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Related materials:

� Wooldridge 5e, Ch. 1.3: The Structure of Economic Data

� Wooldridge 5e, Ch. 13.1: Pooling Independent Cross Sections across Time (ignore subsection on Chow
Test).

� Wooldridge 5e, Ch. 13.3: Two-period Panel Data Analysis (stop once you finish the paragraph on
heterogeneity bias at the end of p. 460).

� Wooldridge 5e, Ch. 14.1: Fixed Effects Estimation (ignore the last two subsections on “Fixed Effects
or First Differencing” and “Fixed Effects with Unbalanced Panels”).

� Handout #17 on Two year and multi-year panel data

1 The basics of panel data

We’ve now covered three types of data: cross section, pooled cross section, and panel (also called longitudi-
nal). In a panel data set we track the unit of observation over time; this could be a state, city, individual,
firm, etc.. To help you visualize these types of data we’ll consider some sample data sets below.

Table 1. Example of cross sectional data

indiv (i) year wage edu exper female

1 1990 3.10 11 2 1
2 1990 3.24 12 22 1
. . . . . .

100 1990 5.30 12 7 0

Cross sectional data is a snapshot of a bunch of (randomly selected) individuals at one point in time.
Table 1 provides an example of a cross sectional data set, because we only observe each house once and all
of the observations are from the year 1990. Since we use i to index people, firms, cities, etc., the notation
for cross sectional data:

wagei = β0 + β1edui + β2experi + β3femalei + ui



Table 2. Example of pooled cross sectional data

house (i) year (t) hprice bdrms bthrms sqrft

1 2000 85,500 3 2.0 1600
2 2000 67,300 3 2.5 1400
. . . . . .

100 2000 134,000 4 2.5 2000
101 2010 243,000 4 3.0 2600
102 2010 65,000 2 1.0 1250

In contrast, pooled cross sectional data is multiple snapshots of multiple bunches of (randomly selected)
individuals (or states or firms or whatever) at many points in time. Table 2 is an example of a pooled
cross-sectional data set because we only observe each house once (102 houses) but some of the observations
are from the year 2000 while others are from the year 2010. We can use the same notation here as in cross
section, indexing each person, firm, city, etc. by i. Suppose we have two cross sectional datasets from two
different years; pooling the data means to treat them as one larger sample and control for the fact that some
observations are from a different year, which is done with the addition of the y2010i dummy variable:

hpricei = β0 + β1bdrmsi + β2bthrmsi + β3sqrfti + δy2010i + ui

Table 3. Example of panel data (aka, longitudinal data)

obs. i t murder rate pop density police

1 1 2000 9.3 2.24 440
2 1 2001 11.6 2.38 471
3 2 2000 7.6 1.61 75
4 2 2001 10.3 1.73 75
. . . . .

199 100 2000 11.1 11.1 520
200 100 2001 17.2 17.2 493

Finally, there is panel data which is more like a movie than a snapshot because it tracks particular people,
firms, cities, etc. over time. Table 3 provides an example of a panel data set because we observe each city i in
the data set at two points in time (the year 2000 and 2001). In summary, the data set has 100 cities but 200
observations. This particular panel data set is sometimes referenced as a ‘balanced panel data set’ because
we observe every single city in both the year 2000 and 2001. However, if we observed some of the cities in
the year 1999 but not all of them, then we would call it an ‘unbalanced panel data set’ (this distinction often
isn’t very important). With a panel data (balanced or unbalanced) we start indexing observations by t as
well as i to distinguish between our observations of city i at various points in time:

murdersit = β0 + β1popit + β2unempit + β3policeit + αi + δt + uit

where the αi represents city fixed effects and the δt represents year fixed effects. In a nutshell, αi can be
thought of as shorthand for a set of dummy (indicator/binary) city variables each multiplied by their respec-
tive regression coefficients (that is, a dummy variable for each city multiplied by its regression coefficient;
of course, we must exclude one base city to avoid perfect collinearity). Similarly, δt can be thought of as
shorthand for a set of dummy year variables each multiplied by their respective regression coefficients (that
is, a dummy variable for each year multiplied by its regression coefficient; of course, we must exclude one
base year to avoid perfect collinearity). We’ll consider this in more detail next.
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Fixed Effects Regression

I suspect many of you may be confused about what this αi term has to do with a dummy variable. It
certainly looks strange, given that it’s not attached to any variable! Let’s consider a subset of our example
panel data from Table 3, where the unit of observation is a city-year, and suppose we have data for 3 cities
for 3 years—so 9 total observations in our dataset.

obs i t murder rate pop density City1 City2 City3 Yr00 Yr01 Yr02

1 1 2000 9.3 2.24 1 0 0 1 0 0
2 1 2001 11.6 2.38 1 0 0 0 1 0
3 1 2002 11.8 2.42 1 0 0 0 0 1
4 2 2000 7.6 1.61 0 1 0 1 0 0
5 2 2001 10.3 1.73 0 1 0 0 1 0
6 2 2002 11.9 1.81 0 1 0 0 0 1
7 3 2000 11.1 6.00 0 0 1 1 0 0
8 3 2001 17.2 6.33 0 0 1 0 1 0
9 3 2002 20.3 6.42 0 0 1 0 0 1

Since we have multiple observations for each city, we can run the following regression:

murderit = β0 + β1popdenit + α2City2 + α3City3 + δ2Y r2001 + δ3Y r2002 + uit

In this regression specification City2 and City3 are each dummy variables for cities 2 and 3 in the data
set; notice I exclude an dummy variable for city 1 to avoid perfect collinearity (aka, the dummy variable
trap). Likewise, Y r2001 and Y r2002 are dummy variables for the year 2001 and the year 2002, where I have
excluded a dummy variable for the year 2000.

How do we interpret β1, α2 or δ2 here? To answer this question it is instructive to start with a different
parameter, the intercept, β0, which give us the average murder rate given zero values for all of the explanatory
variables model. Note that if City2 = 0 and City3 = 0 then by process of elimination β0 must be related
to the murder rate in City1 (the city/category excluded from the regression). But that’s not all, β0 is also
related to the murder rate in the base year 2000 because Y r2001 = 0 and Y r2002 = 0. Given this example,
we have the following interpretations.

� δt estimates the common change/difference (to all cities) in the murder rate in year t relative to the
year 2000, controlling for population density and city-specific time-invariant characteristics (the city
fixed effects). We call δt a year fixed effect because the change is common to all cities in year t; in other
words, the ‘effect’ of year t is ‘fixed’ across all cities. This is similar to the post period dummy variable
in the difference-in-differences regression specification. Just like the post period dummy variable
controls for factors changing over time that are common to both treatment and control groups, the
year fixed effects (i.e. year dummy variables) control for factors changing each year that are common
to all cities for a given year.

� Similarly, αi estimates the common change/difference (to all years) in the murder rate in city i relative
to city 1, controlling for population density and year-specific characteristics/shocks common to all cities
(the year fixed effects). We call αi a city fixed effect precisely because the difference is common to all
years in city i; in other words, the ‘effect’ of city i is ‘fixed’ across all years. This is similar to the
treatment group dummy variable in the difference-in-differences regression specification. Just like the
treatment group dummy variable controls for baseline differences between the control and treatment
groups, the city fixed effects (i.e. city dummy variables) control for baseline differences between cities.

� β1 is the estimated effect of population density on crime, controlling for city-specific time-invariant
characteristics and year-specific shocks (the city and year fixed effects).
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To see the interpretation of αi more clearly, suppose we’re only looking at observations from city 3 (i.e.
City2 = 0 and City3 = 1):

murders3t = β0 + β1popden3t + α2 · 0 + α3 · 1 + δ2Y r2001 + δ3Y r2002 + u3t

This simplifies to the following:

murders3t = β0 + β1popden3t + α3 + δ2Y r2001 + δ3Y r2002 + u3t

This is where the αi term comes from in a fixed effect regression! For any given cross sectional unit (i),
which in this example is a city, the other terms with city dummies drop out and we only have the term with
a dummy for that city, αiCityi left. For fixed effect regressions, we simply save time by writing an αi instead
of writing out each dummy variable. You can imagine that if we had 85 cities instead of 3, writing out each
dummy variable would get super tedious.

Now suppose we only look at observations from the year 2002 (i.e. Y r2001 = 0 and Y r2002 = 1):

murderi2 = β0 + β1popdeni2 + α2City2 + α3City3 + δ2 · 0 + δ3 · 1 + uit

murderi2 = β0 + β1popdeni2 + α2City2 + α3City3 + δ3 + uit

We can also write the time dummy variables in shorthand as δt.

Taking the above discussion into consideration, we often write regression equations with spatial (e.g. city)
and time (e.g. year) fixed effects as:

murderit = β0 + β1popdenit + αi + δt + uit

To be consistent with the notation in Wooldridge we can also write:

murderit = β0 + β1popdenit + ai + dt + uit

Remarks:

� It’s worth pointing out that the spatial units might be cities, counties, states, countries or even units
like individuals, households, etc. so we could have city fixed effects, county fixed effects, state fixed
effects, individual fixed effects or household fixed effects. It all depends on our unit of analysis.
Likewise the time units might be days, months, years, etc. so we could have day fixed effects, month
fixed effects, and year fixed effects. It all depends on the periods for which we observe our unit of
analysis.

� While we can often include multiple sets of fixed effects in one regression specification (again, we can
think of this as adding different sets of dummy variables), we sometimes can run into trouble. For
example, suppose we have observations on murder rates and unemployment rates for all U.S. counties
for every year between 2000 and 2010. If we run a regression with county fixed effects and year fixed
effects, then we cannot also include state fixed effects. Why? Because the county fixed effects control
for all characteristics of a county i that do not change over time. Well, guess what ... the state to
which a county belongs does not change over time. Said differently, the state to which a county belongs
is a characteristic of a county i that does not change over time. That means, once we know the values
of the county dummy variables, then we would know the values of the state dummy variables. Another
way to think about this is that there is perfect linear dependence between the county dummy variables
and state dummy variables so we cannot include both. In summary, we cannot include both county
fixed effects and state fixed effects in the same regression model.

� Because it’s more conventional in the academic literature these days, I prefer reserving Greek for
parameters (like regression coefficients which we typically estimate) and using the English alphabet
to denote the outcome and explanatory variables. But it really doesn’t matter.
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Panel Regressions in STATA:

There are a few ways to implement a regression that includes fixed effects. In the following, I use a dataset
about murder rates and unemployment rates across US states (and Washington, DC) in the years 1987,
1990, and 1993. We’ll estimate the same model three different ways in State (and I’ll point out a fourth way
to estimate the model).

1. mrdrteit = β0 + β1unemit + α2State2 + ...α51State51︸ ︷︷ ︸
Dummy for all but one state

+ δ2Y r2 + δ3Y r3︸ ︷︷ ︸
Dummy for all but one year

In STATA (note that when we write state 2 - state 51 STATA includes all variables appearing
between state 2 and state 51 in the ‘variable list’; be careful about ordering of your variable list
when using this code). Also, note that there are 51 “states” because we’ve added in Washington, DC.

reg mrdrte unem state_2 - state_51 year_2 year_3

Source | SS df MS Number of obs = 153

-------------+------------------------------ F( 53, 99) = 17.75

Model | 11622.5233 53 219.292892 Prob > F = 0.0000

Residual | 1222.81484 99 12.351665 R-squared = 0.9048

-------------+------------------------------ Adj R-squared = 0.8538

Total | 12845.3381 152 84.5088034 Root MSE = 3.5145

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

state_2 | 2.182073 2.886745 0.76 0.452 -3.545855 7.910001

state_3 | .7759888 2.897709 0.27 0.789 -4.973695 6.525672

----------------------Deleted some fixed effect results to save space---------

state_51 | -5.036179 2.927538 -1.72 0.089 -10.84505 .7726923

year_2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

year_3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

_cons | 6.077295 3.300348 1.84 0.069 -.4713127 12.6259

------------------------------------------------------------------------------

Remark: It’s worth pointing out that the estimation above often requires you to first to create a
dummy variable for each year and state. Why? Because we’ll often have one variable called year

that assumes values like 1987, 1990 or 1993. Likewise, we’ll often have one variable called state that
assumes values like Pennsylvania, Ohio, California, etc. (these are also called categorical variables, be-
cause they define categories). One way to quickly generate dummy variables for a regression involving
dummy variables is to use the following line of code immediately before running your regression:

xi i.year i.state

This code will automatically generate a set of dummy variables for years and a set of dummy variables
for states. Stata automatically doesn’t generate a dummy variable for a base group to avoid the issue
of perfect linear dependence in a regression analysis. Further, in most versions of Stata you can use
similar syntax within the regression code itself. For example, we could estimate the regression above
without first generating all the dummy variables just by using the following line of code:

reg mrdrte unem i.state i.year

You can find an example of this code on the second page of Handout 17.
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2. mrdrteit = β1unemit + α1State1 + ...α50State50︸ ︷︷ ︸
Dummy for each state

+ δ2Y r2 + δ3Y r3︸ ︷︷ ︸
Dummy for all but one year

+uit

Note that the ‘noconstant’ option tells STATA to not estimate an intercept; the idea is that if you don’t exclude a state dummy variable

then you can’t also estimate an intercept:

reg mrdrte unem state_1 - state_51 year_2 year_3, noconstant

Source | SS df MS Number of obs = 153

-------------+------------------------------ F( 54, 99) = 32.37

Model | 21588.0857 54 399.779365 Prob > F = 0.0000

Residual | 1222.81484 99 12.351665 R-squared = 0.9464

-------------+------------------------------ Adj R-squared = 0.9172

Total | 22810.9006 153 149.090853 Root MSE = 3.5145

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

state_1 | 6.077295 3.300348 1.84 0.069 -.4713127 12.6259

state_2 | 8.259368 3.061705 2.70 0.008 2.184281 14.33445

state_3 | 6.853283 2.997107 2.29 0.024 .906374 12.80019

----------------------Deleted some fixed effect results to save space---------

state_51 | 1.041116 2.871721 0.36 0.718 -4.657002 6.739234

year_2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

year_3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

------------------------------------------------------------------------------

3. mrdrteit = β0 + β1unemit + δ2Y r2 + δ3Y r3︸ ︷︷ ︸
Dummy for all but one year

+ αi︸︷︷︸
State “fixed effect”

+uit

xtset state

xtreg mrdrte unem year_2 year_3, fe

Fixed-effects (within) regression Number of obs = 153

Group variable: id Number of groups = 51

R-sq: within = 0.0676 Obs per group: min = 3

between = 0.1015 avg = 3.0

overall = 0.0314 max = 3

F(3,99) = 2.39

corr(u_i, Xb) = 0.0951 Prob > F = 0.0731

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

year_2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

year_3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

_cons | 5.778023 1.911012 3.02 0.003 1.986161 9.569885

-------------+----------------------------------------------------------------

sigma_u | 8.6877605

sigma_e | 3.5144936

rho | .85936665 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(50, 99) = 17.33 Prob > F = 0.0000
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