Surface Water Economics

Economic Characteristics of Water

Recall that economics is concerned with the allocation of scarce resources. Although water may seem relatively abundant from a global perspective, in some geographic locations water is quite scarce. Furthermore, in most areas, water of the appropriate quality is scarce.

Two important characteristics of water as an economic good are

- Location
- Quality

Society undertakes many large-scale and expensive investment projects in the attempt to exert control over the location and/or quality of water.

Examples of Surface Water Systems:

- Reservoirs and Dams
- Rivers and Lakes
- Drinking Water Supply Facilities
- Waste Water Treatment Facilities
- Irrigation Projects
- Hydroelectric Projects
- Transportation Canals

Water Management:

Water management involves several related issues (see Figure 13.1):

- Water Provision
- Water Storage
- Water Conveyance (either by irrigation or by natural river systems)
- Water Allocation
- Water Quality Control
Water Systems and Decision Junctions

Figure 13.1

Climate

Rain & Snowmelt

Groundwater

Urban Uses

Surface Water

Surface Water Resources & Reservoirs

Environmental Uses

Aqueducts

Water Districts

Conveyance Facilities

Farmers

Land use, Water technology, Water use decisions

Government

Water Law

Allocation conveyance decisions

Delivery conveyance decisions

Pumping decisions

Pumping decisions

Pump programs

-2-
Water provision is the economic problem of determining the optimal total supply of water. Due to variations in climate and weather, the total supply of water is usually somewhat uncertain. The cyclical nature of climate and weather result in the cyclical behavior of water dependent systems. Although water managers may not have complete control over the total water supply, they can:
- adjust the location of the water supply (by conveyance) and,
- adjust the timing of water supply use (by storage).

Water allocation is the economic problem of deciding how the total supply of water will be allocated among potential users. There are many alternative (competing) users of water:

- Residential
- Industrial
- Agricultural
- Forestry
- Fisheries
- Recreational
- Hydroelectric
- Transportation

The first four are mostly **consumptive users**, meaning they withdraw water from the total water supply (a process generically known as “diversion”) and “consume” the water through either:
- (a) transforming it into water vapor (where it is “lost” to the atmosphere), or
- (b) letting it seep into the ground, or
- (c) significantly degrading its quality.

These users **treat water as an non-renewable resource**.

The last three are **non-consumptive users**. These users either leave the water in the water supply or return the water to the water supply. In either case, in general, they do not degrade water quality.
- Fisheries use water as a *medium* for fish growth.
- Hydroelectric users extract energy from the water.
- Recreation may involve using water as a medium (example: swimming) and/or extracting energy from the water (examples: white-water rafting, surfing).

These users treat water as a renewable resource.

U.S. Water Rights History and Property Rights Law

Competitive markets for surface water often fail or do not exist because of the peculiar nature of surface water property rights, or "water rights." The development of water rights law in the U.S. paralleled the development of land allocation rules during the “squatter period” of U.S. history.

United States: Land and Settlement Policy:

1600-1700: Experimentation in developing appropriate technology.

1700-1800: Establishment of modes of agricultural production on the East Coast.
1800-1900: Movement to the West.
 Growth in agricultural output through increase in land use.
 Yield per acre stable.
 - Overall, yields increased, but because settlements spread West
 Very little biological innovation.
 Land allocated by first-come, first-own basis.
 Railroads lowered costs of westward expansion.

We are now at the same point with water and air resources as we were 100 years ago with land, as air and water quantity and quality are becoming scarce.

Historically, water rights allocation in the U.S. has been based on legal property rights mechanisms known as queuing systems rather than on markets. Queuing systems are sets of laws defining property rights regarding who has priority to use water, when water may be used, how water may be used and how much water may be used. Although queuing systems are still the norm in the U.S., they are really an Artifact of the Homesteading Period of U.S. History. A queuing system is a use it or lose it system of water property rights based on the principle “first come first serve”. A queuing system:

- **Assigns water rights according to the sequence of previous uses.**
- **Encourages the rapid use** of a resource: the “Settle the West” mentality.
 - Homesteading for land rights is equivalent to the queuing system.
 - Aimed to increase settlement with the lowest cost to Government

The main difference between the economic implications of a queuing system today and those of the homesteading period is that, under conditions of water scarcity:

- **Markets are the best mechanism for allocating resources!**

Queuing systems are not efficient because they do not allocate water across users in such a way as to balance the marginal benefits and marginal costs of water use.

Although it appears that a slow move toward market-oriented mechanisms is occurring, queuing systems are still the norm. We next discuss two queuing systems commonly found in the U.S.:
Riparian Water Rights: (Developed in England)

Areas adjacent to rivers, streams and lakes are called riparian areas. Under common law, ownership of riparian land entitles the land owner to the use of the adjacent water on an "equal" standing with other riparian land owners. Each riparian land owner has the right to "reasonable use" of the water. A riparian land owner does not lose her riparian water right if she does not use the water (in contrast to prior appropriation water rights owners, discussed below).

Under a system of Riparian Rights, individuals upstream hold rights to a "reasonable use" of water before individuals downstream receive rights. Priority of water use is thus not established among riparian users. Since water rights are not based on any economic criteria, the water does not "flow to the highest valued user".

Under Riparian Water Rights, the common property problem may arise. This common property problem can lead to inefficiencies.

Another source of inefficiency arises from the fact that, under riparian water rights, water may not be diverted from the water body for use outside the watershed (the watershed of a lake, river or stream is defined as the area of land contributing water to the lake, river or stream). Hence, riparian water rights cannot be traded freely. If trade cannot occur, inefficiencies can arise.

For example, suppose agricultural land within a watershed is poor and land just outside the watershed is rich. Suppose:

- Farmer A owns the land within the watershed and
- Farmer B owns the land outside the watershed.

In this case, it might be efficient for Farmer A to sell water to Farmer B, since water would have a higher value (produce more crops) when used on the better quality land. This type of trade would not be allowed under riparian water rights. Also, under riparian water rights, senior owners (at the upper end of the watershed) are given rights before junior owners (at the lower end of the watershed). Water trading may be welfare enhancing between senior owners and junior owners as well.

Prior Appropriation Water Rights:

Under prior appropriation water rights law, the right to use water is acquired by discovering or "possessing" the water. In contrast to a riparian water right, a prior appropriation water right is "absolute," the owner of the prior appropriation water right does not share the right with anyone else. Also in contrast to a riparian water right, a prior appropriation water right may be lost if the owner of the right does not put the water to beneficial use. Although the prior appropriation approach formally assigns water rights, because poor records were kept when water was being discovered many years ago, there are often legal battles over who actually owns the rights. As is the case under riparian water rights, under prior appropriation rights water trading is also often prohibited. Hence, water may not be allocated to its highest valued uses and economic inefficiencies may arise.
Example: Prior Appropriation Water Rights and Inefficiency

In California, many agricultural users hold prior appropriation water rights, thus they have priority use of the water supply. As the urban population in California has grown, the urban demand for water has grown, and it would be efficient to reallocate some water from agricultural uses to urban uses. Because water trading is not allowed, this reallocation cannot occur and the market for water is not efficient. We can analyze this situation with the figure below.

Figure 13.2

(a) Water supply projects (dams, canals, etc.) have high initial fixed costs associated with construction and low marginal costs of supplying water up to the capacity of the project, at which point the marginal cost of water supply rises steeply because additional projects would be required in order to supply additional water. Thus, we get marginal cost of water supply curve OIS.

(b) Assume that agricultural water demand is given by curve BD.

(c) Assume that urban water demand is given by curve AC.

(d) Aggregate demand for water is given by curve AEF, if water markets exist. Under water markets, the equilibrium level of water consumed is W^* and the equilibrium price is P^*.
(e) Prior appropriation rights allocate water to different users at different times; demand is not aggregated, but discriminated by time in the residual demand curves BD and AC. Agricultural users are senior rights holders and purchase water first. They purchase an amount of water equal to \(W^A \), which is where agricultural water demand equals the marginal cost of water. The price of water in agricultural uses is \(P^A \).

(f) Once the \(W^A \) units of water have been consumed by agricultural users, urban users face residual water supply \(S^R \), and therefore consume \(W^U \) units of water and pay a price of \(P^U \). The price of water in urban areas is higher than in agricultural regions.

Because the agricultural and urban prices are unequal, the marginal benefits are unequal. Since the marginal cost to supply each type of user is essentially the same, social welfare could be increased by reallocating water from agricultural users to urban users. Thus, the situation is inefficient. Under Prior Appropriation Rights, water cannot be traded between agricultural and urban users, which ensures that this inefficiency persists. Social welfare could be improved by establishing a market system. Allowing water to be freely traded would lead to water transfers from agricultural areas to urban areas.

Notice also that the total level of water consumed is inefficiently high under a system of Prior Appropriation water rights; \(W^A + W^U > W^* \). Thus, moving to a market oriented system of water allocation can lead to greater water conservation. A major goal of water reform is to make water transfers legal and to lower the transactions costs associated with water transfers.

The Role of Water Districts

In the U.S., special local governmental agencies called water districts build dams and canals to supply water to agriculture and to supply hydroelectric power to local municipalities. The goal of Water Districts is to supply water for the public good. Water Districts also generally supply hydro-electric power from dams and sell the electricity to power companies. Revenue from the sale of electricity is then used to cross-subsidize the price of water. The justification for keeping water prices artificially low is:

• water is necessary for everyone, rich and poor alike
• Cheap water lowers the cost of producing agricultural commodities, which should have the effect of lowering food prices to consumers.
• Low water prices get senators votes from agricultural constituencies

It is against Federal and State law for a Water District to make profit from the sale of water and electricity. In many cases, water laws require the water district to operate in a budget-balancing manner, (i.e., the NPV of profits equals zero). This is called a rate of return constraint.

• in economics and the rate of return on regulated industries is often equal to a constant greater than zero.
 - Utilities in the U.S., for example, are regulated at 5% return over costs
A Static Version of a Rate of Return Constraint:

Say a water district is regulated to make some rate of return “r” in period 1 based on a fixed investment that was made in period 0 (i.e., a Dam).

Let:

- Electricity from a dam be: \(E = kQ \)
- where, \(Q \) is the volume of water released from the dam
- Price of energy = \(v \)
- Price of water = \(p \)
- Regulated rate of return = \(r \)

Then the rate of return constraint is:

\[
vE + pQ = C(Q)(1 + r), \text{ subject to } E = kQ, \text{ or }\]

\[
vkQ + pQ = C(Q)(1 + r)\]

or,

\[
p = \frac{C(Q)}{Q} + r \frac{C(Q)}{Q} - vk\]

The price of water is equal to the Average Cost of building the dam plus the allowed rate of return on AC less average revenue from electricity sales. There are two key elements to this type of solution:

- The price of water does not arise from maximizing behavior.
- The price of water is cross-subsidized by electricity revenues

These two components together imply that the price of water is set artificially low!

How the Need for Explicit Water Rights Might Arise

Suppose a water district wants to maximize social welfare by building dams and canals to handle the optimal amount of water per year, \(Q^* \). Suppose the total cost of the project is given by:

\[
TC(Q) = bQ^\beta + cQ/r
\]

where \(bQ^\beta \) = the fixed cost of building the dams and canals, \(\beta > 0 \), and \(cQ/r \) = the present value (using a discount rate of \(r \)) of annual operation, repair and administration costs \(cQ \).

Assume that after construction, maximum \(Q \) is fixed at \(Q^* \).

The Dam is built to supply both hydropower, \(E \), and also to supply water for agriculture. Assume that hydropower production \(E \) is related to water supplied by:

\(E = kQ \).

Assume that the marginal benefit of water to agriculture is:
MB(Q) = aQ^{-\alpha}

and that the price per unit of hydropower in the competitive energy market is $v. The Social Welfare problem is:

$$\max_{Q} SW(Q) = \sum_{t=0}^{\infty} \left(\frac{\int_{0}^{Q} MB(Q) dQ}{(1+r)^t} \right) - TC(Q)$$

and the FOC is:

$$\frac{dSW(Q)}{dQ} = \sum_{t=0}^{\infty} \left[\frac{MB(Q)}{(1+r)^t} \right] - MC(Q) = 0$$

In each period, MB(Q) = MB to agricultural users + MB of power generated by the dam:
Thus, MB in a single period is:

$$MB(Q) = [a \cdot Q^{-\alpha} + v \cdot k]$$

and the value of MC is given by:

$$MC(Q) = [B \cdot b \cdot Q^{\beta-1} + c / r]$$

Using the annuity formula to compute the value of the infinite sum of MB(Q):

$$\frac{[a \cdot Q^{-\alpha} + v \cdot k]}{r} - [B \cdot b \cdot Q^{\beta-1} + c / r] = 0$$

which implies that: $$a \cdot Q^{-\alpha} = r \cdot B \cdot b \cdot Q^{\beta-1} + c - v \cdot k$$

However, the water district must choose the per unit price of water to agriculture, $W, that will meet the zero rate of return constraint, i.e., that will exactly balance its budget (given the choice of Q^* it has chosen for capacity):

Problem: Find w such that $NPV[\Pi(w; Q^*)] = 0$

where, $NPV[\Pi(w; Q^*)] = \sum_{t=0}^{\infty} \left[\frac{TR(w; Q^*)}{(1+r)^t} \right] - TC(Q^*) = 0$

We can decompose TC(Q^*) into fixed and variable cost components, then move the fixed costs of building the dam to the other side to get:

$$\frac{TR(w; Q^*)}{r} - VC(Q^*) = FC(Q^*)$$
where we have applied the annuity formula to compute the value of the infinite sum. We can now substitute in for TR, VC, and FC from above to get:

$$\frac{w \cdot Q^* + v \cdot k \cdot Q^*}{r} - \frac{c \cdot Q^*}{r} = b \cdot (Q^*)^\beta$$

which can be simplified and re-arranged to yield:

$$w + v \cdot k = r \cdot b \cdot (Q^*)^{\beta - 1} + c$$

or,

$$w^* = r \cdot b \cdot (Q^*)^{\beta - 1} + c - v \cdot k$$

Comparing this equation to the conditions for a maximization of the Social Welfare function above, we find that:

<table>
<thead>
<tr>
<th>If:</th>
<th>Then:</th>
<th>So that:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 1$</td>
<td>$\text{MB}(Q) = aQ^{-\alpha} = w$</td>
<td>Market for Q clears.</td>
</tr>
<tr>
<td>$\beta < 1$</td>
<td>$\text{MB}(Q) = aQ^{-\alpha} < w$</td>
<td>Surplus water capacity exists.</td>
</tr>
<tr>
<td>$\beta > 1$</td>
<td>$\text{MB}(Q) = aQ^{-\alpha} > w$</td>
<td>Shortage of water exists.</td>
</tr>
</tbody>
</table>

Figure 13.3

- $w > \text{MB}(Q^*)$
- $w = \text{MB}(Q^*)$
- $w < \text{MB}(Q^*)$
- Q_{excess}
- Q^*
- Q_{shortage}
Now we can see why water rights are important:

When a surplus capacity or market clearing outcome arises, there are no problems with ill-defined property rights:

- Surplus water can always be managed by building up stock behind the dam or by releasing excess water into rivers

- However, if a shortage of water exists, then water must be **rationed**.

If water is rationed, the natural question is who gets first priority?

- Priority is determined by **water rights**!

- Without water markets, it is unlikely that water flows to the highest valued user.

From an economic perspective, the water authority would sell water until the MVP of water is equated across all use-types, Urban, Residential, and Agricultural.

- The water district cannot sell water for profit, and so sets an inefficient price.

- Also, revenues from hydro-electric generation are used as a form of cross-subsidization that lowers the price of water

Note: The price of water to agriculture is also indirectly subsidized by taxpayers, because it is often taxpayers who pay the fixed costs to build the water supply projects.