
Potential Final Exam Solutions

Real Analysis

1. Let a ∈ A, where A is an open set. Given some sequence an converging to a,
show that all but a finite number of the terms of an must be contained in the
set A.

Solution: Let a ∈ A, where A is an open set. Let a = liman. It follows
that there exists an epsilon ball around a such that bε(a) ∈ A. Because an
is a convergent sequence, every epsilon ball around a contains all but a finite
number of the terms of an. Therefore, all but a finite number of the terms of
an must be contained in the set A.

2. Let a be an accumulation point of the set B ∪ C. Show that a is either an
accumulation point of B or C, or both sets.

a. Prove that cl(B ∪ C) = cl(B) ∪ cl(C).

b. Extra Credit: Can you extend (b) to an infinite union of closures? In other
words, does cl(

⋃∞
i Bi) = cl(B1) ∪ cl(B2) ∪ ...?

Solution: (a) Since a be an accumulation point, there exists some sequence an
that converges to a, where an 6= a for all n. Since an is contained in B ∪ C,
at least one must contain an infinite number of the terms of an, though both
could. A subsequence of these terms must also be converge to a.

(b) Since cl(A) ⊂ cl(A∪B), cl(B) ⊂ cl(A∪B), we have cl(A)∪cl(B) ⊂ cl(A∪B).
We also know that A ∪ B ⊂ cl(A) ∪ cl(B), so cl(A ∪ B) ⊂ cl(cl(A) ∪ cl(B)).
cl(A) ∪ cl(B) is closed, so cl(A ∪ B) = cl(cl(A) ∪ cl(B)). So cl(A ∪ B) ⊂
cl(A) ∪ cl(B), so cl(A) ∪ cl(B) = cl(A ∪B).

(c) No. Let Bn = 1/n. Then cl(
⋃∞
i Bi) = {1/n}∪{0} but cl(B1)∪cl(B2)∪ ... =

{1/n}.

3. Prove a finite set is (i) closed, (ii) bounded, and (iii) admit a finite subcover.

Solution: (i) Let X = {x1, ..., xn} be a finite set. Pick any point c in the
complement of X. Let the set D be the set of distances from the points in X
and c. Let ε = minD. The epsilon ball around c (of size ε) is contained in the
compliment of X. So the compliment of X is open, therefore X is closed.

(ii) Suppose X is an a universe endowed with the metric d. Let Z be the set of
distances from X to zero. The set is bounded by max(Z).
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(iii) Let X = {x1, ..., xn} be a finite set with an open cover O. This means for
each xi ∈ X there is an open set Oi ∈ O such that xi ∈ Oi. Therefore X is
contained in O1 ∪ ... ∪On.

Linear Algebra

1. Let S = {(x1, x2)|x1, x2 ∈ R}. If (x1, x2), (y1, y2) ∈ S and c ∈ R, define
(x1, x2) + (y1, y2) = (x1 + 2y1, x2 + 3y2) and c(x1, x2) = (cx1, cx2). Is S a vector
space with these operations? Why or why not.

Solution: Not a vector space. Since x+ y 6= y + x if y 6= x, commutativity of
addition does not hold.

2. Let M =

[
m 1
1 m

]
. Under what conditions on m is the matrix M invertible?

(a) For each value of m that makes M non-invertible, determine the rank of M .

Solution: By row reduction (row 2 minus m times row 1):[
1 1
0 1−m2

]
.

Which is invertible if and only if 1 −m2 6= 0. So m 6= 1, m 6= −1. For each of
those m values, the matrix has rank 1.

3. True or False. If true, show why. If false, provide a counterexample.

(a) If x and y are linearly independent, and if {x; y; z} is linearly dependent,
then z is in the span of {x; y}.

Solution: True. Since x and y are linearly independent, and x, y, z is linearly
dependent, by definition, z can be expressed as a linear combination of x and y,
and therefore z is in the span of x and y.

(b) Let A = {a1, ..., aj} where ai ∈ Rk for i = 1, ...j. If j < k then A is a
linearly independent set.

Solution: False. A = {[1, 0, 0], [2, 0, 0]} is a set of linear dependent vectors.

(c) If A is a linearly dependent set of vectors, then each vector in A is a linear
combination of the other vectors in A.

Solution: Consider A = {[1, 0, 0], [0, 1, 0], [0, 2, 0]}. Though this is a set of
linearly dependent vectors, the first vector cannot be expressed as a linear com-
bination of the other vectors.
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(d) If A is symmetric, then A is invertible.

False: Let A be a 2x2 matrix of zeros.

(e) If A is a 2x2 matrix such that A(Ax) = 0 for all x ∈ R, then A is the zero
matrix.

Solution: False.

[
0 1
0 0

]
.

(f) If V is a vector space and F is a finite set of vectors in V , then some subset
of F forms a basis for V.

Solution: False. Let V = R3 and F = {(1, 0, 0), (0, 1, 0)}.

(g) The set of polynomials of degree ≤ k, where k ∈ N is a vector space. (Re-

minder: an k’th degree polynomial is a function of the form f(x) =
∑k
i=0 aix

i,
where (a0, ..., an) ∈ Rn+1 and an 6= 0

Solution: True. It is closed under addition and scaler multiplication.

Calculus

1. Let f : R3 → R, f = xy2z3 + zex
2y

(a) what is the gradient of f?

Solution: ∇f =

 y2z3 + 2xzex
2y

2xyz3 + zx2ex
2y

3xy2z2 + ex
2y


(b) what is the directional derivative of f, fh, at (1, 2, 3) when h = (3, 1, 4)?

Solution: ∇f(1, 2, 3) · h
||h|| .

(c) Now let y = x1/2 and z = x1/6. What is the total derivative of f with
respect to x. Use this to approximate the change in f when x increases by 0.5
from (1, 2, 3).

Solution: δf
δx = fx + fy

δy
δx + fz

δz
δx .

(d) Rewrite the function f as a function h : R → R. What is h′(x)? Use this
derivative to approximate the change in f when x increases by 0.5 from (1, 2, 3).

Solution: h(x) = x(x1/2)2(x1/6)3 + (x1/6)ex
2(x1/2)
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h(x) = x5/2 + x1/6ex
3/2

2. Suppose f : R → R is k times differentiable and k > 1. Suppose that
f
′
(x0) = ... = f (k−1)(x0) = 0 and f (k)(x0) 6= 0. Prove:

(a) if k is even and f (k)(x0) < 0, then f attains a is a strict local max at x0.

Solution: Since k is even and f (k)(x0) < 0, then Tn < 0 for all dx. By
the Taylor Young theorem, the absolute value of the expansion dominates the
remainder. So f(x+ dx) < f(x) for all dx.

(b) if k is even and f (k)(x0) > 0, then f attains a is a strict local min at x0.

Solution: Since k is even and f (k)(x0) > 0, then Tn > 0 for all dx. By
the Taylor Young theorem, the absolute value of the expansion dominates the
remainder. So f(x+ dx) > f(x) for all dx.

(c) if k is odd, x0 is not necessarily a local max nor a local min.

Solution: If k is odd, then you do not know the sign of (x− x0)n.

NPP

1. Minimize x2 + y2 − 4xy − βx subject to 4x+ 3y ≤ 10, y − 4xα ≥ −2, x ≥ 0,
y ≥ 0 (α, β ∈ R).

(a) Does a solution exist for this problem? Explain why or why not.

Solution: A solution to this problem does exist. The objective function is
continuous and the constraint set is compact, so the extreme value theorem
guarantees a solution.

(b) If a solution exists, how could you be sure that the solution is unique?

Solution: Theorem 2.

(c) Write the problem in the canonical NPP format.

Solution:

Maximize −x2− y2 + 4xy+ βx subject to 4x+ 3y ≤ 10, −y+ 4xα ≤ 2, −x ≤ 0,
−y ≤ 0.

(d) If α = 1, explain why the constraint qualification is satisfied at all points
in language that involves no mathematical symbols or the phrase ”linear inde-
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pendence”. Show the constraint qualification holds at all potential solutions if
α = 2?

Solution: The constraint qualification is satisfied at a point if the linearized
version of the constraint set is, in a neighborhood of that point, almost identical
to the original constraint set. The constraints are linear, so the linearized version
of the constraints is identical to the constraint set at every point in the constraint
set.

If α = 2,

CQ =

[
43

8x− 1

]
(e) Assume β = 9, α = 2. Write the lagrangian, derive all of the first-order
conditions to the NPP problem, and solve.

Solution:

L = −x2 − y2 + 4xy + 9x+ λ1()

If λ1 > 0 and λ2 = 0 then x = 28/37, y = 86/37, and λ1 = 14/37.

(f) Does the gradient vanish at any points on the constraint set?

Solution:

∇f =

[
−2x+ 4y + 9
−2y + 4x

]
The gradient vanishes if x = frac12y and −2(frac12y) + 4(frac12y) + 9 = 0.
So −y + 2y + 9 = 0, and this only occurs at y = −9, which is outside of the
constraint set.

(g) How would you check the second-order conditions? (Just describe the pro-
cess, and if you would use any matrices or equations, write those out).

Solution: Check the principal minors of the bordered hessian.

(h) Apply the Envelope Theorem to estimate the solution to the NPP problem
where β = 9.2.

Solution: δL
δβ = x. So M(β + dβ) ≈M(β) + x(0.2) = −(28/37)2 − (86/37)2 +

4(28/37)y + 9(28/37) + (28/37)(0.2)

Envelope Theorem/Implicit Function Theorem
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1. Consider the equation x− ey + z2 = 4. Define f(x, y, z) = x− ey + z2 − 4

(a) Does the equation define z as an implicit function of x, y at (x, y) = (6, 0)?

Solution: 6− e0 + z2 = 4, 5 + z2 = 4, z2 = −1, so there is no real solution.

(b) Does the equation define z as an implicit function of x, y at (x, y) = (5, 0)?
Can you write z as an implicit function in a neighborhood of (x, y) = (5, 0).

Solution: 5−e0 +z2 = 4, 4+z2 = 4, z2 = 0, z = 0. But, at (x, y, z) = (5, 0, 0),
δf
δz = 2z = 0, so we cannot use the IFT.

(c) Does the equation define z as an implicit function of x, y at (x, y) = (−4, 0)?

Solution: f(−6, 0, z) = −4− 1 + z2 − 4→ z = ±3. At (−6, 0,±3), δf
δz 6= 0.

At z = 3,

[ δxδy ] = − δf
−1

δz [ δfδx
δf
δy ]

= −1
6 [1 − ey] = −1

6 [1 − 1] = [−16
1
6 ]

(d) What is the value of z that corresponds to (x, y) = (−6.2, 0.2).

Solution: g((−6, 0) + (−0.2, 0.2)) ≈ g((−6, 0)) + δg
δxδx+ δg

δy δx

= 3 + (−16 (−0.2)) + ( 1
6 (0.2))
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