
Fall 2004 ARE211
MIDTERM EXAM - ANSWER KEY

Problem 1 (25 points).

Definition: Two metrics are equivalent if they define the same open sets, that is if a set is open with respect
two the first metric whenever it is open with respect to the second.

The next definition applies only to part c) of this question.
Definition: Two metrics are uniformly equivalent given ε > 0, there exists δ > 0 such that for all x,y ∈ X ,

ρ(x,y) < δ =⇒ σ(x,y) < ε and

σ(x,y) < δ =⇒ ρ(x,y) < ε

a) Show that two metrics σ and ρ on a set X are equivalent if and only if given x ∈ X and ε > 0, there
exists δ > 0 such that for all y ∈ X ,

ρ(x,y) < δ =⇒ σ(x,y) < ε (1)

σ(x,y) < δ =⇒ ρ(x,y) < ε (2)

We’ll first show that if either (1) or (2) fails, then we can construct an open set with respect to one metric
that is not open with respect to the other. Assume that (1) fails, i.e., there exists x ∈ X , ε > 0 and a
sequence (yn) such that for each n, ρ(x,yn) < 1/n but σ(x,yn) ≥ ε. Let U = Bσ(x,ε). Necessarily U
is open w.r.t. σ and contains x. However, the sequence (yn) converges to x w.r.t. ρ, but none of the
yn belong to U . Hence x is a boundary point of U w.r.t. ρ and so cannot be open. A parallel argument
can be constructed if (2) fails.

Now suppose that both (1) or (2) are satisfied. We need to show that a set U is open w.r.t. ρ iff it is
open w.r.t. σ. We will do so by picking an arbitrary set U that is open w.r.t. σ and showing that an point
x ∈U is an interior point of U w.r.t. ρ. This will show that every element of U is an interior point w.r.t.
ρ, and thus that U is open w.r.t. ρ. Since U is open w.r.t. σ, there exists ε > 0 such that Bσ(x,ε) ⊂U .
From (1), there exists δ > 0, such that Bρ(x,δ) ⊂ Bσ(x,ε) ⊂U . That is x belongs to a ρ-open subset
of U , and is hence a ρ-interior point of U . A parallel argument using (1) can be constructed to show
that if U is open w.r.t. ρ, then it is also open w.r.t. σ.

b) Show that the Pythagorian metric on R
n is equivalent to the metric ρ, defined by

ρ(x,y) = max{|xi − yi| : i = 1, ...,n}

We’ll refer to the Pythag metric as σ. Fix x ∈ R
n and ε > 0.and let δ = ε/n. It’s easier to prove that

σ(x,y) ≥ ε =⇒ ρ(x,y) ≥ δ (3)

ρ(x,y) ≥ ε =⇒ σ(x,y) ≥ δ (4)

Clearly, if ρ(x,y) ≥ ε then σ(x,y) =
√

ε2 +K, for some nonnegative number K. Hence σ(x,y) ≥ ε.
On the other hand, if σ(x,y) ≥ ε then necessarily |xi − yi| ≥ ε/

√
n > ε/n, for at least one i. But this

implies that ρ(x,y) > δ.
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c) Prove that the following metrics on R++ are equivalent but not uniformly equivalent.

ρ(x,y) = |x− y|
σ(x,y) = |1/x−1/y|

Hint: you can identify certain upper bounds and assume without loss of generality that ε > 0 is not
greater than these bounds.

To show that these are equivalent, pick x ∈ R and ε > 0. Assume without loss of generality that

ε < min(0.5,1/x). We’ll set δ =

{

min[ε/4,εx(x− ε)] if x < 1.5

ε/x(x+ ε) if x ≥ 1.5
.

Consider y ∈ Bσ(x,δ). We have two cases to consider:

i) x < 1.5x < 1.5x < 1.5: In this case, y < 2 since if y ≥ 2, then

σ(x,y) ≥ |1/1.5−1/2| = 1/6 > 1/8 > ε/4

Therefore we have

σ(x,y) = |x− y|/xy < δ ≤ ε/4

Since xy < 4, |x− y| = ρ(x,y) < ε.

ii) x ≥ 1.5x ≥ 1.5x ≥ 1.5: Note first that y < x+ ε, since if y ≥ x+ ε, then

σ(x,y) = |1/x−1/y| ≥ |1/x−1/(x+ ε)| = ε/x(x+ ε) = δ

Therefore we have

σ(x,y) = |1/x−1/y| = |x− y|/xy < δ = ε/x(x+ ε)

so that

ρ(x,y) = |x− y| < δxy = εxy/x(x+ ε) < ε

Now consider y ∈ Bρ(x,δ). We again have two cases to consider:

i) x < 1.5x < 1.5x < 1.5: Since y > x−δ > x− ε, we have

σ(x,y) = |x− y|/xy < |x− y|/x(x− ε) < δ/x(x− ε) ≤ εx(x− ε)/x(x− ε) = ε

ii) x ≥ 1.5x ≥ 1.5x ≥ 1.5: Since y > x−δ > x− ε > 1.5−0.5 = 1, we have

σ(x,y) = |x− y|/xy < |x− y| < δ < ε

However, the two metrics are not uniformly equivalent. To see this set ε = 1 and for all n ∈ N, let
δn = 1/n. Let x = 1/n and y = 1/2n. For all n, ρ(x,y) = |1/n − 1/2n| = 1/2n < δn. However,
σ(x,y) = |2n−n| ≥ 1 = ε.
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Problem 2 (25 points).

a) Given N ∈ N, N > 2, we say that a nonempty set W is an N-wector space if {v1, ...,vN} ⊂ W and
α ∈R

N implies ∑N
i=1 αivi ∈W . Show that for any N ∈N, a set W is an N-wector space iff it is a vector

space.

If N ≤ 2, there’s nothing to prove, so assume N > 2. The proof in one direction is completely trivial.
Suppose W is an N-wector space. Now consider {v1,v2} ⊂W and α ∈R

2. Extend α to R
n by adding

zeros and let {v3, ...,vN} be arbitrarily chosen. We have ∑2
i=1 αivi = ∑N

i=1 αivi ∈W , proving that W is
a vector space.

Now suppose W is an vector space. Trivially, we know that W is also a 2-wector space. Now assume
that for some n ≥ 2, we’ve proved that W is an n-wector space. (We have done so for n = 2.) We’ll
prove that W is also an (n + 1)-wector space. Arbitrarily pick {v1, ...,vn+1} ⊂ W and α ∈ R

n+1.
Let w = ∑n

i=1 αivi and note that by assumption w ∈ W . Since W is a vector space ∑n+1
i=1 αivi =

w+αn+1vn+1 ∈W . Therefore, W is an (n+1)-wector space.

b) The remaining parts of this question relate to the following construction. Fix θθθ ∈R
5 and a set K ⊂ N.

Let

X(θθθ,K) =

{

sequences in R
5 s.t.

{

xn = θθθ for all n ∈ K

xn,2 = xn,3 for all n ∈ KC

}

where xn, j denotes the j′th component of the n’th element of the sequence. What is the largest
collection of θθθ’s in R

5 and largest collection of sets K’s for which X(θθθ,K) is a finite dimensional
vector space. To get full marks for this question, you must prove that for the pair of collections that
you have identified,

i) whenever (θθθ,K) belongs to this pair of collections, then X(θθθ,K) is a finite dimensional vector
space,

ii) whenever (θθθ,K) does not belong to this pair of collections, then X(θθθ,K) is not a finite dimen-
sional vector space,

Let Θ consist of all co-finite subsets of N. A subset of N is co-finite if its complement in N, denoted
KC, is a finite set. Let θθθ = 0. Pick an arbitrary co-finite subset K ⊂ N, pick sequences x,y ∈ X(0,K),
α,β ∈ R and let z denote the sequence αx +βy. For all n ∈ K, zn = αxn +βyn = α0+β0 = 0, while
for all n ∈ KC, zn,2 = zn,3. Therefore, z ∈ X(0,K), establishing that X(0,K) is a vector space.
The only way to prove that it’s finite dimensional is to provide a basis for the space. For k ∈ KC and i =
1,2,4,5, let yk,i denote the sequence defined by, for n ∈ N and j = 1, ...,5

yk,i
n, j =











1 if n = k & i = 2 & j = 2,3

1 if n = k & i 6= 2 & j = i

0 otherwise

. We will establish that this is a basis in the answer to the next

part. For now note simply that the number of sequences we have defined is 4 times the number of
elements in KC which is a finite number. Hence X(0,K) is finite dimensional.
On the other hand,
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i) for θθθ 6= 0, pick x,y ∈ X(θθθ,K) and let z denote the sequence x + y. For all n ∈ K, zn = xn + yn =
θθθ+θθθ = 2θθθ 6= θθθ. Therefore, z ∈/ X(θθθ,K), so that X(θθθ,K) is not a vector space.

ii) If K is not co-finite, then the number of elements in a basis for X(θθθ,K) is infinite, so that X(θθθ,K)
is not finite dimensional.

c) Fix a set K ⊂ N and θθθ ∈ R
5 such that X(θθθ,K) is a finite-dimensional vector space. Find a basis for

X(θθθ,K). Do this abstractly, not for a specific K and θθθ. That is, you should give one answer that
“works” for all K and all θθθ such that X(θθθ,K) is a vector space. Demonstrate that it is a basis. Hint: it
is quite possible that you have already partially or fully completed part c) in your answer to part b).
If you have, simply refer to your previous answer; don’t repeat work you’ve already done.

A basis was provided in the answer to the previous part. Call it Y We now just have to check that it is
indeed a basis. To verify this, we need to check that: (a) Y is a subset of X(0,K); (b) Y spans X(0,K);
(c) any proper subset of Y will not span X(0,K). Clearly, each element of Y belongs to X(0,K).
Moreover for an arbitrarily chosen x ∈ X(0,K), it is clearly the case that x = ∑ j=1,2,4,5 ∑n∈KC xn, jyn, j .

Hence Y spans X(0,K). Finally, suppose that yk,i were omitted from Y , for some k ∈ KC and i =
1,2,4,5. Since for all remaining y ∈ Y , yk,i = 0, yk,i cannot be written as a linear combination of the
remaining elements of Y . Hence Y is a set of basis vectors for X(0,K),

d) Given a set K ⊂ N and θθθ ∈ R
5 such that X(θθθ,K) is a finite dimensional vector space, what is the

dimension of X(θθθ,K)?

The dimension of X(θθθ,K) is the number of elements of any basis for X(θθθ,K). As noted already, the
dimension of X(θθθ,K) is 4×#KC.

e) Given a set K ⊂ N and θθθ ∈ R
5 such that X(θθθ,K) is a finite dimensional vector space, find a minimal

spanning set for X(θθθ,K) that is not a basis. Again, do this abstractly. Demonstrate that it spans, is
minimal, but that it isn’t a basis.

For k ∈ KC, and i = 1, ...,5, let zk,i denote the sequence defined by, for n ∈ N and j = 1, ...,5,

zk,i
n, j =

{

1 if n = k & j = i

0 otherwise
. We now verify that Z = {zk,i}k∈KC,i=1,...5 is a minimal spanning set for

X(0,K) but not a basis. Clearly, no element of this set belongs to X(0,K), since for n ∈ KC, zk,i
n,2 6=

zk,i
n,3. It spans the set however since for an arbitrarily chosen x ∈ X(0,K), it is clearly the case that

x = ∑ j=1,2,4,5 ∑n∈KC xn, jyn, j . To show that Z is a minimal spanning set, pick arbitrarily k ∈ KC, and

i = 1, ...,5 and omit the sequence z = zk,i from Z. Now consider the “corresponding” member of the

basis set y ∈Y , defined above, where y =

{

yk,2 if i = 3

yk,i otherise
. By construction, yk,i = 1, but for all z′ ∈ Z

except for z, z′k,i = 0. Therefore, y cannot be written as a linear combination of the members of Z if z is
excluded.
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Problem 3 (25 points).

a) Let U denote the set of all 2× 2 matrices for which no real eigenvalues exist. Is U open, closed or
neither? Whatever your answer, specify the appropriate universe. Prove your answer.

Now for the remainder of this question, fix β ∈R+ and α ∈R and let A(α|β) =

[

2 β
α 4

]

. (I’d strongly

recommend—who would have thought—that you use a computer to check your answers. If you want
to use matlab, the following might help: A = [ a , b ; c , d ] will define a 2× 2 matrix. [Vec,Val] =
eig(A) will deliver its eigenvectors and eigenvalues. help eig will give you more details.)

U is a open set in R
4 (or, if you like, R

2 ×R
2, it doesn’t matter). To prove this, consider a matrix

A =

[

a b
c d

]

. This matrix will belong to U if there is no value of λ such that the matrix

[

a−λ b
c d −λ

]

.

has a zero determinant. This will be the case iff (a+d)2−4(ab−cd) < 0. But in this case, we can find

ε > 0, such that if A′ =

[

a′ b′

c′ d′

]

∈ BPythag(A,ε), then (a′ +d′)2 −4(a′b′− c′d′) < 0. This establishes

that A is an interior element of U .

b) Write down an expression (in terms of α and β) for the eigenvalues of A(α|β).

To solve for the eigenvalues, compute the λ’s for which the matrix

[

2−λ β
α 4−λ

]

. has determinant

zero, i.e.,

(2−λ)(4−λ)−α∗β = 0

λ = 3 +
√

1+αβ

c) Compute the largest interval I in R such that A(·|β) has real eigenvalues on this interval.

A(α|β) will have real eigenvalues provided that (1 + αβ) ≥ 0, i.e., provided that α ≥ −1/β. Hence
I = [−1/β,∞).

d) For α ∈ I, write down an expression for two distinct unit eigenvectors of A(α|β).

v is a unit eigenvector corresponding to λ iff v = (v,
√

1− v2) and
[

2−λ β
α 4−λ

][

v√
1− v2

]

=

[

0
0

]
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Because the matrix is not invertible, we need to solve for v by substitution. We have

(λ−2)v = β
√

1− v2 (5)

αv = (λ−4)
√

1− v2 (6)

From (5) we have

v2 = 1+

(

(λ−2)v
β

)2

v =

[

1+

(

λ−2
β

)2
]−0.5

=
β

√

β2 +(2−λ)2

Summarizing, the eigenvector corresponding to eigenvalue λ is

v =
[ β√

β2+(λ−2)2
, λ−2√

β2+(2−λ)2

]

which, substituting for λ

=

[

β2 +
(

1+
√

1+αβ
)2

]−1/2
[

β

1+
√

1+αβ

]

=
[

2+β2 +αβ+2
√

1+αβ
]−1/2

[

β

1+
√

1+αβ

]

(7)

e) Let v1(α) and v2(α) denote the expressions for the unit eigenvectors you have just calculated and let
Cos(α) denote the cosine of the angle between them. Write down an expression for Cos(α). (You
will be surprised at how simple the expression is.)

From the cosine rule we have

Cos(α) =
v1(α) ·v2(α)

||v1(α)|| ||v2(α)||

which, from (7)

=
β2 +1− (1+αβ)

√

β2 +(1+
√

1+αβ)2 ·
√

β2 +(1−
√

1+αβ)2

which, after a great deal of fuss and bother

=
(β−α)

√

4+(α+β)2
(8)

f) Set β = 2 and (using a computer if you like) sketch a plot of Cos(·) as a function of α. Interpret your
graph in terms of the relationship between the two eigenvectors.
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FIGURE 1. Graph of cosine of angle between eigenvectors

Fig. 1 below was generated from the following code.
fSymb = ’(Beta - Alpha)./sqrt(4 + (Alpha+Beta).2̂)’;
Beta = 2;
step = 0.1;
top = 6;
Alpha = -0.5:step:top;
Cos = eval(fSymb);
plot(Alpha,Cos);
grid on ylabel(’Cos(alpha)’);
xlabel(’alpha’);
Cos(α) represents the cosine of the angle between the two eigenvectors. Note that it equals unity,

just before the real eigenvectors disappear, i.e., at α =−1/β, equals zero when α = β and is negative
thereafter. That is, the two eigenvectors are colinear on the boundary of the interval I, make an acute
agnle with each other until α = β, and an obtuse angle thereafter. Though it’s not clear from the graph
the angle between the eigenvectors converges to 180 degrees as α increases without bound.

g) Based only on the data you have computed for this question,
i) conjecture a necessary and sufficient condition for a 2× 2 matrix to have pairwise orthogonal

eigenvectors. For what class of matrix can you prove this conjecture, based only on results
obtained by answering this question?

The conjecture is that the matrix has to be symmetric. You have enough information based on
results obtained above to prove that this result holds for all 2×2 matrices with diagonal elements
2 and 4. From (8) you know that regardless of the values of α and β, a necessary and sufficient
condition for Cos(α) = 0 is that α = β.

ii) conjecture one property for the eigenvalues, and one property for the eigenvectors, of a 2× 2
matrix which belongs to the boundary of the set of all 2×2 matrices that have real eigenvalues.
For what class of matrices do you havea enough information to prove this answer?

A matrix on the boundary has only 2 unit eigenvectors instead of the usual four, and one eigen-
value instead of two.

iii) As a consequence of the answer to part g)ii), the relationship between eigenvectors and non-
eigenvectors is fundamentally different for matrices on the above boundary vs matrices in the
interior of the set of matrices with real eigenvectors. Explain.
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FIGURE 2. Image of unit circle under A(−1|1) vs under B

Because a matrix on the boundary doesn’t have “enough” distinct eigenvectors to span ‘R2, you
cannot write non-eigenvectors as linear combinations of eigenvectors. This has many conse-
qences: in particular, you cannot determine the shape of the image of the unit circle just by
knowing what there is to know about eigenvectors and eigenvalues.

h) Construct 2 distinct 2× 2 matrices with the property that (a) their eigenvalues and eigenvectors are
identical; (b) the images of the unit circle for the two matrices are different? Hint: look at your answer
to part g).

From the answer to the previous question, we might infer that it’s possible to construct another matrix
on the boundary of U with the above property, and this is in fact the case. Replace the diagonal

elements 4 and 2 in the matrix with δ and γ, i.e., consider the abstract matrix.

[

δ β
α γ

]

. We want this

matrix to have a unique eigenvalue of 3, and an eigenvector that’s (1/
√

2,1/
√

2), but we don’t want
δ = 4. Consider the equation

0 = (δ−λ)(γ−λ)−αβ

= λ2 − (δ+γ)λ+δγ−αβ

In order to get properties (a) and (b) above, we need:

(δ+ γ)2 −4(δγ−αβ) = 0 ensuring that the term under the square root is zero

δ+ γ = λ = 3; giving us a single eigenvalue of 3

β = 3−δ giving us an eigenvector (1/
√

2,1/
√

2)

So we have 4 equations in five unknowns and one degree of freedom: We can find a one-dimensional
infinity of matrices with the same eigenvalue and vector as the one above. For example, Consider

B =

[

5 2
−2 1

]

. Comparing the image of the unit circle under A(−1|1) to it’s image under B we obtain:



9

Problem 4 (25 points).

Let A be a symmetric n×n matrix with nonzero eigenvalues (λ1, ...,λn) and consider the difference equation
system xt = Axt−1, for t ∈ N. A solution sequence for this system is any sequence (xt )∞

t=1 such that for each
t, xt = Axt−1. A steady state for this system is a solution sequence with the property that all elements of the
sequence are equal.

a) Prove the following theorem: a necessary and sufficient condition for the zero sequence to be the
unique steady state for the system defined by the matrix A is that none of A’s eigenvalues is equal to
unity.

This is a completely trivial fact! Clearly, the sequence (xt ), where xt = 0 for all t, is a steady state
since A0 = 0. To see that this sequence is the unique steady state iff none of its eigenvalues is equal
to zero, pick xt 6= 0 arbitrarily. If (xt)∞

t=1 is a steady state, then x2 = x1 = Ax1. But in this case, x1 is
an eigenvector with a unit eigenvalue.

b) Show that if |λi|< 1, for i = 1, ...,n, then for any solution sequence, (xt)∞
t=1, to the system, limt→∞ xt =

0.

Let (xt)∞
t=1 be a solution sequence. We’ll show that for given ε > 0, there exists T such that t > T

implies ||xt || < ε||x1||. Since A has full rank, x1 can be written as a nonnegative linear combination
of a selection of its eigenvectors. Choose such a selection, vi, i = 1, ...n, such that x1 belongs to the
non-negative cone defined by these eigenvectors, i.e., there exists ααα ∈ R

n
+ such that x1 = ∑n

i=1 αivi

and x2 = ∑n
i=1 αiλivi. Now assume that for t ≥ 2, xt = ∑n

i=1 αi(λi)
t−1vi. (We’ve just noted that this

is true for t = 2.) Then xt+1 = Axt = ∑n
i=1 αiA(λi)

t−1vi = ∑n
i=1 αi(λi)

tvi. Since ααα is nonnegative, it
follows that when t is even, xt+1 once again belongs to the nonnegative cone defined by vi, i = 1, ...n.
In this case, since and λ̄ = max{|λi| : i = 1, ...,n}, then ||bxt+1|| ≤ λ̄t ∑n

i=1 αivi = λ̄t ||x1||. Since by
assumption |λ̄| < 1 we can pick pick t even large enough that λ̄t < ε, so that ||bxt+1|| ≤ ε||x1||. We
have established therefore that the sequence (xt )∞

t=1 converges to zero.

c) Now suppose that |λ1| > |λi|, i = 2, ...,n, and |λ1| > 1. Let v1 be an eigenvector with eigenvalue λ1.
Let (xt)∞

t=1 be a solution sequence for the system. Characterize the limit behavior of this sequence in
terms of the angle θt between xt and v1. Your answer should be of the form: ∀ε > 0, there exists T
such that if t and x1 satisfy certain conditions, then some property can be established about this angle.
Prove your answer. (Hint: you need to identify a number of different cases. The number is bigger
than 2, but smaller than 357.)

As before, choose a selection of pairwise otrhogonal eigenvectors, vi, i = 1, ...n, such that for some
ααα ∈ R

n
+, x1 = ∑n

i=1 αivi. From the answer to the previous question, we have established that xt+1 =

∑n
i=1 αi(λi)

t vi. There are three different cases to consider.

i) Case 1: α1 = 0. Since the vectors vi, i = 1, ...n, are all orthogonal to v1, it follows that for all t

xt+1 ·v1 = (
n

∑
i=1

αi(λi)
t vi) ·v1 =

n

∑
i=1

αi(λi)
t vi ·v1 = 0

so that θt = 90◦ for all t.
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ii) Case 2: α1 > 0,λ1 > 0. In this case, again xt+1 · v1 = ∑n
i=1 αi(λi)

t vi · v1. For each t, let

γt
1 = |α1(λ1)

t |, and for each i, let βt
i = αi(λi)

t

γt
1

. Note that βt
1 = 1, for all t. We can now rewrite

the inner product as xt+1 ·v1 = γt
1 ∑n

i=1 βt
iv

i ·v1. Since λ > 1 and |λ1| > |λi|, i = 2, ...,n it follows
that for all ε > 0, there exists T such that for all t > T , |βt

i | < ε, for i = 2, ...,n. It follows that
∑n

i=1 βt
iv

i ·v1 converges to v1 ·v1. Hence (θt) converges to 0◦.
iii) Case 3: α1 > 0,λ1 < 0. In this case the argument is exactly the same as in case 2, except that

βt
1 = (−1)t , i.e., alternates between positive and negative 1. Hence (θt) has two convergent

subsequences, for even and odd values of t. (θt)t=1,3,5 converges to 180◦, while (θt)t=2,4,6
converges to 0◦.


