
Fall2011 ARE211
Final Exam - Answer key

Problem 1 (Real Analysis) [24 points]:

A) [6 points] Let A, B be subsets of a set X. Prove

A ∩ B = ∅ ⇔ A ⊆ X\B

Ans: ⇒: If A = ∅, then we are done, since the empty set is a subset of any set. Then suppose
A 6= ∅. Consider any x ∈ A. By A ∩ B = ∅, then x 6∈ B, or x ∈ X\B. Thus, A ⊆ X\B.
⇐: If A = ∅, then again we are done since ∅ ∩B = ∅ for any set B. Consider any x ∈ A. Since
A ⊆ X\B, then x ∈ X\B, or x ∈ X and x 6∈ B. Thus, if x ∈ A then x 6∈ B. so A ∩ B = ∅.

B) [6 points] Use the open cover definition of compactness to prove that an arbitrary finite
subset of R is compact in R. Your answer should hold for all metrics on R.

Ans: Consider an arbitrary finite subset {x1, ..., xn} of R. Let U = {Uλ, λ ∈ Λ} be an arbitrary
open cover of {x1, ..., xn}. For i = 1, ...n, there exists λi ∈ Λ such that xi ∈ Uλi

. (Uλi
)n
i=1 is

a finite cover of x and (Uλi
)ni=1 ⊂ U . Thus, an arbitrary open cover of {x1, ..., xn} has a finite

subcover.

C) [6 points] Let (X, d) be a metric space. For A ⊆ X, define the distance between x ∈ X
and A to be

r(x,A) = inf
a∈A

d(x, a).

Prove that A is closed if and only if x ∈ A for any x ∈ X such that r(x,A) = 0.

Ans: ⇒: Consider x ∈ X such that r(x,A) = 0. Then infa∈A d(x, a) = 0.
If A is finite, then we must have x ∈ A, otherwise if x 6∈ A, we would have infa∈A d(x, a) > 0.
If A is infinite, then infa∈A d(x, a) = 0 implies for any ǫ > 0, there exists an element a ∈ A
such that d(x, a) < ǫ. Thus, we could construct a sequence of elements from the set A that
converges to x, which implies x ∈ A since A closed.
⇐: Let x ∈ A for any x ∈ X such that r(x,A) = 0. We prove that A contains all of its
accumulation points and is therefore closed. Let x be an accumulation point of A (if A has no
accumulation points, then we are done). Then for any ǫ > 0, there exists a point a ∈ A such
that a ∈ B(x, ǫ|X). Thus, infa∈A d(x, a) = 0, so a ∈ A by our assumption.

D) [6 points] Define the function f : R × R+ → R where f(x, α) = xα − x. Define the
correspondence Ψ(α) : R+ ։ R as

Ψ(α) = {x ∈ R :
∂f(x;α)

∂x
6= 0}.

On what subset of R+ is Ψ(·) compact-valued? Prove.

Ans: Ψ(α) is compact valued only for α = 1.

Consider α = 1. Then ∂f(x;α)
∂x

= 0 for any x, so Ψ(1) = ∅ which is compact. Now consider α 6= 1.

For α = 0, then ∂f(x;0)
∂x

= −1 for any x, so Ψ(0) = R, which is not compact. For α ∈ R++, α 6= 1

we prove Ψ(α) is not compact by showing for any α ∈ N, ∂f(x,α)
∂x

6= 0 for all but one value of x,

which implies Ψ(α) is not closed and therefore not compact. We have ∂f(x;α)
∂x

= αxα−1−1 which
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is nonzero iff x 6= α1−α. But R+\{α
1−α} is not a closed set, hence Ψ(α) is not compact valued.
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Problem 2 (Linear Algebra) [12 points]:
For parts A and B answer the following questions: Is S a vector space. (Possible answers are yes,
no or maybe. If not, prove this with an example. If it is, (a) what is its dimension? (b) Give a
basis for S. (c) Pick arbitrarily an element of S that is not part of your basis and show how it can
be written as a linear combination of your basis set. If your answer is maybe, indicate under what
conditions the answer is “yes”, and under these conditions answer (a)-(c) above.

A) [6 points] S =
{

y : N → R : ∃x ∈ R
3 s.t. y = {x1, x2, x3, x1, x2, x3, x1, x2, x3...}

}

.

Ans: S is a vector space. (a) Its dimension is 3. (b) A basis set is y1 = {1, 0, 0, 1, 0, 0, 1, 0, 0, ...},
y2 = {0, 1, 0, 0, 1, 0, 0, 1, 0, ...}, and y3 = {0, 0, 1, 0, 0, 1, 0, 0, 1, ...}. (c) Let z be a nonzero ele-
ment of R

3 such that zi 6= 0, for i = 1, ..., 3 and consider the sequence y = {z1, z2, z3, z1, z2, z3, z1, z2, z3...}.
Clearly y ∈ S and since all elements are nonzero, it is not an element of the basis set. Moreover,
y =

∑3
i=1 ziyi.

B) [6 points] Fix x ∈ R
3 and let S =

{

y : N → R : y = {x1, x2, x3, x1, x2, x3, x1, x2, x3...}
}

.

Ans: Maybe. It is a vector space for x = 0, for all other x’s it is not a vector space. If x = 0,
then it’s a zero-dimensional vector space consisting of the single element y = {0, 0, ...}. If x 6= 0,
then let y = {x,x,x, ...}. Clearly 2y /∈ S, verifying that S is not a vector space.
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Problem 3 (Calculus I) [15 points]:
Let

g(x, y, z) =

[

e2x − z
y2

xyz − y4

]

A) [5 points] Compute the Jacobian of g(·), Jg(x, y, z)

Ans:

Jg(x, y, z) =

[

2e2x 2z
y3 − 1

y2

yz xz − 4y3 xy

]

B) [5 points] Compute the directional derivative at g(0, 1, 2) in the direction h = (0, 0,−2).

Ans: The directional derivative is gh(x, y, z = Jg(x, y, z) · h
||h|| . Note that ||h|| = 2. Hence

gh(0, 1, 2) = Jg(x, y, z) ·
h

||h||

=

[

2e2x 2z
y3 − 1

y2

yz xz − 4y3 xy

]

·





0
0

-2/2





=

[ 1
y2

−xy

]

=

[

1
0

]

C) [5 points] Compute a first order approximation of g(1, 1, 3) from the point g(0, 1, 2)

Ans:

g(1, 1, 3) ≈ g(0, 1, 2) + Jg(0, 1, 2)dx where dx = (1, 0, 1)

=

[

-1
-1

]

+

[

2e2x 2z
y3 − 1

y2

yz xz − 4y3 xy

]





1
0
1





=

[

-1
-1

]

+

[

2 4 −1
2 −4 0

]





1
0
1





=

[

-1
-1

]

+

[

1
2

]

=

[

0
1

]
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Problem 4 (Calculus II) [14 points]:
Let f(x, y, z) = e2x − z

y2 . It will make calculations easier to note that this is the first element of

function g(·) from the last problem.

A) [7 points] Compute a second order approximation of f(1, 1, 3) from the point f(0, 1, 2).

Ans:

Hf(x, y, z) =





4e2x 0 0
0 −6z

y4

2
y3

0 2
y3 0





Hf(0, 1, 2) =





4 0 0
0 -12 2
0 2 0





f(1, 1, 3) ≈ f(0, 1, 2) + ▽f(0, 1, 2)dx +
1

2
dx′Hf(0, 1, 2)dx where dx = (1, 0, 1)

= 0 +
1

2
[1, 0, 1]





4 0 0
0 -12 2
0 2 0









1
0
1





=
1

2
[1, 0, 1]





4
2
0





= 2

B) [7 points] For dx = (1, 0, 1), does there exist a neighborhood around (0, 1, 2) such that the
signs of the first order Taylor Approximation about (0, 1, 2) agrees with the sign of
f((0, 1, 2) + dx) − f((0, 1, 2))? What about for the sign of the second order Taylor Approx-
imation?

Ans: Yes for both. First note that f is thrice continuously differentiable.
For the second order Taylor approximation, we know that the conditions for Local Taylor are met
since dx′Hf(0, 1, 2)dx = 2 6= 0 as shown in the last part. Therefore, we know the second order
Taylor Approximation of the change has magnitude greater than the magnitude of the remainder
term, so the sign of the change is correct.
Similarly, for the first order Taylor Approximation, we know ▽f(0, 1, 2)dx = 1 6= 0. Thus, we
can use Local Taylor again and we know the sign of the change is correct
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Problem 5 (Constrained Optimization) [25 points]:
Consider the NPP

max
x1,x2

−(x1 − c1)
2 − (x2 − c2)

2 s.t. (x1 + 1)2 + x2
2 ≤ 4, x1 ≥ 0, x2 ≥ 0

where c1, c2 ∈ R. For convenience, denote the objective function f(x1, x2) = −(x1−c1)
2−(x2−c2)

2.

A) [5 points] Does a solution to this problem exist? Explain why. (Don’t use intuition for
this part, be formal.)

Ans: Yes. The constraints form a closed and bounded, thus compact set. The objective function
is continuous. Thus, by the EVT, a solution exists.

B) [5 points] Construct graphs in (x1, x2) space to solve this problem graphically for (a) c1 =
c2 = −0.5 (b) c1 = −4, c2 = 0. Make sure each that your graphs includes: at least two level
sets of the objective; the boundary of the constraint set; the solution; gradient vectors whereever
you feel they are appropriate.

Ans: See figure 1.

C) [5 points] Are the KKT conditions necessary for a solution of this problem? Prove or disprove.
Hint: You can answer this rigorously, which will take quite a bit of time, or fairly quickly, possibly
with reference to the answer to the previous part. You can get almost all of the maximum
available marks (maybe all but one) if you can indicate successfully that you know what you are
doing. Depending on how much you’ve mastered the material, this if could be a BIG if.

Ans: The constraints clearly form a compact set. Thus, we only need to check the constraint
qualification. Let

g1(x1, x2) = −(x1 + 1)2 − x2
2 − 4

g2(x1, x2) = −x1

g3(x1, x2) = −x2

Note the Jacobian of the constraints is given by







∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2

∂g3

∂x1

∂g3

∂x2






= −





2(x1 + 1) 2x2

1 0
0 1





Case 1: x1 = 0 = x2. Then only g2, g3 hold with equality, and the Jacobian of constraints that
hold with equality is

−

[

1 0
0 1

]

,
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Figure 1. KKT Question

which is clearly full rank.
Case 2: x1 > 0, x2 = 0. Then g1 and g3 both could hold with equality, and the relevant Jacobian
is

−

[

2(x1 + 1) 0
0 1

]

,

which is full rank since 2(x1 + 1) > 0 by x1 > 0. It is also possible that only g3 holds with
equality, and clearly the Jacobian of g3 forms a linearly independent set.
Case 3: x1 = 0, x2 > 0. This is similar to Case 2. We know the gradient of g1 and g2 are
linearly independent in this case since the former is −[2, 2x2] which cannot be a scalar multiple
of −[1, 0] since x2 > 0. If g2 is the only constraint that holds with equality, the gradient of g2

is linearly independent, so the CQ holds.
Case 4: x1 > 0, x2 > 0. Then only g1 can hold with equality. If it does, then the gradient of g1

cannot be the 0 vector since 2(x1 + 1) > 0 and 2x2 > 0 by our x1, x2 > 0.
Thus, for any possible value of x1, x2, the CQ holds.
Thus, the KKT conditions are necessary for a solution.
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D) [5 points] For the two answers you gave in part B, what can you say about the lagrangian
of the constraint at the solution value.

Ans: For (a): the lagrangian is 0 on the first constraint and positive on the second constraints;
for (b): the lagrangian is 0 for the first and third constraint and positive for the second constraint.

E) [5 points] Identify a c vector such that at the solution to the problem with this c vector ,
the constraint is satisfied with equality is but not binding.

Ans: c = (1, 0); For this case, the solution is (1, 0), which is the bliss point of the objective
function. The solution lies on the boundary of the constraint; if the constraint were slackened,
the optimum would remain the same.
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Problem 6 (Comparative Statics) [10 points]:

Let S(p) = 1 + p2, and D(p, t) = 5 − (p + t), where S is supply, D is demand, p denotes price
and t ≥ 0 is a tax paid by consumers. An equilibrium for this system is a price p ≥ 0such that
S(p) = D(p, t).

A) [5 points] Write down a function f : R
2 → R such that a necessary condition for (p, t)

to solve this system is that (p, t) belongs to the level set of f corresponding to zero. Is this
condition also sufficient for p to be an equilibrium price given t? If not, add an additional
condition so that your function and additional condition are jointly necessary and sufficient
for an equilibrium to exist.

Ans: f(p, t) = 4 − (p + t) − p2. This condition alone is necessary but not sufficient: p could be
negative if t is too large. An additional condition is that t ≤ 4. The combined conditions t ≤ 4
and f(p, t) = 0 are necessary and sufficient for p to be an equilibrium given t.

B) [5 points] Set t = 2, and write down a function that represents to a first order approximation

how p changes with t. Hint: When t = 2 the equilibrium value of p is 1. For what positive values
of dt does your first order approximation correctly predict the sign of the equlibrium value of p?
(Note: the question asks about the sign of p and not about the sign of dp.)

Ans: Applying the implicit function theorem to the level set of f(p, t) corresponding to

zero, we obtain dp(t)
dt

= −1/(1 + 2p(t)). So dp(t)
dt

∣

∣

∣

t=2
= −1/(1 + 2) = −1/3. Therefore

p(2+dt) ≈ p(2)−dt/3 = 1−dt/3. For dt ≤ 2, the sign of the approximation is the same as the
sign of the true value of p, i.e., positive, but for dt ∈ (2, 3) the approximation yields a positive
value of price, while the true value is negative. (For dt > 3 both approximation and the actual
equilibrium equation predict a negative price. Both are wrong.)


