
Fall 2011 ARE211

In class midterm Exam - Answer key

Problem 1 (14 points). Analysis:

a) Prove by induction that n2+5n+1
2 ∈ Q for n ∈ N, n ≥ 2.

Ans: Base case: n = 2: n2+5n+1
2 = 5. Induction step: Assume n2+5n+1

2 = q ∈ Q. Then

consider the case n + 1:

(n + 1)2 + 5(n + 1) + 1

2
=

n2 + 2n + 1 + 5n + 5 + 1

2

=
(n2 + 5n + 1) + 2(n + 3)

2

=
n2 + 5n + 1

2
+

2(n + 3)

2

= q + n + 3 ∈ Q

b) True or False: For a closed set A in an arbitrary metric space, cl(int(A)) = A. If true, prove
it. If false, provide a counterexample.

Ans: False. Consider A = x ∈ R in Euclidean space. Then int A = ∅ and cl (∅) = ∅ 6= x.

Problem 2 (15 points). Hemi-continuity:

Consider the correspondence Ψ : R → R

Ψ(x) =

{

Q if x > 0
Q ∩ [0, 1) if x ≤ 0

a) What is the lower inverse image of V = (1, 2)? What is the upper inverse image of V = (1, 2)

Ans: The lower inverse image of V is R++, and the upper inverse image of V is the empty set.

b) Is Ψ UHC? LHC? If so, briefly explain how you would prove it (full proof not required). If
not, provide a counterexample. Hint: there’s only one point in the domain that’s at issue.

Ans: Ψ is not UHC. Consider the point x = 0 and the open interval (−1, 2). This interval

contains Ψ(0), but any open neighborhood around x = 0 will map into all of Q, which is not

contained in (−1, 2).
Ψ is LHC. To verify this, consider any nonempty open set V in R. Note that V cannot be a

single point, since this would be a closed set. Then by the density of Q in R, there exists some

q ∈ Q such that q ∈ V . Either q ∈ Q ∩ [0, 1) or q ∈ Q\(Q ∩ [0, 1)), but not both. If the former,

then q ∈ Ψ(x) for all x ∈ R, so the lower inverse image of V is R, which is open. If the latter,

then q ∈ Ψ(x) only for x > 0, so the lower inverse image of V is R++, which is also open. Thus,

the lower inverse image of any open set V is open, and Ψ is LHC.

c) On what subset of R is Ψ compact valued?
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Ans: None. For x > 0, Ψ(x) is not bounded and not compact. For x ≤ 0, Ψ(x) = Q ∩ [0, 1).
Note that 1 is an accumulation point of this set, but is not contained in the set, thus the set

Q ∩ [0, 1) is not closed and therefore not compact.

Problem 3 (14 points). Maximization:

Consider the space Rn
+ under the Euclidean metric. Let u : Rn

+ → R be a continuous function,
and consider fixed parameters p ∈ Rn

++, w ∈ R++. Are the following problems guaranteed to have
solutions? If yes, explain why (a fully extensive proof is not necessary, just provide the relevant
conditions and theorems that apply). If not, provide a counterexample.

a) maxx∈Rn

+
u(x) subject to p · x ≤ w.

Ans: Yes, the problem has a solution. First, note that the constraint set, {x ∈ Rn
+ : p · x ≤ w}

is a closed and bounded subset of our domain Rn, thus it is compact. In addition, the problem

states that u is continuous and maps to R. Thus, by the Weierstrauss Theorem, u attains a

global maximum on Rn.

b) maxx∈Rn

+
wu(x) − p · x subject to x ≥ 0 (i.e. all elements of x are weakly positive).

Ans: No, this problem may not have a solution. In this case, the issue is that our domain is

unbounded. Consider the function u(x) = x2 on R with w = 1 and p = 1. Then our maximization

problem becomes maxx∈Rn

+
x2 − x which approaches infinity as x approaches infinity.

Problem 4 (14 points). Compactness:

Prove or find a counterexample: in an arbitrary metric space (X, d), the finite union of compact
sets is compact.

Ans: True. Let V =
⋃N

n=1 Vn be a finite union of compact sets, and let U = {Uλ : λ ∈ Λ} be an

arbitrary open cover of V. Consider an arbitrary compact set Vn in our union. Since Vn compact,

then there exists a finite set Un = {Un,1, . . . , Un,m(n) : Un,i ∈ U ,∀i = 1, . . . ,m(n)} such that Vn ⊂
⋃m(n)

i=1 Un,i. Then {Un,i : i = 1, . . . ,m(n)}N
n=1 is a finite subcover of V.

Problem 5 (14 points). Vector spaces:

True/False. Determine whether the following sets are vector spaces. If they are, prove it. If not,
demonstrate why.

a) The set of all positive definite n × n matrices.

Ans: False. Consider the matrix [1]. Multiplying this matrix by the scalar -1 provides the matrix

[−1], which is not positive definite. Thus, the set is not closed under scalar multiplication.

b) For a fixed vector v ∈ Rn, the set W = {An×n : v is an eigenvector of A}.

Ans: True. Consider v ∈ Rn. Null vector: the n × n matrix that is populated with zeros has v
as an eigenvector with an eigenvalue equal to 0.

Closed under vector addition: Let A1, A2 ∈ W . Then v is an eigenvector of A1 and A2. Let

λ1, λ2 be the corresponding eigenvalues for each matrix, so A1v = λ1v and A2v = λ2v. Note by
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the linear properties of matrices, we have

A1v + A2v = λ1v + λ2v

(A1 + A2)v = (λ1 + λ2)v

Clearly B = A1 + A2 is an n × n matrix, and v is an eigenvector of B with the eigenvalue

λ1 + λ2. Thus, the set is closed under vector addition. Closed under scalar multiplication: Let

A ∈ W with associated eigenvalue λ, and r ∈ R. Then Av = λv ⇒ rAv = rλv Then v is also

an eigenvector of the matrix B = rA, with eigenvalue rλ. Thus, the set is closed under scalar

multiplication.

Problem 6 (15 points). Vector subspaces:

Consider a fixed (a, b, c) ∈ R3 and letSa,b,c = {(x, y, z) ∈ R3 : ax + by + cz = 0}

a) Show that Sa,b,c is a vector subspace of R3

Ans: Null vector: (0, 0, 0) ∈ Sa,b,c since 0a + 0b + 0c = 0.
Closed under scalar multiplication: Consider any (x, y, z) ∈ Sa,b,c and any λ ∈ R. Note

ax + by + cz = 0

⇒ λ(ax + by + cz) = λ0

⇒ aλx + bλy + cλz = 0

Thus λ ∗ (x, y, z) ∈ Sa,b,c.

Closed under vector addition: Consider two vectors (x1, y1, z1), (x2, y2, z2) ∈ Sa,b,c. Then

x1a + y1b + z1c = 0,

x2a + y2b + z2c = 0

⇒ x1a + x2a + y1b + y2b + z1c + z2c = 0

⇒ a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = 0

Thus the set is closed under vector addition.

b) True or false: S1,1,1 ∪S1,2,3 is a vector subspace of R3. If true, provide a proof. If false, show
by counterexample that some property of a vector subspace is violated.

Ans: False. The set fails vector addition. Note that (1,−1, 0) ∈ S1,1,1 and (2,−1, 0) ∈ S1,2,3.

But (1,−1, 0) + (2,−1, 0) = (3,−2, 0). This vector is in neither S1,1,1 nor in S1,2,3 since

3 ∗ 1 − 2 ∗ 1 + 0 ∗ 1 = 1 6= 0 ⇒ (3,−2, 0)not in S1,1,1

3 ∗ 1 − 2 ∗ 2 + 0 ∗ 3 = −1 6= 0 ⇒ (3,−2, 0)not in S1,2,3



4

c) Consider the set A1,2,1 = {(x, y, z) ∈ R : x + 2y + z = 1}. True or false: A1,2,1 ∩ S1,1,1 a
vector subspace of R3. If true, provide a proof. If false, show by counterexample that some
property of a vector subspace is violated.

Ans: False. Note that (0, 0, 0) 6∈ A1,2,1 so (0, 0, 0) 6∈ A1,1,1∩S1,1,1. In addition, the intersection

is not closed under addition nor scalar multiplication.

Problem 7 (14 points). Bases:

For each of the following sets of sequences in R, can you find a basis for it? If so, what is it? If
not, why not?

a) {{xn} : xn 6= 0 ⇔ n is even}

Ans: This set is not a vector space and therefore we cannot find a basis for it. Consider the

sequences {0 − 1, 0,−1, 0,−1, .} and {0, 1, 0, 1, 0, 1, }. Their sum is the null vector {0, 0, 0, 0, },
which is not in the set. Thus, the set is not closed under addition.

b) {{xn} : xn = 1 ⇒ n is odd}

Ans: No. This set does is not a vector space. For example, it is not closed under scalar

multiplication since the sequence {xn} = {0, 1/2, 0, 0, 0, . . . } is in the set, but 2 ∗ {xn} =
{0, 1, 0, 0, 0, . . . } is not in the set. Thus, a basis cannot be defined on this set.


