both empirically and theoretically.

One could also envision a specification where biomass (alone) enters the harvesting function log-linearly and is multiplied by a marginal product parameter for estimation. This presents no additional problems in the estimation. However, the specification would imply the Cobb-Douglas harvesting functions:

\[y_{its} = A_{it} \left\{ x_{its}^\beta z_{its}^\gamma w_{its}^\delta b_{its}^{b_v} \right\} \exp(v_{its}) \quad \text{or} \quad y_{its} = A_{it} b_{its} \left\{ x_{its}^\beta z_{its}^\gamma w_{its}^\delta \right\} \exp(v_{its}), \]

which seems somewhat redundant because of \(b_{its} \) occurring twice in the form. These functions are within the realm of possibilities, but are not considered in what follows. It should also be noted that the Cobb-Douglas harvesting function is easily generalized to a trans-log specification, with variable interactions across all three dimensions in the spatial panel.

Consider the specification in equation 1 in more detail. We have implicitly assumed that the inputs \((X_{its}, Z_{its}, \text{and} \ W_{its}) \) and the parameters \((\beta, \gamma, \text{and} \ \delta) \) are scalars. Let's make things more general. First, let \(Y_{its} \) and \(v_{its} \) be scalars. Let \(X_{its}, Z_{its}, \) and \(W_{its} \) be \((1 \times k)\), \((1 \times g)\), and \((1 \times d)\) row vectors, respectively. Let \(\beta, \gamma, \) and \(\delta \) be \((k \times 1)\), \((g \times 1)\), and \((d \times 1)\) column vectors, respectively. Let,

\[X_{its} = \begin{bmatrix} X_{its} & Z_{its} & W_{its} \end{bmatrix}_{(1 \times (k+g+d))} \quad \text{and} \quad \beta_{'} = \begin{bmatrix} \beta' & \gamma' & \delta' \end{bmatrix}_{((k+g+d) \times 1)}, \]
Then, our equation becomes

$$Y_{its} = \alpha_{it} + X_{its} \beta_s + \nu_{its}.$$

Defining the variables demeaned over the spatial dimension,

$$Y_{its}^+ = Y_{its} - \bar{Y}_{it} = Y_{its} - S_{it}^{-1} \sum_{s=1}^{S_i} Y_{its},$$

$$X_{its}^+ = X_{its} - \bar{X}_{it} = X_{its} - S_{it}^{-1} \sum_{s=1}^{S_i} X_{its},$$

$$v_{its}^+ = v_{its} - \bar{v}_{it} = v_{its} - S_{it}^{-1} \sum_{s=1}^{S_i} v_{its},$$

our demeaned equation is,

$$Y_{its}^+ = X_{its}^+ \beta_s + v_{its}^+, \ i = 1, \ldots, N, \ t = 1, \ldots, T, \ s = 1, \ldots, S_i. \quad (2)$$

Under a weak exogeneity assumption on the regressors, ordinary least-squares (OLS) of this equation produces unbiased estimate,

$$\hat{\beta}_s = \left(\sum_{i}^{N} \sum_{t}^{T} \sum_{s}^{S_i} X_{its}^+ \bar{X}_{its}^+ \right)^{-1} \left(\sum_{i}^{N} \sum_{t}^{T} \sum_{s}^{S_i} X_{its}^+ Y_{its}^+ \right).$$

Notice that all elements of $\hat{\beta}_s$ are identified, because all elements of X_{its}^+ are space-varying through interactions with biomass, b_{is}. Let $S_* = \min_{it} S_{it}$. Then, $\hat{\beta}_s$ is consistent and asymptotically normal as $N \to \infty$, $S_* \to \infty$, or as $NS_* \to \infty$ for fixed T. (We discuss S asymptotics in the next section.) Without any autocovariances across s, the panel structure can be ignored, and the asymptotic arguments correspond to convergence rates of \sqrt{N}, $\sqrt{S_*}$, or $\sqrt{NS_*}$, respectively, without any restrictions on the relative growth rates of N or S_*.vi With spatial autocovariances the convergence rate is at least \sqrt{N}, per arguments in Kezdi (2003) and Hansen (2005).vii
Let the 'within' residual be \(\hat{v}_{its}^+ = Y_{its}^+ - X_{its}^+ \hat{\beta} \). Then the usual unbiased estimate of \(\alpha_{it} \) is,

\[
\hat{\alpha}_{it} = S^{-1} \sum_{s=1}^{S} \hat{v}_{its}^+ ,
\]

which is consistent and asymptotically normal as \(S \to \infty \), for fixed \(N \) and \(T \). Since it is a simple average, the convergence rate will be \(\sqrt{S} \) with or without spatial autocovariances.

Notice that asymptotic normality of \(\hat{\alpha}_{it} \) is not plagued by an incidental parameter problem as \(S \to \infty \). It would be were asymptotics to require either \(N \to \infty \) or \(T \to \infty \).

The usual panel data version of this model \((S_u = 1) \) is commonly employed to estimate time-invariant technical efficiency from a stochastic frontier model (see Schmidt and Sickles, 1984). In our generalized panel data case \((S_u > 1) \) we can estimate time-varying technical efficiency. Let \(\alpha_u = \eta - u_{it} \), where \(\eta \) is an "overall" fixed intercept parameter, and \(u_{it} \) is a non-negative parameter, representing time-varying technical inefficiency. Then, following Schmidt and Sickles (1984), relative time-varying inefficiency is \(u_{it} = \max_j \alpha_{jw} - \alpha_{i} \), and can be estimated as \(\hat{u}_{it} = \max_j \hat{\alpha}_{jw} - \hat{\alpha}_{i} \). A consistent normalization of technical efficiency is

\[
\hat{T}_E_{it} = \exp\{-\hat{u}_{it} \} \in (0,1] .
\]

An alternative measure is \(u_{it}^* = \max_j \alpha_{j} - \alpha_{it} \), estimated as

\[
\hat{u}_{it}^* = \max_j \hat{\alpha}_{i} - \hat{\alpha}_{it} ,
\]

which implies a relatively inefficient \(i \) within each period \(t \) and which yields technical efficiency estimate \(\hat{T}_E_{it}^* = \exp\{-\hat{u}_{it}^* \} \).

For inference, consider two covariance structures for the errors. We will always assume the conditional mean of \(v_{its} \) is zero and that the \(v_{its} \) are independently distributed across \(i \).
A1. The v_{its} are independently distributed across t and s. (No autocovariances.)

A2. The $E(v_{its}v_{ijr}) \neq 0$. (Time and space autocovariances.)

Each assumption implies a different approach to inference and asymptotics. We restrict ourselves to the usual micro-data case of fixed T. Under A1, the usual robust standard errors of White (1980) can be estimated. That is, let

$$
X^+_{st} = \begin{bmatrix} X^+_{s1} \\ \vdots \\ X^+_{sT} \\ \end{bmatrix}_{(S_s \times 1)}, \quad X^+_{si} = \begin{bmatrix} X^+_{s1} \\ \vdots \\ X^+_{sT} \\ \end{bmatrix}_{(T_s \times 1)}, \quad X^+_{it} = \begin{bmatrix} X^+_{i1} \\ \vdots \\ X^+_{iT} \\ \end{bmatrix}_{(S_i \times 1)},
$$

similarly for v_{its}. Then the heteroskedasticity-robust variance estimate is,

$$
\hat{V}_{1}(\hat{\beta}_s) = (X^+_{s}X^+_{s})^{-1} X^+_{s} \hat{\Omega}_1 X^+_{s} (X^+_{s}X^+_{s})^{-1},
$$

where $\hat{\Omega}_1$ is a diagonal matrix with typical element $(v_{its}^+)^2$, and the panel structure can be ignored. That is,

$$
\hat{V}_{1}(\hat{\beta}_s) = (X^+_{s}X^+_{s})^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{S_s} (v_{its}^+)^2 X^+_{its} X^+_{its} \right) (X^+_{s}X^+_{s})^{-1}, \quad (3)
$$

which is consistent as $N \to \infty$, $S_s \to \infty$, or as $NS_s \to \infty$ with convergence rates of \sqrt{N}, $\sqrt{S_s}$, or $\sqrt{NS_s}$, respectively, per arguments in Hansen (2005). Consistency arguments follow White (1980) and White (1984, p136), Theorem 6.3. Under A2, $\hat{\Omega}_2 = diag\{\hat{v}_1^+ \hat{v}_1^+ \ldots \hat{v}_N^+ \hat{v}_N^+\}$ leading to,

$$
\hat{V}_{2}(\hat{\beta}_s) = (X^+_{s}X^+_{s})^{-1} \left(\sum_{i=1}^{N} X^+_{is} \hat{v}_i^+ \hat{v}_i^+ X^+_{is} \right) (X^+_{s}X^+_{s})^{-1}, \quad (4)
$$

which is consistent as $N \to \infty$ in the spirit of Arellano (1987). Alternative covariance structures are easily envisioned. For example, non-zero spatial autocovariances and independence across
time, or non-zero time autocovariances and independence across space. These are easily handled. In our example, we will have to appeal to \(NS \to \infty \) asymptotics, so we invoke A1.

3. Spatial Asymptotics and Aggregation

Under a weak exogeneity assumption on the regressors, the marginal effects and the individual effects estimates are unbiased, so our discussion of asymptotics is intended to facilitate inference when the errors are non-normally distributed or when robust inference is necessary. The latter situation arises when the data are aggregated. Aggregation may be necessary for data from highly-mobile technologies, as we will see below.

Asymptotics in Physical Space

The asymptotic normality of \(\hat{\alpha}_d \) along the spatial dimension is a nice feature of the model, but how are asymptotics even conceptualized in physical space? If we think of the physical space (say, the sea) as a two-dimensional rectangular integer lattice, then production can move to any of the spatial regions within a given time period, \(t \). Given this, we can think of asymptotics in two extreme ways: either a) the surface area of the lattice (domain) expands and the area of the individual locations is fixed as \(S \to \infty \), or b) the area of the lattice (domain) is fixed, and the number of spatial locations increases while their area size decreases, as \(S \to \infty \). Following Cressie (1993) we call the former "increasing-domain asymptotics" and the latter "infill asymptotics." Theoretically, if we can let \(N \) and \(T \) be fixed, then \(S \to \infty \) as either an expanding lattice or as a finer spatial resolution, and the asymptotics presents no additional problems. However, practically speaking both concepts of \(S \to \infty \), present problems for
robust inference on $\hat{\alpha}_u$ and these are discussed in what follows. (Obviously, if we are only interested in inference on β then we can simply appeal to the less problematic $N \to \infty$.)

Spatial Aggregation

The increasing-domain asymptotics are problematic in a practical sense. To see this, we only need realize that as the lattice gets larger, there will not be enough time in period t to move production to all (or a large number) of the spatial locations; there is just not enough time to travel the large distances. For example, if we are discussing fishing vessels, and the unit of t is one week, and one vessel can fish a maximum of 25 different locations in one week, then expanding the number of locations above 25 for asymptotics is impractical. To remedy this we could expand the unit of observation for t by aggregating across t. To continue the example, suppose we aggregated 52 weeks of weekly data into 12 months of monthly data, then over the course of a month a vessel may be able to visit four times as many spatial locations, so we could expand the maximal number of locations to 100. Now, we effectively have $S_\ast \to \infty$ while $T \to 0$ as our asymptotic argument. However, as $T \to 0$, we still have a problem, since, $\alpha_u \to \alpha$, and the model will be misspecified, as technical efficiency is no longer time-varying.

We can also think of this as a violation of the fact that over large units of time, it is not practical to think of technical efficiency as be time-invariant. The infill asymptotics approach is less problematic, but there are still practical difficulties associated with it. If we divide the lattice into smaller and smaller spatial areas while keeping its total area fixed, then the lattice becomes a spatial continuum of fixed size in s. Unfortunately production data are inherently discrete in s, so increasing S_u will eventually cause the production data at each location at be unmeasurable (in a discrete sense).
One could also envision some combination of these two asymptotic extremes. The spatial lattice is expanding while the spatial resolution is simultaneously increasing. This may provide some empirical benefits. For a particular data set, we may have large enough S_n to appeal to asymptotics, where the lattice is not too big, so as to force T to be too small to preclude time-varying technical efficiency, and where the spatial resolution is not too fine, so as to preclude data collection in each spatial location or to cause inputs to be fixed over space. Ultimately, adjusting the data through aggregation, disaggregation, or spatial normalization are empirical decisions that must balance time, space, and the dimensionality of the α_i. Of course any aggregation along the time or spatial dimensions, will induce heteroskedasticity in the aggregate errors, so robust estimation is required as described in the previous section.

4. Application to Bearing Sea Flat Fisheries

To illustrate our method, we use data on flatfish catch for 12 bottom-trawlers within the Bering Sea from 2002 through 2004. The data come from three sources. The spatial dimension of the data set is defined by the Alaska Department of Fish and Games (ADF&G) spatial locations, which partition the Bering Sea into grids that are one-half degree latitude by one-degree longitude in dimension. This produces approximately 95 spatial locations in the sea, but the average vessel only visits about 44 of these in a given year. Production data (catch), $Y_{it} = \ln \text{Catch}_{it}$, is obtained from the National Marine Fisheries Service (NMFS) "observer program," which requires all vessels longer than 125 feet to have an observer onboard to record catch size, composition, and geographic position. On any given fishing trip, not all the catch is recorded, because observers take periodic breaks for sleep and hygiene. However, if we can assume that unobserved catch is random, our estimates should remain unbiased. Weekly catch
data for the twelve vessels were aggregated to annual data, resulting in 1590 observations. That is, 12 vessels, over 3 years, each visiting on average a little over 44 spatial locations per year.

A quick experiment demonstrates that there is considerable variability in $\ln{Catch_{it}}$ over the spatial dimension. Different aggregation schemes reveal that: the average catch for each of the 12 vessels was 796.7 tons of fish with a standard deviation of 134.7, the average catch in each of the three years was 3,186.7 tons of fish with a standard deviation of 212.9 fish, while the average catch in each of the 95 spatial locations was 100.6 tons of fish with a standard deviation of 83.6 fish. The spatial dimension of the data possesses the highest coefficient of variation (83.1%), so the spatial panel specification of equation 1 is well-justified. Figures 2b, 3b, and 4b show aggregate catch densities for 2002, 2003, and 2004, respectively. These are kernel smoothed surface plots of the 95 spatial locations with red areas indicating highest aggregate catch, yellow areas indicating medium catch, and blue areas indicating lowest catch. There is clearly a fair amount of spatial variability in output.

Observations in X_{its} (also from the observer program data) are $\ln{Hauls_{it}}$ and $\ln{Duration_{it}}$, where $Hauls$ is the number of times the gear (a fish net) is deployed and $Duration$ is the total length of time that the gear is deployed. The spatially invariant inputs, Z_{it} and W_{it}, are from the weekly production reports collected by NMFS as well as the United States Coast Guard vessel registry database, which records vessel characteristics. The Z_{it} variable is $\ln{Crew_{it}}$, which is the logarithm of the "total number of crew members employed during the year divided by the number of weeks fished." The W_{it} variable is $\ln{NetTons_{it}}$, which is the logarithm of net-tonnage of each vessel.xiv The data set is balanced across vessels and time but unbalanced across space.
Biomass densities, b_n, are from the annual NMFS "biomass trawl survey," which biologist at the Alaska Fisheries Science Center (AFSC) use to calculate stock estimates. Annual stock assessment studies are conducted independently of the fishery (i.e., are not based on fishery output) and represent the best available estimates of the spatial distribution of the stock density. Figure 1 illustrates the spatial locations used in the analysis, which correspond to biomass survey points. In the case that $Catch$ is observed but b_n is not, then the mean biomass density within a given year is imputed.xv Figures 2a, 3a, and 4a contain trawl survey plots of the biomass densities in the Bearing Sea for 2002, 2003, and 2004, respectively. Fish stocks seem to me most highly concentrated in the northeastern portion of the sea.

We believe that our biomass data are exogenous, because a vessel captain's decision of "where to fish" is not based on this particular survey.xvi That is, catch incentives do not feedback into biomass through the harvest location decision. First, the annual stock assessment studies are conducted independently of the fishery (i.e., the stock assessment is not based on commercial catch). Also, Holland and Sutinen (2000) suggest that captains are "creatures of habit," tending to fish the same spatial pattern from year to year, regardless of survey data. Smith (2000) suggests that factors in the location decision are largely not observed by the analyst. Wilson (1990) suggests that fisheries have complex unobservable "informational networks" in which captains share location/catch information on a daily basis. Since stock measurements are taken annually, correlations between our biomass patterns and daily or hourly location decisions are negligible.xvii Finally, and perhaps most compelling, the correlations between biomass and the aggregate number of vessels fishing in each of the 95 locations is, in fact, small and negative in each year. Also, correlations between biomass and aggregate catch are small and negative. They are:
These negative correlations are depicted in Figures 2, 3, and 4. Comparing the annual trawl survey plots of Figures 2a, 3a, and 4a for 2002, 2003, and 2004 (respectively) to the annual aggregate catch plots of Figures 2b, 3b, and 4b for 2002, 2003, and 2004 (respectively), we see that the majority of the flatfish are taken from the southern Bearing Sea, not the northeastern sea, where the trawl surveys show the highest biomass densities in each year. This annual catch pattern mimicked in the annual site visitation plots of Figures 2c, 3c, and 4c for 2002, 2003, and 2004 (respectively). Clearly, flatfish captains are not precisely following the biomass survey map, so biomass can be treated as exogenous in this exercise. There are other unobserved factors in the flatfish location decision. However, our biomass measures are legitimate space- and time-varying features of the different locations in the sea, and once a vessel visits one of our 95 locations, the biomass measures are relevant to the vessel's ability to harvest fish. Therefore, we are not merely adding noise to the model by interacting this measure.xix

The basic Cobb-Douglas harvesting function is:

\[
\ln \text{Catch}_{it} = \alpha_i + b_{ix} \ln \text{Hauls}_{it} + b_{ix} \ln \text{Duration}_{it} + b_{ix} \ln \text{Crew}_{it} + b_{ix} \ln \text{NetTons}_{it} \delta_1 + \epsilon_{its}
\]

Notice that each variable in interacted with biomass, \(b_{ix} \), making them all space-varying (effectively).xx The basic model was estimated and subjected to specifications test. Experimentation with interaction terms and a series of specifications tests led to the augmented Cobb-Douglas specification in Table 1, which includes the square of \textit{Hauls} and an interaction between \textit{NetTons} and \textit{Crew}.xxi All tests were performed without accounting for aggregation heteroskedasticity. After the final specification was achieved, the standard errors were adjusted
for heteroskedasticity. The t-statistics in Table 1 are based on the White (1980) correction under A1. Since we know \textit{ex ante} the form of the aggregation, we could correct our standard errors based on this structure, however White's correction is more robust. Since \(N = 12 \), we could not appeal to A2 for consistency, so we effectively treat each vessel in each spatial location as a separate economic entity operating over fixed \(T \). Therefore, we have \(NS = 12 \times 32 = 384 \) entities (minimum), which should be sufficiently large for robust inference under A1.xxii

The results in Table 1 imply that the relationship between the number of hauls and production is nonlinear, and that crew size and vessel size (\textit{NetTons}) are only effective inputs to production insofar as they are appropriately mixed. That is, the positive coefficient of 0.0458 on \textit{Crew}*\textit{NetTons} implies that large vessels must have large crews and large crews must work on large vessels to be effective. Even though the coefficients on \textit{Crew} and \textit{NetTons} are negative, their elasticities are positive once we account for biomass and the their interaction.

Elasticity estimates are contained in Table 2, and are transformed by average biomass over \(t \) and \(s \), \(\bar{b} = 0.6937 \). For example, the marginal product of \textit{Crew} is:

\[
e_{\text{crew}} = \frac{\partial \ln Y_{it}}{\partial \ln \text{Crew}_{it}} = \bar{b} \left[-0.7403 + 0.1150 \cdot \ln \text{NetTons} \right],
\]

where \(\ln \text{NetTons} \) is the average over \(i \). The results imply that \textit{Hauls} and \textit{Duration} contribute more on the margin then any of the other inputs (0.4298 and 0.1934, respectively). \textit{NetTons} provides the least (0.0501). However, all elasticities are positive, so our production model does not violate any of the traditional production theory assumptions. These results make sense. The act of deploying the nets (\textit{Hauls}) and dragging the nets (\textit{Duration}) is the most important input to harvesting fish. (Clearly, if this doesn't happen there will be zero output!) The next most important productive input to harvesting fish is crew size (elasticity of 0.0697); crews deploy and
retrieve the nets. The size of the vessel is only important for speed and catch storage capacity, which are meaningless without a good crew and efficient deployment of the nets. Finally, returns to scale for the 12 vessels are 0.7430. The decreasing returns to scale may be from eliminating smaller vessels (below 125 feet), if these vessels exhibit constant or increasing returns.

Next, we estimated 36 different \(\alpha_i \)'s corresponding with 12 vessels and 3 years of data. These are in Table 3. The conditional variance matrix is,

\[
V_i(\hat{\alpha}) = (G'G)^{-1}G'X_i(\hat{\beta}_i)X_i'G(G'G)^{-1} + (G'G)^{-1}G'(\hat{\Omega}_i - \hat{\Omega})G(G'G)^{-1},
\]

where \(\hat{\alpha} = [\alpha_{11}, ... , \alpha_{NT}]' \) and \(G \) is the \((S \times NT) \) block diagonal matrix with typical diagonal \((S_u \times 1) \) block equal to \(t_{s_u} \), an \(S_u \times 1 \) vector of ones. Based on this structure, we calculated the standard error of the difference in the individual effects between 2002 and 2004 (Table 3, column 5) and test statistics (column 6). We conclude that the only significant changes in effects between 2002 and 2004 are for vessels 1, 4, and 7.

Next, we are interested in performing simultaneous inference on the within year differences across vessels \(u_i^* = \max_j \alpha_{ji} - \alpha_{iu} > 0 \ \forall \ i = 1,...,12 \). In other words, we want to know to what extent the vessel with the largest individual effect in the population (relative technical inefficiency equal to zero) dominates the other vessels in a given year, simultaneously.

This test is indirectly performed using ranking and selection methods described in Horrace and Schmidt (2000). That is, assuming that the \(\alpha_{iu} \) are normal (or asymptotically so), we endeavor to determine a subset of the 12 vessels that contains the least inefficient vessel with probability 0.95. To do so, we simulate upper 95% percentage points for an 11-dimensional multivariate normal distribution with means \(\hat{\alpha}_{ik} - \hat{\alpha}_{iu} \) for all \(i \neq k \) and a general covariance structure, based
on a linear transformations of $V_I(\hat{\alpha})$ for each year.xxiii We do this for each k, producing 12 simulated critical values (percentage points), $z_{k,f}^{0.95}$ for $k = 1, \ldots, 12$ in each year $t = 1, 2, 3$. The critical values are used to construct the three subsets:

$$\zeta_t = \{k: U_{it}^k \geq 0 \text{ for } i \neq k \},$$

$$U_{it}^k = \hat{\alpha}_{kt} - \hat{\alpha}_t + z_{k,f}^{0.95} \left\{ V(\hat{\alpha}_{kt}) + V(\hat{\alpha}_t) - 2 \text{Cov}(\hat{\alpha}_{kt}, \hat{\alpha}_t) \right\}^{1/2}, \ t = 1, 2, 3.$$

The U_{it}^k are 95\% upper bounds on $\hat{\alpha}_{kt} - \hat{\alpha}_t$ for all $i \neq k$ for each k in each year. A vessel k belongs in ζ_t if it has all positive 95\% upper bounds in year t. Then, ζ_t contain the indices of the vessels with the largest individual effect (smallest inefficiency) with probability 95\% in each year. That is, let the index of the vessel with the (unknown) largest individual effect in year t be i_t^\ast. Then,

$$\Pr\{i_t^\ast \in \zeta_t\} \geq 0.95, \ t = 1, 2, 3.$$

That is, the index of the vessel with the largest individual effect (smallest inefficiency) is contained in ζ_t with probability at least 95\%. The critical values, $z_{k,f}^{0.95}$, for each vessel k for each year t are in the last three columns of Table 3 and are simulated using the algorithm in Horrace (1998) but for a general covariance structure on α_t and 100,000 simulation draws.

Based on these critical values, the 95\% subsets of efficient vessels in each year are.

$$\zeta_{2002} = \{1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\},$$

$$\zeta_{2003} = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12\},$$

$$\zeta_{2004} = \{3, 4, 5, 6, 8, 9, 10, 11, 12\}.$$

The cardinality of the subsets is decreasing in time. As we move from 2002 to 2003, vessel 1 drops out of contention for the least inefficient boat, and as we move from 2003 to 2004, vessel 7
drops out of contention for the least inefficient boat. The drops correspond to the significant declines in α_{1t} and α_{2t} as we move from 2002 to 2004 in Table 3. For some reason these vessels had inefficiency increases over the period. Since it appears in none of the subsets, vessel 2 is never in contention for being least inefficient (most efficient). Notice that all the values for α_{2t} are lowest in each column in Table 3. Interestingly, an ex post investigation determined that this vessel is much smaller than the others, and the observer program only requires that it record a portion of its catch. xxiv Technically, this vessel should not be included in the analysis. However, the results of the analysis do not change much when it is removed. Therefore, we report the results with vessel 2 included to demonstrate the model's ability to differentiate this vessel for the rest.

We now transform differences in the individual effects into efficiency estimates. Table 4 contains the time-varying technical efficiency measures for each vessel, based on the two methods described in section 2. The first column contains the vessel identifier. The second, third, and fourth columns contain the technical efficiency estimates, $\hat{TE}_{it} = \exp\{-\hat{u}_{it}\}$, which are relative to all vessels in all years. For example, the most efficient performance was vessel 4 in 2003. It's technical efficiency is normalized to 1.0. Remember, vessel 4 had a significant increase in its individual effect as we moved from 2002 to 2004. This is reflected in its efficiency scores of 0.4931, 1.0, and 0.8359 over the period. These efficiency scores are relative to its own performance in 2003. The alternative efficiency estimates $\hat{TE}_{it}^{**} = \exp\{-\hat{u}_{it}^{**}\}$ are in columns five, six, and seven of Table 4. These are within-year performance estimates. The most efficient vessels were 5, 4, and 11 in 2002, 2003, and 2004, respectively. The reader is reminded, however, that the t-tests in Table 3 suggest that efficiency difference across columns 2 through 7.
are statistically insignificant in general. Also, most of the differences across rows of Table 4 are insignificant; this is reflected in the high cardinality of the three subsets, ζ_r, that we saw earlier.

5. Conclusions

This research makes direct contributions to the panel data econometrics literature, the stochastic frontier literature, and the spatial econometrics literature. Highly-mobile technologies represent a very clean extension to the usual panel data results and add a degree of flexibility to asymptotic arguments and robust inference on model parameters. The results for asymptotics and inference presented herein were direct extensions of the usual results (White, 1980, 1984; Arellano 1987, and Hansen, 2005), however there are clear opportunities for exploration of more sophisticated asymptotics, based on particular patterns of time and space dependencies and based on different asymptotic expansion paths. Our results are also meaningful for the stochastic frontier literature where estimation of time-varying individual effects is important. For a mobile technology we show that these parameters can be estimated without parametric assumptions and that large sample inference can be performed without an incidental parameters problem (even though we couldn't illustrate this in our example).

Our contribution to the spatial econometrics literature is clear. However, the results have implications for the estimation of spatial weighting matrices. It would be interesting to use the panel structure to estimate a spatial weighting matrix and compare it to the usual spatial weight matrix based on physical distance (e.g., Kelijian and Prucha, 1999 and 2001). Also, our discussion of spatial asymptotics is quite basic; a more complete exploration of these concepts is currently a high priority on our research agenda. Finally, our results may inform the location choice literature. For example, there are growing literatures on location choice in fisheries (e.g.,
Hick and Schnier, 2006), agglomeration economies (e.g., Lovely, Rosenthal and Sharma, 2005), and migration (e.g., Dahl, 2002), that may benefit from the discussions herein.

Two weakness of the results are that resource stocks must be exogenous and that the individual effects cannot be space-varying. In the case that stocks are endogenous through the location decision, then appropriate instruments for stocks are necessary. In the case of U.S. fisheries, over the last few years, there have been important policy changes that have impacted the behavior of fishing vessels. Perhaps the timing of these exogenous policy changes, could be used as instruments. In fact, there are certain weekly or daily stock measures that are known to be used by vessel captains in their search for target fish species. Exploring policy changes as instruments for these stocks would be interesting. In the case where individual effects vary over both time and space our results do not apply, but an extension to the results of Ahn, Lee, and Schmidt (2004) would identify the model in a GMM framework. Also, the model could be identified with 'within' estimation if the individual effects where time-invariant but space-varying. In this case, interaction with resource stocks would be unnecessary, and the usual demeaning along the time dimension would produce the usual panel results. All these weaknesses will be address by the authors in subsequent research.
References

Table 1: Model Parameter Estimates

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (t-statistic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{i,t} \ln Hauls_{it}$</td>
<td>0.3758* (1.80)</td>
</tr>
<tr>
<td>$\frac{1}{2} b_{i,t} (\ln Hauls_{it})^2$</td>
<td>0.1257 (1.52)</td>
</tr>
<tr>
<td>$b_{i,t} \ln Duration_{it}$</td>
<td>0.2788** (1.96)</td>
</tr>
<tr>
<td>$b_{i,t} \ln Crew_{it}$</td>
<td>-0.7403** (-2.79)</td>
</tr>
<tr>
<td>$b_{i,t} Crew_{it} * NetTons_i$</td>
<td>0.1150** (2.63)</td>
</tr>
<tr>
<td>$b_{i,t} NetTons_i$</td>
<td>-0.4612* (-1.79)</td>
</tr>
</tbody>
</table>

*indicates significance at the 90% level.
**indicates significance at the 95% level.
t-statistics are heteroskedasticity robust.
(ln$Hauls$)2 was significant before standard error correction, so it is included in the specification.

Table 2: Elasticities and Returns to Scale

<table>
<thead>
<tr>
<th>ε_{Hauls}</th>
<th>$\varepsilon_{Duration}$</th>
<th>ε_{Crew}</th>
<th>$\varepsilon_{Net-Tons}$</th>
<th>Returns-to-scale (RTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4298</td>
<td>0.1934</td>
<td>0.0697</td>
<td>0.0501</td>
<td>0.7430</td>
</tr>
</tbody>
</table>
Table 3. Time-Varying Individual Effects and Critical values for Subset Selections

<table>
<thead>
<tr>
<th>Vessel</th>
<th>2002 $\hat{\alpha}_{i1}$</th>
<th>2003 $\hat{\alpha}_{i2}$</th>
<th>2004 $\hat{\alpha}_{i3}$</th>
<th>Stand. Error $(\hat{\alpha}{i3} - \hat{\alpha}{i1})$</th>
<th>t-statistic 2002 $z_{F(\hat{\alpha})}^{k,0.95}$</th>
<th>2003 $z_{F(\hat{\alpha})}^{k,0.95}$</th>
<th>2004 $z_{F(\hat{\alpha})}^{k,0.95}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.8477</td>
<td>5.5425</td>
<td>5.3933</td>
<td>0.2466</td>
<td>-1.84*</td>
<td>2.7193</td>
<td>2.7365</td>
</tr>
<tr>
<td>2</td>
<td>3.4038</td>
<td>3.1069</td>
<td>3.6001</td>
<td>0.2719</td>
<td>0.72</td>
<td>2.7108</td>
<td>2.7383</td>
</tr>
<tr>
<td>3</td>
<td>6.2102</td>
<td>6.3210</td>
<td>6.2651</td>
<td>0.2396</td>
<td>0.23</td>
<td>2.7569</td>
<td>2.7425</td>
</tr>
<tr>
<td>4</td>
<td>5.8973</td>
<td>6.6044</td>
<td>6.4251</td>
<td>0.2186</td>
<td>2.41**</td>
<td>2.7587</td>
<td>2.7422</td>
</tr>
<tr>
<td>5</td>
<td>6.4230</td>
<td>6.1717</td>
<td>6.4193</td>
<td>0.2272</td>
<td>-0.02</td>
<td>2.7478</td>
<td>2.7465</td>
</tr>
<tr>
<td>6</td>
<td>6.0221</td>
<td>6.0868</td>
<td>6.1238</td>
<td>0.2303</td>
<td>0.44</td>
<td>2.7518</td>
<td>2.7644</td>
</tr>
<tr>
<td>7</td>
<td>6.3429</td>
<td>6.2018</td>
<td>5.7982</td>
<td>0.2310</td>
<td>-2.36**</td>
<td>2.7437</td>
<td>2.7488</td>
</tr>
<tr>
<td>8</td>
<td>6.2138</td>
<td>6.0815</td>
<td>6.1089</td>
<td>0.2437</td>
<td>-0.43</td>
<td>2.7221</td>
<td>2.7049</td>
</tr>
<tr>
<td>9</td>
<td>6.3282</td>
<td>6.2119</td>
<td>6.1578</td>
<td>0.2187</td>
<td>-0.78</td>
<td>2.7594</td>
<td>2.7694</td>
</tr>
<tr>
<td>10</td>
<td>6.2710</td>
<td>6.3304</td>
<td>6.0381</td>
<td>0.2378</td>
<td>-0.98</td>
<td>2.7510</td>
<td>2.7431</td>
</tr>
<tr>
<td>11</td>
<td>6.3773</td>
<td>6.4074</td>
<td>6.5328</td>
<td>0.2346</td>
<td>0.66</td>
<td>2.7308</td>
<td>2.7414</td>
</tr>
<tr>
<td>12</td>
<td>6.2470</td>
<td>6.2928</td>
<td>6.4846</td>
<td>0.2368</td>
<td>1.00</td>
<td>2.7453</td>
<td>2.7521</td>
</tr>
</tbody>
</table>

t-statistic for $H_0: \hat{\alpha}_{i3} = \hat{\alpha}_{i1}$:

*indicates significance at the 90% level.

**indicates significance at the 95% level.

Critical values simulated for a general covariance structure per Horrace and Schmidt (2000).

$\zeta_{2002} = \{1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

$\zeta_{2003} = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

$\zeta_{2004} = \{3, 4, 5, 6, 8, 9, 10, 11, 12\}$.

Table 4: Technical Efficiency and Number of Spatial Sites Visited Each Year by Vessel

<table>
<thead>
<tr>
<th>Vessel</th>
<th>2002 $T\hat{E}_{it}$</th>
<th>2003 $T\hat{E}_{it}$</th>
<th>2004 $T\hat{E}_{it}$</th>
<th>2002 $T\hat{E}_{it}^*$</th>
<th>2003 $T\hat{E}_{it}^*$</th>
<th>2004 $T\hat{E}_{it}^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4692</td>
<td>0.3458</td>
<td>0.2979</td>
<td>0.5625</td>
<td>0.3458</td>
<td>0.3200</td>
</tr>
<tr>
<td>2</td>
<td>0.0407</td>
<td>0.0303</td>
<td>0.0496</td>
<td>0.0488</td>
<td>0.0303</td>
<td>0.0533</td>
</tr>
<tr>
<td>3</td>
<td>0.6742</td>
<td>0.7533</td>
<td>0.7122</td>
<td>0.8083</td>
<td>0.7533</td>
<td>0.7651</td>
</tr>
<tr>
<td>4</td>
<td>0.4931</td>
<td>1.0</td>
<td>0.8359</td>
<td>0.5911</td>
<td>1.0</td>
<td>0.8979</td>
</tr>
<tr>
<td>5</td>
<td>0.8341</td>
<td>0.6488</td>
<td>0.8311</td>
<td>1.0</td>
<td>0.6488</td>
<td>0.8927</td>
</tr>
<tr>
<td>6</td>
<td>0.5586</td>
<td>0.5960</td>
<td>0.6184</td>
<td>0.6697</td>
<td>0.5960</td>
<td>0.6643</td>
</tr>
<tr>
<td>7</td>
<td>0.7699</td>
<td>0.6686</td>
<td>0.4466</td>
<td>0.9230</td>
<td>0.6686</td>
<td>0.4797</td>
</tr>
<tr>
<td>8</td>
<td>0.6767</td>
<td>0.5928</td>
<td>0.6093</td>
<td>0.8112</td>
<td>0.5928</td>
<td>0.6545</td>
</tr>
<tr>
<td>9</td>
<td>0.7587</td>
<td>0.6754</td>
<td>0.6398</td>
<td>0.9095</td>
<td>0.6754</td>
<td>0.6873</td>
</tr>
<tr>
<td>10</td>
<td>0.7165</td>
<td>0.7603</td>
<td>0.5676</td>
<td>0.8590</td>
<td>0.7603</td>
<td>0.6098</td>
</tr>
<tr>
<td>11</td>
<td>0.7968</td>
<td>0.8212</td>
<td>0.9309</td>
<td>0.9553</td>
<td>0.8212</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>0.6995</td>
<td>0.7323</td>
<td>0.8871</td>
<td>0.8386</td>
<td>0.7323</td>
<td>0.9529</td>
</tr>
</tbody>
</table>

$T\hat{E}_{it}$ is relative technical efficiency across all vessels in all years

$T\hat{E}_{it}^*$ is relative technical efficiency across all vessels within year t.
Figure 1: Spatial Layout of the Trawl Survey Data

Each star indicates one of 95 spatial locations fished
Figure 2a. Bearing Sea Biomass Density Plot 2002

Kernel smooth of discrete location data.

- red = highest fish density
- yellow = medium fish density
- blue = lowest fish density
Figure 2b. Bearing Sea Aggregate Catch, 2002

Kernel smooth of discrete location data.

- Red = highest catch
- Yellow = medium catch
- Blue = lowest catch
Figure 2c. Bearing Sea Aggregate Vessel Visits, 2002

Kernel smooth of discrete location data.

- **Red** = highest site visitation
- **Orange** = medium site visitation
- **Blue** = lowest site visitation
Figure 3a. Bearing Sea Biomass Density Plot 2003

Kernel smooth of discrete location data.

- Red = highest fish density
- Orange = medium fish density
- Blue = lowest fish density
Figure 3b. Bearing Sea Aggregate Catch, 2003

Kernel smooth of discrete location data.

- Red = highest catch
- Yellow = medium catch
- Blue = lowest catch
Figure 3c. Bearing Sea Aggregate Vessel Visits, 2003

Kernel smooth of discrete location data.

- red = highest site visitation
- orange = medium site visitation
- blue = lowest site visitation
Figure 4a. Bearing Sea Biomass Density Plot 2004

Kernel smooth of discrete location data.

- Red = highest fish density
- Orange = medium fish density
- Blue = lowest fish density
Kernel smooth of discrete location data.

- red = highest catch
- yellow = medium catch
- blue = lowest catch

Figure 4b. Bearing Sea Aggregate Catch, 2004
Figure 4c. Bearing Sea Aggregate Vessel Visits, 2004

Kernel smooth of discrete location data.

- red = highest site visitation
- orange = medium site visitation
- blue = lowest site visitation
Endnotes

i For Bayesian treatments of panel data frontier models see, for example, Fernandez et al. (2002), Tsionas (2002), Kim and Schmidt (2000), and Koop et al. (1997).

ii Frequent relocation of capital to maximize profits (or minimize cost) is an inevitability as the time dimension of a panel become large (in the long-run). Consider the flow of capital from the northern U.S. to the southern U.S. over the last twenty years. Of course, large T presents many challenges not addressed in this research, as we consider T fixed.

iii In particular we do not view the endogeneity as coming directly from the harvesting. That is aggressive harvesting does not lower the fish stocks in any appreciable way in the short-run.

iv It is not critical if we assume a parametric form for $\ln A_t$ and perform GMM.

v We could also follow Wooldridge and interact all variables with location dummies. However, we desire a large number of spatial locations, so the degrees of freedom loss of many location dummies may be empirically infeasible.

vi Hansen (2005) shows these results for the usual panel data case where $N \to \infty$, or $NT \to \infty$. We are simply substituting our S^* for his T to make our arguments.

vii Essentially the spatial autocovariances need to be down-weighted (or zero) for $\sqrt{S^*}$ or $\sqrt{NS^*}$ consistency.

viii This is a sparingly discussed problem in the stochastic frontier literature, when there is no spatial variation in the data to exploit. For example Ahn, Lee, and Schmidt (2005) calculate an estimate of the individual effects even though they appeal to large N for inference.

x Note that s can also represent subdivisions of time for each t, but we will not consider this here.
Infill asymptotics can be motivated by recent advancements in the resource economics literature which divide a fishery into spatially distinct “patches” (Sanchirico and Wilen, 1999, 2005). Each patch is defined by the ecological characteristics of the resource and the degree of resource heterogeneity present.

The primary target species harvested within the flatfish fishery is yellow-fin sole, however several additional species are harvested. These species are flathead sole, rock sole, rex sole, Greenland turbot, etc.. To simplify our example we aggregate all flatfish species captured into a single output. Initially we had 5 years of data, from 2000-2005. However, poolability tests indicated a structural break between 2001 and 2002, so we focus our example on the most recent portion of the data.

The 12 vessels were selected using a spatial site filter, requiring a vessel to visit at least 32 spatial locations within each year of the data set. Therefore, our analysis is only for the most mobile vessels in the fleet.

Data on vessel horsepower were available but not used due to high correlation with vessel net-tonnage.

This occurred in roughly 25% of the observations.

It may also be worth noting that if choice variables are endogenous by definition, then labor and capital are also endogenous, and the entire exercise of estimating a production function is not identified.

There are bycatch biomass surveys conducted in this particular fisheries that are known to be used by captains in their location decisions. These surveys are based on vessel catch and are designed to help captains avoid bycatch species. In this case, the biomass readings are certainly endogenous. It is not clear that this has been recognized in the fisheries literature.
Even though some of these correlations are statistically significant, we suspect they are spurious, particularly since the signs are not what we would expect if vessels' location decisions were based on biomass data.

Flatfish vessels may also be fishing to the south to follow flatfish migratory patterns or to avoid certain bycatch.

We experimented with a translog production function, but it was rejected by specifications tests.

Some of the less parsimonious specifications had problems with highly collinear interactions. In cases where correlations exceeded 0.975, some interactions were eliminated from the specification.

We could have considered the case where there are non-zero autocovariances over time, but we did not.

The linear transformation corresponds to the variance of the linear transformation of $\hat{\alpha}$ to $\hat{\alpha}_k - \hat{\alpha}_i$, $k \neq i$.

The proprietary nature of the data do not allow us to reveal any more information about this vessel than what we have provided.