Rules, regulations and advice

- a) There are no restrictions on written materials; however you *may not* use a computer or any other electronic device.
- b) If we want you to use a specific metric for a question, we'll state this explicitly. If nothing is specified about a metric, use the Pythagorian.
- c) You don't have to answer the questions in order, but please number your answers carefully.
- d) Some questions are significantly easier, and quicker to complete, than others. Get the easy/quick ones out of the way first before trying the longer/harder ones.
- e) Use good judgement when it comes to deciding what to prove and what not to. For example, it would not be a good use of your time to prove that if $x \neq y$, then there exists $\epsilon > 0$ such that $d(x, y) > \epsilon$.
- f) It's very hard to get partial credit for a question unless you write at least something down. So unless you are very fast, *don't obsess*. If you are pressed for time, it's almost always better to give quick-and-dirty answer to more questions than beautiful, perfect answers to fewer. Once you finish the exam, you can always go back at the end and improve on the quick-and-dirty answers. In particular, if a question has a yes/no answer, write down the answer, then come back and justify it later.
- g) When in doubt, always try to draw a picture. Not only will it help your intuition for the problem, it may also earn you partial credit.

Problem 1 (20 points). <u>Metrics</u>:

Let **B** be the set of all sequences $\mathbf{x} = (x_1, x_2, ...)$. Define $d(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| : i = 1, 2, ...\}$.

- a) Prove that d is a metric for **B**.
- b) Now, let **F** be the set of all $\mathbf{x} \in \mathbf{B}$ such that $\sup\{|x_i| : i = 1, 2, ...\} \leq 1$.
- c) Show that **F** is closed and bounded. (Note: a set of sequences **F** is <u>bounded</u> if there exists $b \in \mathbb{R}$ such that for all elements of the set, the distance between that element and the zero sequence is less than b.)
- d) For $n \in \mathbb{N}$, let $\mathbf{F}^n = {\mathbf{x} \in \mathbf{B} \text{ s.t. } |x_i| \le 1, \text{ for } 1 \le i \le n}$. Provide a contra-positive proof that $F \subset \bigcup_{n \in \mathbb{N}} \mathbf{F}^n$.
- e) Is **F** compact? Why or why not?

Problem 2 (20 points). Sequences:

Say whether each of the following statements is true or false. If the statement is true, provide a proof. If the statement is false, give a counter-example. Assume that $X \subset \mathbb{R}$ is endowed with the Euclidean metric.

- a) Consider a sequence x_n in X.
 - i) If x_n is convergent, then the sequence $y_n = x_{n+1} x_n$ converges to 0.
 - ii) If $y_n = x_{n+1} x_n$ converges to 0, then x_n is convergent.
- b) Let x_n and y_n be sequences in **X**. Define the sequence z_n in **X** to be the "shuffled" sequence $\{x_1, y_1, x_2, y_2, ..., x_n, y_n, ...\}$. Then z_n is convergent if and only if x_n and y_n are both convergent with $\lim \{x_n\} = \lim \{y_n\}$.
- convergent with $lim\{x_n\} = lim\{y_n\}$. c) **EXTRA CREDIT:** $y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$. There exists a non-convergence sequence $\{x_n\}$ for which the sequence y_n is convergent.

Problem 3 (20 points). Hemi-continuity:

a) Consider the correspondence $\xi : \mathbb{R} \to \mathbb{R}$ defined by:

$$\xi = \begin{cases} \{0\}, & x \le 0\\ \{-\sqrt{x}\} \cup [0, \sqrt{x}], & x > 0 \end{cases}$$

- i) Sketch a graph of the correspondence ξ .
- ii) Is ξ upper-hemi continuous, lower-hemi continuous, both, or neither? Why? b) Next, consider the correspondence ξ : $(0,3] \rightarrow \mathbb{R}$ defined by:

$$\psi = \begin{cases} [x^2, x), & 0 < x < 1\\ [0, 1), & x = 1\\ (1, x^2), & 1 < x \le 3 \end{cases}$$

i) Sketch a graph of the correspondence ξ .

ii) Is ξ upper-hemi continuous, lower-hemi continuous, both, or neither? Why?

Problem 4 (20 points). <u>Bases</u>:

In the following, you need to justify your answer for full credit. You can get a fair bit of credit for carefully drawn pictures, providing they are carefully enough drawn. But not-graphical formalism would add value. There's a bit of duplication here, as you will see: think of it as a little gift.

- a) Suppose that $S = {\mathbf{v}^1, \mathbf{v}^2}$ is a basis for \mathbb{R}^2 , and consider $\mathbf{v}^3 \in \mathbb{R}^2$. Let $S_{\neg i}$ denote the set in which \mathbf{v}^i is replaced by \mathbf{v}^3 , e.g., $S_{\neg 1} = {\mathbf{v}^2, \mathbf{v}^3}$. Under what condition on \mathbf{v}^3 will
 - i) exactly one of the $S_{\neg i}$'s be a basis for \mathbb{R}^2 .
 - ii) at least one of the $S_{\neg i}$'s be a basis set for \mathbb{R}^2 .
- b) Now suppose that $S = {\mathbf{v}^1, \mathbf{v}^2, \mathbf{v}^3}$ is a basis for \mathbb{R}^3 , and consider $\mathbf{v}^4 \in \mathbb{R}^3$. Again, let $S_{\neg i}$ denote the set in which \mathbf{v}^i is replaced by \mathbf{v}^4 , e.g., $S_{\neg 1} = {\mathbf{v}^2, \mathbf{v}^3, \mathbf{v}^4}$. Under what condition on \mathbf{v}^4 will
 - i) exactly one of the $S_{\neg i}$'s be basis sets for \mathbb{R}^3 .
 - ii) exactly two of the $S_{\neg i}$'s be bases for \mathbb{R}^3 .
 - iii) all three of the $S_{\neg i}$'s be bases for \mathbb{R}^3 .

Problem 5 (20 points). Vector Spaces:

For $n \in \{0\} \cup \mathbb{N}$, an *n*'th degree *polynomial* on \mathbb{R} is a function of the form $f(x) = \sum_{k=0}^{n} a_k x^k$, for k = 0, 1, ..., n, with $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ and $a_n \neq 0$. Let $\mathcal{P}(n)$ denote the set of such functions and let \mathcal{P} denote the set of all polynomials on \mathbb{R} , i.e., $\mathcal{P} = \bigcup_n \mathcal{P}(n)$.

- a) Prove that \mathcal{P} an infinite-dimensional vector space. (To establish the infinite-dimensionality of the space, you just have to show that there no finite set can be a basis.)
- b) Is it true that for every n, $\mathcal{P}(n)$ a vector space? If so, provide a basis for $\mathcal{P}(n)$. If it is false for some subset of N's, explain why not for that subset. If it is true for some subset of N's, prove it for that subset.
- c) Consider the set $F = \bigcup_{0}^{2} \{ f \in \mathcal{P}(n), \text{ s.t. } f(0) = f(1) \}.$
 - i) Show that F is a vector space.
 - ii) Prove that F has lower dimension than the space $P = \mathcal{P}(0) \cup \mathcal{P}(1) \cup \mathcal{P}(2)$.
 - iii) Find a basis set for F. (Hint: Suppose $h(x) = \sum_{k=0}^{2} a_k x^k \in F$. What does this imply about $a_1 + a_2 + a_3$?)
 - iv) What is the dimension of F?

Problem 6 (20 points). Rank (THIS QUESTION IS FOR EXTRA CREDIT):

Consider a pair of 2×2 matrices such that AB is the zero matrix, but BA is not.

- a) Give an example of a pair A and B that satisfy the above condition. Hint: KISS (as in, keep it simply, stupid)
- b) Prove that both A and B have rank 1.