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Derivation of OLS Estimator

In class we set up the minimization problem that is the starting point for deriving the formulas for the OLS
intercept and slope coefficient. That problem was,

min
β̂0,β̂1

N∑
i=1

(yi − β̂0 − β̂1xi)2. (1)

As we learned in calculus, a univariate optimization involves taking the derivative and setting equal to 0.
Similarly, this minimization problem above is solved by setting the partial derivatives equal to 0. That is,
take the derivative of (1) with respect to β̂0 and set it equal to 0. We then do the same thing for β̂1. This
gives us,

∂W

∂β̂0

=
N∑
i=1

−2(yi − β̂0 − β̂1xi) = 0 (2)

and,
∂W

∂β̂1

=
N∑
i=1

−2xi(yi − β̂0 − β̂1xi) = 0 (3)

Note that I have used W to denote
∑N
i=1(yi − β̂0 − β̂1xi)2. Now our task is to solve (2) and (3) using some

algebra tricks and some properties of summations. Lets start with the first order condition for β̂0 (this is
Equation (2)). We can immediately get rid of the −2 and write

∑N
i=1 yi− β̂0− β̂1xi = 0. Now lets rearrange

this expression and make use of the algebraic fact that
∑N
i=1 yi = Nȳ. This leaves us with,

Nβ̂0 = Nȳ −Nβ̂1x̄. (4)

We simply divide everything by N and amazing, we have the formula that Professor Sadoulet gave in lecture!
That is,

β̂0 = ȳ − β̂1x̄. (5)

Now lets consider solving for β̂1. This one is a bit more tricky. We can first get rid of the −2 and rearrange
Equation (3) to get

∑N
i=1 xiyi − β̂0xi − β̂1x

2
i = 0. Now lets substitute our result for β̂0 into this expression

and this gives us,
N∑
i=1

xiyi − (ȳ − β̂1x̄)xi − β̂1x
2
i = 0 (6)

Note that the summation is applying to everything in the above equation. We can distribute the sum to
each term to get,

N∑
i=1

xiyi − ȳ
N∑
i=1

xi + β̂1x̄

N∑
i=1

xi − β̂1

N∑
i=1

x2
i = 0. (7)

We have of course used the property that you can always pull a constant term out in front of a summation.
Lets again use the property that

∑N
i=1 yi = Nȳ (and of course this also means that

∑N
i=1 xi = Nx̄). We

apply these facts to Equation (7) and solve for β̂1. This gives,

β̂1 =
∑N
i=1 xiyi −Nx̄ȳ∑N
i=1 x

2
i −Nx̄2

. (8)

Doesn’t quite look like the formula from class, right? Well, let us just use a couple more tricks. You can
either look up or derive for yourself that

∑N
i=1(xi − x̄)(yi − ȳ) =

∑N
i=1 xiyi − Nx̄ȳ. You can also easily

derive that
∑N
i=1(xi − x̄)2 =

∑N
i=1 x

2
i −Nx̄2. These two can be derived very easily using algebra. Now we

substitute these two properties into (8) and we have something that looks very, very familiar:

β̂1 =
∑N
i=1(xi − x̄)(yi − ȳ)∑N

i=1(xi − x̄)2
. (9)

All done!
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