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Statistical Inference with Regression Analysis

Next we turn to calculating confidence intervals and hypothesis testing of a regression coefficient (β̂). Fortu-

nately, β̂ is a random variable similar to ȳ. Just like the estimated ȳs, the estimated β̂s have a distribution

with some mean,
¯̂
β, and variance, σ2

β̂
. Provided that these estimated β̂s are Normally distributed, then

we can use the same method for calculating confidence intervals and steps for hypothesis testing as we did
when drawing sample means to make statistical inferences about the population mean. In order to maintain
this proviso, we just need to impose a couple of assumptions in addition to MLR1-MLR5 (Gauss-Markov
Assumptions). First, let’s review the G-M Assumptions.

Gauss-Markov Assumptions Review:

1. What assumptions do we need for our β̂ estimators to be unbiased, i.e. E
[
β̂j

]
= βj?

� MLR.1: Linearity in parameters.

� MLR.2: Random sampling.

� MLR.3: No perfect multicollinearity.

� MLR.4: Zero conditional mean Satisfying this assumption can be difficult and violation

of it is often the cause of omitted variable bias. One way to think about this assumption is that
there should be nothing in the error term that is correlated with both our explanatory variable
(x) of interest and our outcome variable (y). If there is a factor (z) in the error term that is
correlated with both x and y then the zero conditional mean assumption will not be satisfied
and our estimator β̂j will be biased.

2. What assumptions do we need to have that V ar
(
β̂j

)
= σ2

SSTj(1−R2
j)

? We are interested in this because

it provides a notion for the precision of the OLS estimator over repeated sampling.

(a) MLR.1-4 and MLR.5: MLR.1-MLR.4 as before and MLR5 which is homoskedasticity. The
assumption of homoskedasticity tells us that for each value of x the error terms have the same
variance. The assumption is important because it allows us to calculate analytic standard errors
without much fuss (analytic just means there exists a formula for the calculation). Why do we

care about being able to calculate a variance for β̂j? Well, without it then we wouldn’t be able
to proceed to statistical inference. Why? Because in order to calculate confidence intervals and
to perform hypothesis testing, we need estimates of the standard error of β̂j , which is just the

square root of ̂var(β̂j).
(b) Note: In my view, the assumption of homoskedasticity is one of convenience and based on the

historical fact that we didn’t have a ton of computing power so it was nice to have a simple
assumption that permitted us to write down the standard error of β̂j with an explicit equation.
In practice, we are often suspect of this assumption and we’ll spend some time in the remainder
of the course on how to proceed when homoskedasticity isn’t likely satisfied.

3. MLR.1-MLR.5 are collectively referred to as the Gauss-Markov assumptions.



MLR.6 The Normality Assumption

In order to construct confidence intervals and conduct hypothesis testing about β̂ we need to know the
full distribution of β̂, not just its mean and variance. To understand why, let’s draw another picture.

Life would be a lot easier for us if we could assume that the β̂s were Normally distributed. Why? Because
if a RV is Normally distributed and we know the mean and variance, then we know the full distribution of
the RV (remember, we write X ∼ N(µ, σ2)).

In order to have β̂ ∼ N(β, var(β̂)) we require:

� MLR.1-MLR.5

� MLR.6: (Normality) The population error is independent of the explanatory variables x1, x2, ..., xk
and is Normally distributed with zero mean and variance σ2

u: u ∼ Normal(0, σ2
u).

Under MLR.1-MLR.6 (aka, the Classical Linear Model assumptions), we know that (conditional on the
sample values of the independent variables):

β̂ ∼ N(β, var(β̂))

Therefore, we can standardized our estimated β̂s so that:

β̂ − β
σβ̂

∼ N(0, 1)

Of course, we don’t actually know var(β̂) or s.e.(β̂), so then β̂−β
SE(β̂)

∼ tn−k−1.

→ What is k in the degrees of freedom formula for a regression coefficient?

Why this works?

� Basic Idea: Without going through all the details once can write: β̂ = β+ 1
s2x

∑
((xi − x̄) · ui). Thus,

β̂ can be written as a constant plus a linear combination of the ui’s, where under MLR.6 these errors
are independent and identically distributed N(0, σ2). An important fact is that a linear combination
of Normally distributed random variables is also a normally distributed random variable (Appendix
B of Wooldridge).

� In fact, in small samples this doesn’t always work.

� However, in large samples this approximately holds thanks to the Central Limit Theorem.

� Don’t get too hung up on this.
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Hypothesis tests for one parameter: Guide to Handout 12b

Thanks the Normality assumption we can apply the same formula and steps that we used for sample means to
find confidence intervals and test hypotheses for regression parameters, with a couple notable changes.

Earlier we [hopefully] convinced ourselves that under the Normality assumption we have:

β̂ − β
σβ̂

∼ N(0, 1)

However, when we are using a sample [& particularly, the sample variance of β̂], then the above expression
no longer holds. Instead, we have:

β̂ − β
σ̂β̂

∼ tn−k−1

� Note the degrees of freedom adjustment: k is the number of explanatory variables in the regression
equation.

� σ̂β̂ = s.e.(β̂j)=
σ̂u√

SSTj ·(1−R2
j )

Example 1. The wage equation Returning to our data from the 2006 Current population survey let us
consider the Stata regression output in Example 1 of Handout #12b. I estimated the following model:

lwage = β0 + β1educ+ β2exper + β3female+ β4nonwhite+ u

Here are the results:

. reg lwage educ exper female nonwhite

Source | SS df MS Number of obs = 2000

-------------+------------------------------ F( 4, 1995) = 186.11

Model | 182.76916 4 45.6922899 Prob > F = 0.0000

Residual | 489.807708 1995 .245517648 R-squared = 0.2717

-------------+------------------------------ Adj R-squared = 0.2703

Total | 672.576867 1999 .336456662 Root MSE = .4955

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ | .1166907 .0053149 21.96 0.000 .1062673 .1271141

exper | .0108903 .0008687 12.54 0.000 .0091867 .0125939

female | -.2533517 .0222186 -11.40 0.000 -.2969257 -.2097776

nonwhite | -.0374722 .0311433 -1.20 0.229 -.098549 .0236047

_cons | 1.062023 .0758905 13.99 0.000 .9131902 1.210856

------------------------------------------------------------------------------

Given the Stata output we approximate that an additional year of experience increase wages by roughly 1%,
which seems small. Let’s formally test the hypothesis that exper has no positive effect lwage.
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Step 1: Define null and alternative

H0 : βexper = 0

H1 : βexper > 0

Under the null hypothesis, the true population parameter βexper = 0, which, in words, says: Years experience
has no effect on lwages once controlling for educ, female and nonwhite.

When this null hypothesis holds, we know that t =
β̂exper−0

SE(β̂exper)
∼ tn−k−1.

Step 2: Compute the test statistic. We can plug in the values that Stata gives us into the formula
above for the t-stat.

t =
β̂exper − βexper
SE

(
β̂exper

) =
.0109− 0

.00087
= 12.53

Step 3: Choose the significance level and the critical value of the test. Find c:

1. Significance level is α = .01

2. Two sided test or One sided test

3. Degrees of freedom: n-k-1 = 2000 - 4 -1 = 1995, which is close to ∞

4. Check the t-table to see that c1%=

Step 4: Reject/Faill to reject. We reject the null hypothesis or fail to reject the null hypothe-

sis.

Step 5: Interpret in a “reader friendly” way.

At the 1% significance level, we reject the null hypothesis that the experience has no positive impact on
lwage controlling for education level, sex and non-white race-ethnicity. We find statistical evidence that
experience has a positive effect on wages.

To be perfectly clear with you all, the striked out line above is not technically wrong; in fact, the Wooldridge
textbook uses similar language. The concern raised in lecture is that we want to be very careful that evidence
of a positive effect is not misconstrued as an unambiguous claim of a positive [causal] effect of experience on
wages. It is easy for consumers of empirical results (e.g. policy-makers, bloggers, lawyers, etc.) to confuse
these two. To avoid the possibility of such confusion to the audience of readers, we are strongly encouraging
language such as the following:

“Under MLR 1-6 assumptions, we find statistical evidence that βexper is positive after con-
trolling for educ, female and non-white race-ethnicity. The validity of our statistical inference
rests on the validity of our assumptions.”

By writing our statement in terms of βexper, we obviate the issue of explicitly stating what interpretation

we attach to our estimator of it. Of course, providing an interpretation of β̂exper (e.g. whether we should

attach a causal interpretation to our estimate of β̂exper) is an important component of an empirical analysis.
However, there is no harm in distinguishing these tasks in a written summary.
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Thus, we might add to the above bold-faced language with:

“The interpretation of ˆβexper and whether is it should be considered an estimator of a causal
effect is an important one that can be addressed as a separate issue from hypothesis testing
and is, therefore, left for a separate discussion.”

This whole discussion relates to one of the first lectures in which I claimed that it is always safe to at-
tach a descriptive interpretation to the regression coefficients, but moving beyond that to attach a causal
interpretation gets us into murky water pretty quick.

We’ll have some additional discussion and material (e.g. DA 9 and solution) to share on this topic as it is
an important one.

Is this positive effect economically significant?

What is the p-value?

� To avoid arbitrariness of choosing a significance level report the p-value for a test.

� The p-value is the most stringent α level significance test for which we would still fail to reject H0.

� The p-value is the probability that we would find a β̂ as far or farther from the hypothesized value if
µ0 were true.

� The p-value reported in Stata output corresponds tot he p-value fo the test: H0 : β = 0 versus
H1 : β 6= 0. Not necessarily relevant to your hypothesis test so be careful!

Example 2. Influence of school size on test score

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Notes:
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Example 3. Pollution by paper mills

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Notes:
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