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1 Warm-Up:

Remember that exam you took before break? We had a question that said this

A researcher wants to know the relationship between watching TV and school performance. After gathering
some data on hours of TV watched per day and high school GPA she runs the following regression:

G̃PAi = β̃0 + β̃1 · hoursTVi eq.(1)

Now imagine another variable, effective study, which captures how effectively a student uses his or time
while studying. As it turns out, this variable is not correlated with hoursTV , however it does have a strong
correlation with GPA. The variable effective study is added to the original regression so that the new
specification is:

ĜPAi = β̂0 + β̂1 · hoursTVi + β̂2 · effective studyi eq.(2)

1. Is β̃1 biased?

2. What effect will adding effectivestudy to the regression have on the standard errors of our coefficient
for hoursTV ?

2 Adjusted R2

As I hope you all now know, R2 is a measure of goodness of fit or how well our regression line fits the data,
and it allows us to evaluate the quality of the model after estimating it. Specifically, R2 is the proportion
of variation in our dependent variable, y, that is explained by our model, β0 + β1x1i + ...+ βkxki. Problems
you’ve run into before include:

1. To decide if one of your x variables significantly affects the y variable we use:

2. To decide if multiple variables together significantly affect the y variable we use:

But these tests compare nested models. You might look to R2 to compare non-nested models—which is a
good instinct—but there’s one problem with doing this:

What’s called the adjusted R2 (denoted R̄2) accounts for this problem, and we use this value to compare
non-nested models instead of the R2, t-tests, or F-tests. Now let’s look at the formula for R̄2 to see how it
makes up for this less useful quality of R2.

As we’ve learned, we have two formulas for SST and SSR:

SST =

SSR =



We also know that R2 can be written in terms of SST and SSR so that R2 = 1 − SSR
SST . However, SSR and

SST may sometimes be annoying to calculate. Instead we can calculate our R2 in terms of variances of our
outcome variable, y, and our residuals, û. How do we do this?

R2 = 1 − SSR

SST
=

We insert 1
n into the numerator and denominator. This is essentially multiplying by one. Doing this allows

us to convert SSR and SST to their respective variances.

However, when we try to estimate R2 we are estimating these variances from a sample. Additionally, we
know that the observed variance of a variable W from a sample, V ar(W ) = 1

n

∑
i(Wi − W̄ )2 is a biased

estimator of the population variance of W . The same is true here:

1. 1
n

∑
i(yi − ȳ)2 is a biased estimator of the population variance of y (σ2

y)

2. 1
n

∑
i(yi − ŷ)2 is a biased estimator of the variance of the true ui (σ2

u)

So what would R2 look like if we used unbiased estimators of these variances?

R̄2 =

=

=

Looking at this formula, you should notice four things:

1.

2.

3.

4.

Bottom line: the adjusted R2, which is sometimes denoted R̄2, includes a “penalty” for including variables,
so we don’t always conclude that adding variables improves the fit. However, the R2 and the adjusted R2

will be very similar for very large samples.
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3 Example: Adjusted R2

When does adjusted R2 come in handy?

...when we want to compare non-nested models. Suppose your friend Morgan thinks that older people sleep
more at night, but the increase in sleep over time is diminishing, i.e. Morgan thinks the relationship between
sleep and age is logarithmic and she shows you the results from her estimation:

Source | SS df MS Number of obs = 706

-------------+------------------------------ F( 1, 704) = 4.54

Model | 891303.042 1 891303.042 Prob>F = 0.0335

Residual | 138348533 704 196517.802 R-squared = 0.0064

-------------+------------------------------ Adj R-squared = 0.0050

Total | 139239836 705 197503.313 Root MSE = 443.3

------------------------------------------------------------------------------

sleep | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnage | 122.9174 57.71672 2.13 0.034 9.599897 236.2349

_cons | 2821.777 209.4207 13.47 0.000 2410.613 3232.941

------------------------------------------------------------------------------

Off-topic Spot check:

1. Write the equation that was estimated above.

2. What is the predicted marginal effect of an increase of age by 5% on minutes of sleep?

3. How much of the total variation in sleep is ln(age) explaining in our model?
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Onwards

You have particularly strong feelings about Morgan’s functional form assumptions. What might be prob-
lematic about this original functional form?

Having gotten very little sleep these past weeks studying for several midterms, you think that kids sleep a
lot, young adults probably sleep less (graduate students sleep even less), and old people sleep a lot.

What type of a relationship between age and sleep would do a better job of capturing this? Write your
regression equation:

Here are you results:

Source | SS df MS Number of obs = 706

-------------+------------------------------ F( 2, 703) = 5.22

Model | 2039007.98 2 1019503.99 Prob>F = 0.0056

Residual | 137200828 703 195164.762 R-squared = 0.0146

-------------+------------------------------ Adj R-squared = 0.0118

Total | 139239836 705 197503.313 Root MSE = 441.77

------------------------------------------------------------------------------

sleep | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | -21.4904 11.73674 -1.83 0.068 -44.53366 1.552851

agesquared | .3011932 .140117 2.15 0.032 .0260954 .576291

_cons | 3608.03 230.6457 15.64 0.000 3155.193 4060.867

------------------------------------------------------------------------------

These models are “non-nested” because one cannot be written as a special case of the other. Since there
are more variables in your specification, we’d expect R2 to mechanically increase, so it’s not the best way to
settle this dispute between you and Morgan. However, the adjusted R2, which will take the different number
of variables into account, is still on your side. Note that the minimum of the quadratic function is at 35.6
years. I guess we’re all going to have to wait a long time for more sleep!
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4 Scaling and Standardizing Variables

Scaling variables is intuitive, and makes for some pretty basic final exam questions. Let’s go back to
the sleep data from before but with a different specification:

ŝleep = 3315.574 − 12.189educ+ 2.7454age

What’s the one-sentence size interpretation of the coefficient on education?

Re-scaling y:

Minutes per week may not be the most interesting measure of sleep and you might wonder what the regression
results would look like if we had changed our dependent variable to hours a week instead. Rewrite that one-
sentence interpretation in terms of hours of sleep instead of minutes:

We could rewrite all of our interpretations in terms of hours instead of minutes, but it would be easier to
just run the regression with our sleep variable in terms of hours. Here are those results:

ŝleep = 55.260 − .2032educ+ .0458age

In general, if we rescale the dependent variable, y, by a factor α, then the equation we estimate be-
comes:

αy = αβ0 + αβ1x1 + ...+ αβkxk + u

In the above example, α = 1
60 , so the new β̂s will be divided by 60 too. Note that nothing else about the

regression changes (R2, t-stats, p-values, etc.).

Re-scaling x:

We do this slightly differently if we scale one of the x variables instead of y. Suppose we’d rather think
about education in units of 6 months (for some odd reason). Our initial estimates indicate that if education

increases by a whole year (still holding age fixed), ŝleep decreases by 12.189 minutes per week. This is clearly

equivalent to saying that if education increases by 6 months, ŝleep decreases by 6.095 minutes per week. We
can re-scale the education variable in Stata to be in units of half-years, or 6 months and get:

ŝleep = 3315.574 − 6.095educ+ 2.7454age

Again, we didn’t really need to run this regression to figure out what the new coefficient for education would
be. Generally, if we scale x by α, the equation becomes:

y = β0 + β1x1 + ...+ βkxk + u

= β0 +
β1
α

(αx1) + ...+ βkxk + u

In the above example, we had α = 2, which meant we had to scale our estimate of β̂educ by 1
2 . When

re-scaling an independent variable we note that again although our point estimate and standard error for
that variable change, the R2, t-stats, p-values all remain the same as do the point estimates and standard
errors of the other variables in the model.
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Standardizing variables eliminates the units in order to be able to compare the magnitude of estimates
across independent variables. For example, if I wanted to compare the β̂educ to β̂age, I would be comparing
a number that is in (minutes per week)/(years of education) units to a number that is in (minutes per
week)/(years of age) units. We can solve this issue by standardizing the variables:

Suppose we have a regression with two variables, x1 and x2:

y = β̂0 + β̂1x1 + β̂2x2 + û

We know that our regression must go through the point of averages; by that I mean that if we plugged in
x̄1 and x̄2, we would predict ȳ:

ȳ =

We can subtract the second equation from the first to get:

y − ȳ =

=

Now we can throw some algebra at this to get it into standard units:1(
y − ȳ

σy

)
=

Now we can say that controlling for x2, a one standard deviation increase in x1 leads to a
σx1

σy
β̂1 standard

deviation increase in predicted y. We call this new term the standardized coefficient or beta coefficient. In
Stata, we can get these coefficients by typing “, beta” as an option with the reg command. For example, if
we wanted standardized coefficients for our regression of sleep on age and education:

. reg sleep educ age, beta

Source | SS df MS Number of obs = 706

-------------+------------------------------ F( 2, 703) = 4.84

Model | 1892061.49 2 946030.743 Prob > F = 0.0082

Residual | 137347774 703 195373.79 R-squared = 0.0136

-------------+------------------------------ Adj R-squared = 0.0108

Total | 139239836 705 197503.313 Root MSE = 442.01

------------------------------------------------------------------------------

sleep | Coef. Std. Err. t P>|t| Beta

-------------+----------------------------------------------------------------

educ | -12.18911 6.201174 -1.97 0.050 -.0763772

age | 2.745376 1.522435 1.80 0.072 .0700694

_cons | 3315.574 111.9826 29.61 0.000 .

------------------------------------------------------------------------------

With these standardized results, we see that a one standard deviation increase in either years of education
or years in age (holding the other fixed) will decrease or increase predicted minutes of sleep per week by
.07-.08 standard deviations, respectively.

1What we’re really doing is two steps of rescaling our original estimates. (1) we scale our y variable by σy and
thus need to divide all of the coefficients on our independent variables by σy as well. Then (2) we scale each of
our independent variables by their own standard deviations. This puts the de-meaned independent variables into
standard normalized form. However, doing this then inflates the coefficient for that variable by the size of the standard
deviation.
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