
Fall2015 ARE211
Final Exam - Answer key

Problem 1 (True/False) [36 points]:

Answer whether each of the following is true (T), or false (IF). Each part is worth 4 points. Not
much more than a small amount of credit will be given for a one (or two) letter answer.
(T) If the statement is true, while a rigorous proof is not essential, your credit will increase with

the thoroughness of your answer. You don’t have to reprove results that were covered in
class, but if you cite a theorem taught in class, try to make clear which theorem it is that
you are citing.

(F) If you decide that a statement is false, first check if it can be made true by adding an addi-
tional condition. Here’s an example of what I mean.

Claim: a function f is strictly concave if its Hessian is globally negative definite.

This claim is false as written, but with the following addition it is true:

Claim: a C
2 function f is strictly concave if its Hessian is globally negative definite.

If by adding a condition, a false statement can be made true, you need state what the
additional condition is in order to obtain full credit.

While some statements are “fixable” by adding a condition, others cannot be redeemed by
adding a condition. For example

Claim: a function f is quasi-concave if each of its lower contour sets is convex

This claim is irredeemably false, since it cannot be made true by adding additional words
or conditions. Do not try to convert a false statement to a true one by changing
some word/symbol in the statement. For example, the above Claim would become true
if the word “lower” were changed to “upper,” but this is not an acceptable modification.

If a statement is false, provide a counter-example. For full credit, you must clearly articulate
why your counter-example is in fact a counter example, i.e., that is satisfies all properties of
the false statement but not the conclusion. Here’s an example of what I mean. (Obviously,
I’m not going to ask you a question that’s quite this deep and subtle.)

Claim: f is twice continuously differentiable implies f(·) ≥ 0.

This extremely anal answer would be worth full marks, but, pragmatically, could be consid-
ered excessively anal.

False. Counter-example: f(x) = x3; f ′′(x) = 6x, which is clearly a continuous function of x,
verifying that f is twice continuously differentiable; yet f(−1) = −1 < 0, verifying that f(·)

is not nonnegative.



2

A) Consider the following NPP problem: max f(x) s.t. g(x) = b, where f : R
n → R and

g : Rn → R
m. If the constraint qualification is satisfied at x̄, then a necessary condition for

f to attain a maximum on the constraint set at x̄ is that g(x̄) = b and there exists λλλ ∈ R
m
+

such that ▽f(x̄)=λλλJg(x̄).

Ans: (F). When the constraint set must be satisfied with equality then the KKT requirement is
λλλ ∈ R

m, i.e., λ can be negative. For example consider a standard utility maximization problem,
where the consumer’s indifference curves are represented by circles and her utility is maximized
at zero. In this case, the solution to the above problem would require a tangency between her
indifference curves and the budget line, i.e., the gradient of the constraint and the gradient of
the objective would point in opposite directions, hence the lagrangian would be negative.

B) Let F denote the set of polynomial functions f mapping [0, 4] to R such that f(π) = c. Then
F is a vector space iff c = 0.

Ans: (T). Let f, g be polynomials satisfying f(π) = g(π) = 0. Then for α, β ∈ R, h(π) =
αf(π) + βg(π) = 0. Therefore, h ∈ F . On the other hand, suppose that f(π) = c 6= 0. Let
g = f , and let α = β = 1. Then h(π) = αf(π) + βg(π) = 2c, Therefore, h /∈ F .

C) Let G denote the set of all continuous functions mapping [0, 1] to R. G is a vector space.

Ans: (T). Let f : [0, 1] → R and g : [0, 1] → R, and pick α, β ∈ R. Then h = αf + βg maps
[0, 1] to R and is continuous. Hence G is a vector space.

D) Let G denote the set of all discontinuous functions mapping [0, 1] to R. G is a vector space.

Ans: (F). Let f(x) =

{

0 x ≤ 1

1 x > 1
and let g = 1− f . Clearly f, g ∈ G. However, let h = f + g.

Clearly h(·) = 1 and hence is continuous, i.e., h /∈ G. Hence G is not a vector space.

E) Given a thrice continuously differentiable function ξ : R
q+p → R

q, & (ȳ, x̄) ∈ R
q × R

p, if
Jfy(ȳ, x̄) is invertible, then there exists a neighborhood X of x and a unique function φ such
that for all x ∈ X, ξ(φ(x),x) = ξ(ȳ, x̄).

Ans: (F-M). the following is true: Given a thrice continuously differentiable function ξ : Rq+p →
R
q, & (ȳ, x̄) ∈ R

q×R
p, if Jfy(ȳ, x̄) is invertible, then there exists a neighborhoodX of x , a neigh-

borhood Y of y, and a unique function φ : X → Y such that for all x ∈ X, ξ(φ(x),x) = ξ(ȳ, x̄).
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F) If f : X → Y is monotone, then f is both quasi-concave and quasi-convex.

Ans: (F-M). As written the statement is not true: for a counter-example, let f : R2 → R be de-
fined by f(x, y) = x2+y2. f is convex but is not quasi-concave, for example: {x, y : f(x, y) ≥ 1}
is not a convex set. The statement would be true if we added X ⊂ R. In this case, fix α ∈ Y
and x ∈ X such that f(x) = α. Then the upper-contour set corresponding to α is [x,∞) which
is convex. Similarly, the lower-contour set corresponding to α is (∞, x] which is convex. Hence
f is both quasi-concave and quasi-convex.

G) If f : Rn → R is both quasi-convex and and quasi-concave, then f is a linear function.

Ans: (F). in addition to linear functions, functions that are affine but not linear are also both
quasi-convex and and quasi-concave.

H) Consider the following NPP problem: max f(x) s.t. g(x) ≤ b, where f : Rn → R and g : Rn →
R
m. Suppose that for all x,dx, g(x + dx) = g(x) + Jg(x)dx. A necessary condition for f to

attain a maximum on the constraint set at x̄ is that g(x̄) ≤ b and there exists λλλ ∈ R
m
+ such that

▽f(x̄)=λλλJg(x̄).

Ans: (T). For the general NPP problem, the conditions given are necessary only if the con-
straint qualification is known to be satisfied. But in this case, for every x,dx, g(x + dx) =
g(x) + Jg(x)dx, which means that all higher order terms in all Taylor expansions are zero.
Hence the function g is affine. The constraint qualification is that the linearized version of
the constraint set is locally equivalent to the original version. When g is affine, the linearized
version of the constraint set and the original version coincide. Hence the CQ is vacuously satisfied.

I) If f : Rn → T is thrice continuously differentiable, then a sufficient condition for f to be strictly
concave is that for all x, Hf(x) is negative definite.

Ans: (F-M). for m > 1, the statement is nonsense, since concavity is defined only for scalar-
valued functions. If we add the caveat m = 1 to the statement, it becomes true.
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Figure 1. Coon’s Constraint Set

Problem 2 (NPP) [28 points]:
For Coon the cat, eating and sleeping takes up at least 23 hours of the day, sometimes more.
During his waking hour, Coon likes to hunt mice and rats. Mice (m) and rats (r) are equally time-
consuming to catch: it takes Coon 6 minutes to catch either. But rodent-chasing burns calories,
specifically, 10 calories per mouse caught, and, because they are bigger, 20 calories per rat caught,
Coon can burn at most 150 calories per day, then he has to go to sleep. (Coon is a vegetarian;
he doesn’t actually eat the rodents he catches. Moreover, in this world, we allow cats to hunt
fractional (but nonnegative) rodents, i.e., Coon’s constraint set is a convex set.)

A) [5 points] Draw Coon’s constraint set, with rats on the horizontal axis (for ease of grad-
ing). Label your axes, constraint lines (time and calorie), and label the horizontal and vertical
intercepts of the constraint set. Draw the gradient vectors of each constraint. (You’re going
to add more lines to this graph later, so make sure it’s big enough.)

Ans: See Fig. 1.
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B) [5 points] Coon’s utility function is uC(m, r) = m+ αr. Write down Coon’s programming
problem, and the KKT necessary conditions for a solution to his problem.

Ans: In this question I wrote down the constraints in rodent units, i.e., because the of time
constraint Coon can’t catch more than 10 rodents; because of the calorie constraint he can’t
catch more than 15 mice or 7.5 rats. Many of you wrote down the answer in minutes units.
Both approaches are equally acceptable, since the choice of rodent vs minute units affects the
length of the gradients of the constraints, but not their directions. Since it’s only their directions
that define non-negative cones, directions are all we need for the purposes of determining which
coefficients are binding/slack/satisfied with equality but not binding. The magnitude of the λ’s
will also depend on units, as in how much more utility does Coon get from an extra minute vs
an extra rodent.
Coon’s programming problem is

max
m,r

m+ αr subject to m+ r ≤ 10;m + 2r ≤ 15;m ≥ 0; r ≥ 0

Because Coon’s payoff function is strictly monotone, the nonnegativity constraints are always
slack, so I’m going to ignore them. His KKT necessary conditions are

[

1 α
]

=
[

λtime λcal

]

[

1 1
1 2

]

m+ 2r < 15 =⇒ λcal = 0

m+ r < 10 =⇒ λtime = 0

C) [8 points] Identify conditions on α such that

(a) His time and calorie constraints are both satisfied with equality, but one of them is not
binding. Do each case.

Ans: His calorie constraint binds and his time constraint is satisfied with equality but not
binding iff α = 2
His time constraint binds and his calorie constraint is satisfied with equality but not binding
iff α = 1

(b) Coon’s eat/sleep constraint is binding (not simply satisfied with equality) and his calorie
constraint is slack (satisfied with strict inequality)

Ans: α ∈ (0, 1). He doesn’t particularly care for rats, and they require more calories, so he
doesn’t bother to catch any rats at all.

(c) Coon’s calorie constraint is binding (not simply satisfied with equality) and his sleep con-
straint is slack (satisfied with strict inequality)

Ans: α > 2. He likes rats much more than mice, so he doesn’t bother to catch any mice at
all.

(d) Both constraints are binding (not simply satisfied with equality)

Ans: α ∈ (1, 2). He likes rats a little more than mice, but not so much more that he’s
willing to give up entirely on mice.
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Figure 2. Coon’s Constraint Set

D) [5 points] For one of the two cases in subpart (b) and for subpart (d) of C), illustrate these
cases in on your graph, by drawing an appropriate level set of uC thru the solution to his problem
& the corresponding gradient of uC . Show graphically that in each case the non-negative cone
property of the KKT conditions is satisfied.

Ans: See Fig. 2.

E) [5 points] Coon would like to know how his hunting haul would change if he could just
get some more nutritious food and thus relax his calorie constraint. His intention is to use the
implicit function theorem to solve this problem, but one of his friends tells him that he can’t use
this theorem for this problem. His friend is of course correct. Explain his friend’s reasoning.

Ans: Since Coon’s objective and constraints are all linear functions, the Hessian of the Lagrangian is
zero, so that the non-zero determinant requirement of the implicit function theorem fails.
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Problem 3 (Comparative Statics) [36 points]:
Roberta faces the following constrained maximization problem:

max
x

xαβ subject to x2 + α2 ≤ β, where 0 < α <
√

β

Answers to the computational parts of this question should be in terms of α and β.
Don’t spend a lot of time trying to get the simplest possible algebraic expression, e.g.,
it probably wouldn’t be worth your time to realize that ω√

ω2γ
could be more simply

written as 1√
γ
.

A) [3 points] Write down the KKT necessary condition for Roberta’s problem,

Ans: ▽f = αβ, ▽g = 2x so the KKT condition is αβ = 2λx; if x2 + α2 < β, then λ = 0.

B) [3 points] Write down the solution (x∗, λ∗).

Ans: x∗ =
√

β − α2; λ∗ = αβ
2x∗

= αβ

2
√

β−α2
.

C) [8 points] Let M(α, β) denote the maximized value of the objective function. Compute, to
a first order approximation, how M changes when α and β change?

Ans:

∂M(α, β)

∂α
=

β(β − 2α2)
√

β − α2

∂M(α, β)

∂β
=

α(α2 − 1.5β)
√

β − α2

M(α+ dα, β + dβ) ≈
[

∂M(α,β)
∂α

∂M(α,β)
∂β

]

[

dα
dβ

]

D) [2 points] Interpret λ∗. (Hint: In the immortal words of Phaedrus, “Things are not always
as they seem; the first appearance deceives many.”)

Ans: λ∗ is the ratio of the partial derivative w.r.t. x of the objective function to the par-
tial derivative w.r.t. x of the constraint function, where both derivatives are evaluated at the
solution to the problem. It is not the shadow value of the constraint. See answer to the next part.

E) [3 points] Bonus. Interpret/explain/elucidate the hint in the previous part.

Ans: In the standard presentation of the KKT conditions, λ∗ would be the shadow value of the
constraint. But in the standard presentation, the objective does not depend on the value of the
level set of the constraint, in this case β. Since in this problem, β is also an argument of the
objective function, the standard interpretation does not apply.
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F) [14 points] Without taking derivatives of the expression for x∗ that you obtained in B),
compute dx∗

dα
and dx∗

dβ
. Show all your work!

Ans: The level set to which we apply the the implicit function theorem is

αβ − 2λx = 0

β − x2 − α2 = 0

thus
[

∂x
∂α

∂x
∂β

∂λ
∂α

∂λ
∂β

]

= −
[

−2λ −2x
−2x 0

]−1 [
β α

−2α 1

]

applying Cramer’s Rule

∂x

∂α
= − det

([

β −2x
−2α 0

])/

det

([

−2λ −2x
−2x 0

])

= − α

x
= − α

√

β − α2

∂x

∂β
= − det

([

α −2x
1 0

])/

det

([

−2λ −2x
−2x 0

])

=
1

2x
=

1

2
√

β − α2

G) [3 points] You will have noticed that you could have solved part F) much more quickly had
you been allowed to differentiate your answer to part B). This raises the question: why was the
theorem that you used ever invented in the first place? Comment.

Ans: In this particular example you were able to solve explicitly for the solution. In general this
will not be the case, indeed, in general, an explicit expression for the solution won’t exist. The
implicit function theorem works generally (except when the Jacobian condition fails), so in many
(most) cases, it’s the only way to obtain the answer.

H) [3 points] Roberta is given a one-time opportunity to purchase, for one dollar, either an
additional unit of α or an additional unit of β. Identify a condition relating α to β that will
determine whether she will choose to purchase α rather than β.

Ans: (To a first order approximation), she’ll purchase α rather than β iff ∂M(α,β)
∂α

> ∂M(α,β)
∂β

.

From part C), this property holds iff β(β − 2α2) > α(α2 − 1.5β)


