Is there gender discrimination in wage? Using dummy variables and interactions Source: These are data from the 2006 Current Population Survey. 2000 working adults | wage | float | ୫9 . 0g | Average hourly earnings (in \$) | |---------|-------|----------------|---------------------------------| | educ | byte | %8.0g | Years of education | | exper | byte | %8.0g | Potential years of experience | | female | byte | %8.0g | Female | | union | byte | %8.0g | Union member | | cateduc | float | %9.0g | Educ: incomplete high, high | #### 1. Estimating difference in means between male and female: | . sum female
Variable | wage if fema | le==1;
Mean | Std. Dev. | Min | Max | |--------------------------|--------------|----------------|-----------|-------|----------| | female | 1033 | 1 | 0 | 1 | 1 | | wage | 1033 | 16.12258 | 9.715608 | 2.125 | 72.125 | | . sum female
Variable | wage if fema | le==0;
Mean | Std. Dev. | Min | Max | | female | 967 | 0 | 0 | 0.7 | 0 | | wage | 967 | 20.72326 | 12.71402 | | 82.42857 | #### Test? . ttest wage, by(female); Two-sample t test with equal variances | | | . | | | | | |---------|-------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------| | Grou | p Obs | Mean | Std. Err. | Std. Dev. | [95% Conf. | Interval] | | | 0 967
1 1033 | 20.72326
16.12258 | .4088552
.3022872 | 12.71402
9.715608 | 19.92091
15.52942 | 21.52561
16.71575 | | combine | d 2000 | 18.34701 | .2570348 | 11.49495 | 17.84293 | 18.85109 | | dif | f | 4.600677 | .5040778 | | 3.612104 | 5.58925 | | dif: | f = mean(0)
f = 0 | - mean(1) | | degrees | t of freedom | ,,,,,, | | | diff < 0
t) = 1.0000 |) Pr(| Ha: diff != | = | | iff > 0
) = 0.0000 | #### 2. Whole distribution of wage (hourly earnings in dollars) . histogram wage, by(female) ### 3. Discrimination, even after controlling for difference in characteristics: Additive female effect. . reg wage female union educ exper; | Source | ss | df | MS | | Number of obs F(4, 1995) | | 2000
168.04 | |--|---|---|------------------------|----------------------------------|--|----------|--| | Model
Residual | 66564.2059
197571.272 | | 641.0515 | | Prob > F R-squared Adj R-squared | = | 0.0000
0.2520
0.2505 | | Total | 264135.478 | 1999 13 | 2.133806 | | Root MSE | | 9.9515 | | wage | Coef. | Std. Err | . t | P> t | [95% Conf. | Int | erval] | | female
union
educ
exper
cons | -5.178971
2.250108
2.225234
.1759976 | .4459606
.6475175
.107038
.0175156 | 3.47
20.79
10.05 | 0.000
0.001
0.000
0.000 | -6.053568
.9802265
2.015316
.1416468
-16.23538 | 3.
2. | .304374
.519989
.435152
2103485 | Test? Interpretation? #### Estimating difference in means with a simple regression, not controlling for characteristics: . reg wage female; | Source | SS | df | MS | | Number of obs = 2000
F(1, 1998) = 83.30 | |---------------------|-------------------------|------------------|-------------------------|-------|---| | Model
Residual | 10571.589
253563.889 | | 10571.589
126.908853 | | Prob > F = 0.0000
R-squared = 0.0400
Adj R-squared = 0.0395 | | Total | 264135.478 | | | | Root MSE = 11.265 | | wage | Coef. | Std. E | Err. t | P> t | [95% Conf. Interval] | | female
_cons | -4.600677
20.72326 | .50407
.36227 | | 0.000 | -5.58925 -3.612104
20.01279 21.43373 | ## 4. Do females have differential return to some characteristics? #### Is there a differential effect of union on women and men's wage: interaction between dummy variables - . gen femunion=female*union; - . reg wage female union femunion educ exper; | Source | SS | df | MS | | Number of obs F(5, 1994) | | |---------------------|--------------------------|----------------------|----------------------|----------------|----------------------------------|-----------------------| | Model
Residual | 66586.3651
197549.112 | | 3317.273
.0717715 | | Prob > F R-squared Adj R-squared | = 0.0000
= 0.2521 | | Total | 264135.478 | 1999 13 | 2.133806 | | Root MSE | = 9.9535 | | | | | | | | | | wage | Coef. | Std. Err | . t | P> t | [95% Conf. | Interval] | | female | -5.094864 | .4801934 | | 0.000 | -6.036597 | -4.15313 | | union
femunion | 2.577524
612306 | .9480136
1.29469 | | 0.007
0.636 | .7183235
-3.151394 | 4.436725
1.926782 | | educ | 2.228979 | .1073513 | | 0.000 | 2.018447 | 2.439512 | | exper
_cons | .1756898
-13.33871 | .0175311
1.533331 | | 0.000 | .1413085
-16.3458 | .2100711
-10.33161 | # Is there a differential return to education for male and female? Interaction between dummy and continuous variables - . g femeduc=female*educ - . reg wage female educ femeduc | Source | | df | MS | Number of obs = | | |----------|------------|------|------------|----------------------|-------| | + | | | | F(3, 1996) = 1 | 82.86 | | Model | 56945.4372 | 3 | 18981.8124 | | 0.000 | | Residual | 207190.04 | 1996 | 103.802625 | R-squared = 0 | .2156 | | + | | | | Adj R -squared = 0 | .2144 | | Total | 264135.478 | 1999 | 132.133806 | Root MSE = 1 | 0.188 | | | | | | | | | wage | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | |---------|-----------|-----------|-------|-------|------------|-----------| | female | 8.838706 | 3.013838 | 2.93 | 0.003 | 2.928108 | 14.7493 | | educ | 2.772576 | .1560434 | 17.77 | 0.000 | 2.466551 | 3.078601 | | femeduc | -1.019981 | .2186047 | -4.67 | 0.000 | -1.448698 | 5912633 | | _cons | -16.7825 | 2.136137 | -7.86 | 0.000 | -20.97179 | -12.59321 | Female effect on wage = (8.8 - 1.02 educ)Education effect on wage = (2.77 - 1.02 female) ``` * graph; qui reg wage female educ femeduc ; predict wagehat; gen wage_female=wage if female==1; gen wage_male=wage if female==0; gen trfem=wagehat if female==1; gen trmale=wagehat if female==0; label variable trfem "predicted female"; label variable trmale "predicted male"; twoway scatter wage_female wage_male trfem trmale educ, ms(X o i i) c(i i l l); ``` ### **General case of interaction terms** Does the marginal effect of experience depend on education? - . gen expeduc=exper*educ - . reg wage female educ exper expeduc; | Source | SS | df | MS | | Number of obs F(4, 1995) | | 2000
164.13 | |--|--|--|------------------------|---|--|-----|--| | Model
Residual | 65400.0183
198735.459 | | 3350.0046
0.6167715 | | Prob > F R-squared Adj R-squared | = | 0.0000
0.2476
0.2461 | | Total | 264135.478 | 1999 13 | 32.133806 | | Root MSE | = | 9.9808 | | wage | Coef. | Std. Erı | t. t | P> t | [95% Conf. | Int | erval] | | female
educ
exper
expeduc
cons | -5.145376
2.158549
.1162292
.0049071
-12.19337 | .4478427
.1985612
.1165983
.0087011 | 10.87
1.00
0.56 | 0.000
0.000
0.319
0.573
0.000 | -6.023664
1.76914
112438
0121571
-17.44135 | 2. | .267087
.547958
3448965
0219713 | #### 5. Use of ordinal variables If education is given in 3 levels: cateduc =1 for high school dropout, =2 for high school, and =3 for some college education. - . gen cateduc1 = cateduc ==1 - gen cateduc1 cateduc --1 gen cateduc2 = cateduc ==2 gen cateduc3 = cateduc ==3 - . reg wage female cateduc2 cateduc3 exper; | Source | SS | df | MS | | Number of obs F(4, 1995) | | |---|---|--|--|----------------------------------|---|---| | Model
Residual | 43948.4454
220187.032 | | 87.1113
0.36944 | | Prob > F
R-squared
Adj R-squared | = 0.0000 $= 0.1664$ $= 0.1647$ | | Total | 264135.478 | 1999 132 | .133806 | | Root MSE | = 10.506 | | wage | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | female
cateduc2
cateduc3
exper
cons | -5.144792
3.851033
9.865773
.1773909
9.996611 | .4713192
1.011044
.9566261
.0187487 | -10.92
3.81
10.31
9.46
10.53 | 0.000
0.000
0.000
0.000 | -6.069121
1.868221
7.989682
.1406219
8.134471 | -4.220462
5.833845
11.74186
.2141599
11.85875 | Would it make sense to treat cateduc as if it was a real number? . reg wage female cateduc exper; | wage | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | |------|-----------------------|-----------|-----------------|------|-----------------------|-----------| | | -5.154772
5.417826 | | -10.93
14.24 | | -6.079443
4.671419 | 10200101 | # 6. Are the wage equations for male and female the same? . reg wage educ exper; | Source | ss | df | MS | | Number of obs | | |--|---|--|--------------------------|---|---|---| | | + | | | | F(2, 1997) | | | Model | 52115.2387 | | 7.6194 | | | = 0.0000 | | Residual | 212020.239 | 1997 106. | 169373 | | 1 | = 0.1973 | | | + | | | | Adj R-squared | | | Total | 264135.478 | 1999 132. | 133806 | | Root MSE | = 10.304 | | | | | | | | | | | | C+d Eng | | | | Tn+0m-011 | | wage | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval | | | | .1103889 | 19.86 | 0.000 | 1 07504 | 2 400010 | | educ | 2.192429 | | | 0.000 | 1.97594 | 2.408919 | | exper | .1770016 | .0180643
1.566867 | 9.80
-9.69 | 0.000 | .1415748
-18.25944 | .2124285 | | _cons | -15.18658 | 1.300007 | -9.09 | | -10.23944 | -12.113/1 | | | | | | | | | | . reg wage edi | uc exper if fe | male==1: | | | | | | · reg wage ear | do emper ii ie | marc 1, | | | | | | Source | l ss | df | MS | | Number of obs | = 1033 | | | ,
+ | | | | F(2, 1030) | | | Model | 16027.8434 | 2 8013 | .92168 | | , , | = 0.0000 | | Residual | 81385.7713 | | 015312 | | | = 0.1645 | | | ,
} | | | | Adj R-squared | | | Total | 97413.6147 | 1032 94.3 | 930375 | | Root MSE | = 8.8891 | | | , | | | | | | | | | | | | | | | wage | Coef. | Std. Err. | t | P> t | [95% Conf. | <pre>Interval]</pre> | | | + | | | | | | | educ | 1.795799 | .1337998 | 13.42 | 0.000 | 1.533248 | 2.05835 | | exper | .1210147 | .021846 | 5.54 | 0.000 | .0781469 | .1638824 | | _cons | -11.05997 | 1.938354 | -5.71 | 0.000 | -14.86355 | -7.256399 | | | | | | | | | | | | | | | | | | . reg wage edu | ıc exper if fe | male==0; | | | | | | | | | | | | | | Source | l SS | df | MS | | Number of obs | = 967 | | | ' | | | | | | | | | | | | F(2, 964) | = 174.73 | | Model | 41545.5802 | 2 2077 | 2.7901 | | F(2, 964)
Prob > F | = 174.73
= 0.0000 | | Model
Residual | 41545.5802
114604.694 | 2 2077 | 2.7901
884537 | | F(2, 964)
Prob > F
R-squared | = 174.73
= 0.0000
= 0.2661 | | Residual | 114604.694
+ | 2 2077
964 118. | 884537 | | F(2, 964) Prob > F R-squared Adj R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645 | | | ! | 2 2077
964 118. | | | F(2, 964)
Prob > F
R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645 | | Residual | 114604.694
+ | 2 2077
964 118. | 884537 | | F(2, 964) Prob > F R-squared Adj R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645 | | Residual
Total | 114604.694
+ | 2 2077
964 118.
966 161. | 884537

646246 | D> + | F(2, 964) Prob > F R-squared Adj R-squared Root MSE | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903 | | Residual | 114604.694
+ | 2 2077
964 118. | 884537 | P> t | F(2, 964) Prob > F R-squared Adj R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903 | | Residual
Total
wage | 114604.694
+ | 2 2077
964 118.
966 161. | 884537

646246
 | | F(2, 964) Prob > F R-squared Adj R-squared Root MSE | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903 | | Residual Total wage educ | 114604.694
156150.274
Coef. | 2 2077
964 118.
966 161.
Std. Err. | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval] | | Residual Total wage educ exper | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877 | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ | 114604.694
156150.274
Coef. | 2 2077
964 118.
966 161.
Std. Err. | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval] | | Residual Total wage educ exper | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877 | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ exper | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877 | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ exper _cons . g femexper= | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115 | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
3.013621
.2890426 | | Residual Total wage educ exper _cons . g femexper= | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115 | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ exper _cons . g femexper= | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115 | 884537

646246
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu | 114604.694
 156150.274
 Coef.
 2.6853
 2352962
 -20.38104
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115 | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115 | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
 | | Residual Total wage educ exper _cons . g femexper=1 . reg wage edu | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115
e femeduc f | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu Source | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115
e femeduc f | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu Source | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115
e femeduc f | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu Source Model Residual | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115
e femeduc f | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu Source Model Residual | 114604.694
 | 2 2077 964 118. 966 161. Std. Err. .1673038 .0273877 2.324115 | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Root MSE | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu Source Model Residual | 114604.694
 | 2 2077
964 118.
966 161.
Std. Err.
.1673038
.0273877
2.324115
e femeduc f | 884537
 | 0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=================================== | 114604.694
 156150.274
 Coef.
 2.6853
 .2352962
 -20.38104
 Eemale*exper
 SS
 68145.0125
 195990.465
 264135.478 | 2 2077 964 118. 966 161. Std. Err1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. | 884537
 | 0.000
0.000
0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Root MSE [95% Conf. | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=1 reg wage edu Source Model Residual Total wage educ | 114604.694
 156150.274
 Coef.
 2.6853
 .2352962
 -20.38104
 Eemale*exper
 SS
 68145.0125
 195990.465
 264135.478
 Coef. | 2 2077 964 118. 966 161. Std. Err1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. Std. Err1521241 | 884537
 | 0.000
0.000
0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.386961 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
3.013621
.2890426
-15.82013
= 2000
= 138.66
= 0.0000
= 0.2580
= 0.2561
= 9.9141
Interval] | | Residual Total wage educ exper _cons g femexper== reg wage edu Source Model Residual Total wage educ exper | 114604.694
 156150.274
 Coef.
 2.6853
 .2352962
 -20.38104
 Emale*exper
 SS
 68145.0125
 195990.465
 264135.478
 Coef.
 Coef. | 2 2077 964 118. 966 161. Std. Err1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. Std. Err1521241 .0249028 | 884537
 | 0.000
0.000
0.000
P> t
0.000
0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Adj R-squared Root MSE [95% Conf. 2.386961 .1864581 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=================================== | 114604.694 156150.274 Coef. 2.6853 .2352962 -20.38104 Cemale*exper cexper femal SS 68145.0125 195990.465 264135.478 Coef. 2.6853 .2352962 9.321065 | 2 2077 964 118. 966 161. Std. Err. .1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. Std. Err. .1521241 .0249028 3.023169 | 884537
 | 0.000
0.000
0.000
P> t
0.000
0.000
0.002 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Adj R-squared Root MSE [95% Conf. 2.386961 .1864581 3.392165 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=================================== | 114604.694
 156150.274
 Coef.
 2.6853
 .2352962
 -20.38104
 SS
 temale*exper
 ss
 68145.0125
 195990.465
 264135.478
 Coef.
 2.6853
 .2352962
 9.321065
 8895005 | 2 2077 964 118. 966 161. Std. Err. .1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. Std. Err. .1521241 .0249028 3.023169 .213099 | 884537
 | 0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.386961 .1864581 3.392165 -1.307421 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
3.013621
.2890426
-15.82013
 | | Residual Total wage educ exper _cons g femexper== reg wage edu Source Model Residual Total wage educ exper female femeduc femexper | 114604.694
 156150.274
 Coef.
 2.6853
 .2352962
 -20.38104
 SS
 temale*exper
 ss
 68145.0125
 195990.465
 264135.478
 Coef.
 2.6853
 .2352962
 9.321065
 8895005
 1142815 | 2 2077 964 118. 966 161. Std. Err. .1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. Std. Err. .1521241 .0249028 3.023169 .213099 .0348398 | 884537
 | 0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.001 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.386961 .1864581 3.392165 -1.307421 -1826078 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
 | | Residual Total wage educ exper _cons g femexper=================================== | 114604.694
 156150.274
 Coef.
 2.6853
 .2352962
 -20.38104
 SS
 temale*exper
 ss
 68145.0125
 195990.465
 264135.478
 Coef.
 2.6853
 .2352962
 9.321065
 8895005 | 2 2077 964 118. 966 161. Std. Err. .1673038 .0273877 2.324115 e femeduc f df 5 1362 1994 98.2 1999 132. Std. Err. .1521241 .0249028 3.023169 .213099 | 884537
 | 0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.001 | F(2, 964) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.356978 .1815499 -24.94195 Number of obs F(5, 1994) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 2.386961 .1864581 3.392165 -1.307421 | = 174.73
= 0.0000
= 0.2661
= 0.2645
= 10.903
Interval]
3.013621
.2890426
-15.82013
 | ``` . test femeduc femexper; . test female femeduc femexper; (1) femeduc = 0 (1) female = 0 (2) femexper = 0 (2) femeduc = 0 (3) femexper = 0 F(2, 1994) = 14.12 \\ Prob > F = 0.0000 F(3, 1994) = 54.36 \\ Prob > F = 0.0000 ``` #### The New York Times December 12, 2002, Thursday, Late Edition - Final Economic Scene; Sticks and stones can break bones, but the wrong name can make a job hard to find. By Alan B. Krueger WHAT'S in a name? Evidently plenty if you are looking for a job. To test whether employers discriminate against black job applicants, Marianne Bertrand of the University of Chicago and Sendhil Mullainathan of M.I.T. conducted an unusual experiment. They selected 1,300 help-wanted ads from newspapers in Boston and Chicago and submitted multiple resumes from phantom job seekers. The researchers randomly assigned the first names on the resumes, choosing from one set that is particularly common among blacks and from another that is common among whites. So Kristen and Tamika, and Brad and Tyrone, applied for jobs from the same pool of want ads and had equivalent resumes. Nine names were selected to represent each category: black women, white women, black men and white men. Last names common to the racial group were also assigned. Four resumes were typically submitted for each job opening, drawn from a reservoir of 160. Nearly 5,000 applications were submitted from mid-2001 to mid-2002. Professors Bertrand and Mullainathan kept track of which candidates were invited for job interviews. No single employer was sent two identical resumes, and the names on the resumes were randomly assigned, so applicants with black- and white-sounding names applied for the same set of jobs with the same set of resumes. Apart from their names, applicants had the same experience, education and skills, so employers had no reason to distinguish among them. The results are disturbing. Applicants with white-sounding names were 50 percent more likely to be called for interviews than were those with black-sounding names. Interviews were requested for 10.1 percent of applicants with white-sounding names and only 6.7 percent of those with black-sounding names. Within racial groups, applications with men's or women's names were equally likely to result in calls for interviews, providing little evidence of discrimination based on sex in these entry-level jobs. ----- Their most alarming finding is that the likelihood of being called for an interview rises sharply with an applicant's credentials -- like experience and honors -- for those with white-sounding names, but much less for those with black-sounding names. A grave concern is that this phenomenon may be damping the incentives for blacks to acquire job skills, producing a self-fulfilling prophecy that perpetuates prejudice and misallocates resources. (Source: "Are Emily and Brendan More Employable than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination" *The American Economic Review*, 2004)