
Fall 2005 ARE211

Midterm Exam
Due date: Mon Oct 31, ’05, 2 p.m. (Leo’s mailbox in 207 Giannini)

There are five questions

Rules, regulations and advice

a) You must work on this exam by yourself. You are not allowed to talk to anybody
about it or exchange notes (not even old class notes) with anybody during the exam
period. You can use your own notes, the lecture notes, the answer keys to the problem
sets, as well as books such as Simon & Blume.

b) Please write up the answers neatly; otherwise points may be subtracted because your
answer is not legible.

c) Conciseness is a virtue of proofs. We will definitely take points off for excessively long
proofs. It is just not fair to give somebody the same points for writing a proof covering
three pages that other people did perfectly in four lines. (None of the questions

requires a proof that is long, so if your answer is getting really long and

messy, you must be missing something)

d) Some questions, or parts of questions might require a little trick which might be difficult
to see. So, please work on the easy questions, and the easy parts of questions that
have hard parts, first and save the difficult questions for the end. Each question has
a “theme,” so if you are having trouble with figuring out what the question is getting
at, try a different part to see if you can pick up the theme.

e) If you believe a question needs clarification, or even worse, is incorrect (I hope this
doesn’t happen) send me an email. If I consider it appropriate to reply, I will reply to
the whole class so everybody gets the same response. You might want to check your
email periodically, just to see if there’s any correspondence. Please note well:

i) last year, more than half the email questions I received were undecipherable, and
had to be returned for further clarification. This was a *major* pain. Hence
please follow the following simple instructions for submitting questions.

ii) always specify the precise part of the question to which you are referring.
iii) your questions will (should) always relate to very fine details of the question. So

if you think I’ve mis-worded a question (which, by the way, is unlikely, though
possible) specify in a full sentence the re-wording you think is correct. Write
mathematical symbols in words, i.e., if you want to write x ∈ B(x, δ) ⊂ X, write
”x in B(x,delta) subset X” and I’ll know what you mean.
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Problem 1: Local vs Global Conditions. (15 points)

a) Let f : R
n → R and suppose that there exists x̄ ∈ R

n and an open set U containing
x̄ such that f(x̄) ≤ f(x), for all x ∈ U . Do not assume that f is a differentiable

function.

i) Identify a condition on f that is sufficient to ensure that f(x̄) < f(x), for all
x ∈ R

n. Prove that the condition is sufficient.
ii) Identify a second condition on f that is sufficient to ensure that f(x̄) < f(x) for

all x ∈ R
n and is a strictly weaker condition than the first one you identified.

Prove that the condition is sufficient.
iii) Demonstrate with an example that the second condition is strictly weaker than

the first.

Problem 2: Vector Spaces. (20 points)

Fix n > 2 and let f : R
n → R be a continuously differentiable function and fix x ∈ R

n. For
i = 1, ...n, define the row vector ψi by

ψi
j =

{

1 if j = i

0 otherwise

where ψi
j denotes the j’th element of the row vector ψi. Let g = ∇f(x) ∈ R

n and consider

the set of vectors V = {v1,v2, ...,vn} ⊂ R
n+1, defined by vi = (ψi, gi) ∈ R

n+1, for each i.

a) for an arbitrary vector ααα ∈ R
n, write down, in the most economical possible form (i.e.,

using the fewest symbols you can), the linear combination of the elements of V where
the weight on the i’th element of V is αi.

b) Write down the vector space W which is the span of V . (Hint: the ideal answer to this
question is in the following form: “w ∈ R

? belongs to W if and only ???)”.
c) What is the dimension of W ? Formally support your answer.
d) Verify that V is a basis for W .
e) Write down an different basis for W , and verify that it is indeed a basis.
f) Write down a minimal spanning set for W that contains n + 1 elements. Verify that

it is a minimal spanning set, and that it is not a basis.
g) Write down a two-dimensional subspace of W .
h) W corresponds to a familiar object in multivariable calculus. What is this object?

Support your answer by relating W to the definition of the object you’ve identified.
i) Let w be a weighted combination of the elements of V , with the property that the

norm of the vector of weights is unity. The object w corresponds to another familiar
object in multivariable calculus. What is this object? Support your answer by relating
w to the definition of the object you’ve identified.
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Problem 3: Calculus. (15 points)
After he gave away the Chocolate Factory to Charlie, Willie Wonka turned to calculus. Being
an different kind of guy, he decided he would do calculus a little differently. For a function
g : R

2 → R and each x ∈ R
2, Willy defined

• the positive werivative of g at x, denoted g+(x), as lim
|k|→∞

(

g(x+(1,1)/k)−g(x)
)

√
2/k

• the negative werivative of g at x, denoted g−(x), as lim
|k|→∞

(

g(x+(1,−1)/k)−g(x)
)

√
2/k

• the gwadient of g as △g(·) = (g+(·), g−(·)).
• the wifferential of g at x is the linear function Lg,x(dx) =△g(x) · dx.

a) Using the wifferential, write an expression for the partial derivatives of g.

For the remainder of the question, let f = xy2.

b) Write down the expression for △f(·).
c) Write down the wifferential of f at (2, 3)
d) Using the wifferential, compute the partial derivatives of f .
e) Comment on the relationship between the wifferential of f at (2, 3) and the differential

of f at (2, 3). (Hint: the ideal answer to this question includes a word starting with
“v” and another starting with “b”.)

Problem 4: Taylor Theory. (25 points)

Consider the CES production function f(x, y) = xρ + yρ, where ρ ∈ (0, 1). (Actually this is
a transformation of a CES production function, but never mind.)

a) Write down the gradient and the Hessian of this function
b) Write down the second order Taylor expansion of f at (x, y; ρ). Do not use matrix

notation, i.e., multiply out the matrix. Factor out as many terms as possible.
c) Now let y = x,

i) express in the simplest possible way the expression for the second order Taylor
expansion of f(·, ·; ρ) at (x, x).

ii) Characterize the conditions on (dx, dy) under which the first order Taylor expan-
sion has the same sign as the second order expansion? (Hint: there are two cases
to consider). (Hint2: I really meant (dx, dy) not (dx, dx)).

iii) Fix x, ρ and an element v of the unit circle. Let λ̄(x,v, ρ) denote the largest λ
such that for θ < λ the first order Taylor expansion, i.e., ∇f(x, x) · θv has the
same sign as (f(x+ θv1, x+ θv2; ρ)− f(x, x; ρ)). Discuss the comparative statics
of λ̄(·, ·, ·) with respect to x, v and ρ.

iv) for two values of ρ, preferably 1/3 and 2/3, sketch the level sets of f(·, ·; ρ) that
pass through (1,1) and (2,2). Illustrate diagramatically the comparative statics
properties you’ve identified in the previous sub-question.
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Problem 5: Second Order Conditions. (25 points)

a) For this part of the question, assume that f is twice continuously differentiable and
that the gradient of f is never zero.

Let T(f,x) denote the plane that is tangent to the level set of f corresponding to
f(x) (that is, T(f,x) is the set of points that are perpendicular to ∇f(x)). Then f is
strictly quasi-concave if and only if for every x, the set T(f,x) ∼ {x} belongs to the
strict lower contour set of f corresponding to f(x). (The set A ∼ {x} consists of all
the elements of A excluding the element x.)

Now suppose that f satisfies the following condition:

for all x and all dx such that ∇f(x)′dx = 0,dx′Hf(x)dx < 0 (A)

i) Use one of Taylor’s theorems to prove that if f satisfies condition A then it
satisfies the above definition of strict quasi-concavity.

ii) Provide an example to establish that condition (A) is not necessary for the above
definition of strict quasi-concavity to hold.

b) Consider the problem, maximize f(x) s.t g(x) ≤ b, where f and g both map R
n to

R. Assume that f and g are both concave functions. In this question, we explore
conditions on g which ensure the following property

if x satisfies the Kuhn Tucker conditions, then x solves the max problem. (S)

i) Show graphically that if g is everywhere less concave than f , then property (S)
holds. (Hint: concave functions are quasi-concave).

ii) Use one of Taylor’s theorems to show that the following mathematical condition
does not capture the notion of “less concave.” Specifically, demonstrate that the
condition (B) below does not imply that condition (S) is satisfied:

for all x and all dx,dx′Hf(x)dx < dx′Hg(x)dx < 0 (B)

(Hint: let ∇f(x) =
[

1 1
]

, Hf(x) =

[

−2 0
0 −2

]

, Hg(x) =

[

−1 0
0 −1

]

. Now all you

have to do is find ∇g(x) and pick a vector dx such that one of the second order
Taylor expansions is positive, and the other is negative. Of course, you can’t just
stop there: you have to explain why these properties answer the question.)

iii) Modify condition (B) so that it does capture the notion of “less concave”. (Hint:
your condition should exhibit the property that whenever one of the second order
Taylor expansions is positive then the other one is also. Of course, you can’t just
stop there: you have to explain why these properties answer the question.)


